QCD and Monte Carlos

Peter Skands (Monash University)

Recap: Quantum Field Theory

The elementary interactions are encoded in the Lagrangian EFT \rightarrow Feynman Diagrams \rightarrow Perturbative Expansions (in $\boldsymbol{\alpha}_{\mathrm{s}}$)

THE BASIC ELEMENTS OF QCD: QUARKS AND GLUONS

$$
\boldsymbol{g}_{s}{ }^{2}=4 \pi \alpha_{s}
$$

$$
\psi_{q}^{j}=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)
$$

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

$D_{\mu i j}=\delta_{i j} \partial_{\mu}-i g_{s} T_{i j}^{a} A_{\mu}^{a} \underset{\substack{\text { mai g } \\ \text { (Figs }+ \text { QCD condensates })}}{\text { Quark Mass Terms }}$

Gluon-Field Kinetic Terms and Self-Interactions

Gauge Covariant Derivative: makes L invariant under $\mathrm{SU}(3)_{\mathrm{c}}$ rotations of Ψ_{q}

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

Beyond Fixed Order

QCD is more than just a perturbative expansion in α_{s}
The relation between α_{s}, Feynman diagrams, and the full QCD dynamics is under active investigation. Emergent phenomena:

Jets (the fractal of perturbative QCD) \leftrightarrow amplitude structures in quantum field theory \leftrightarrow factorisation \& unitarity. Precision jet (structure) studies.

Strings (strong gluon fields) \leftrightarrow quantum-classical correspondence. String physics. String breaks. Dynamics of hadronization phase transition.

Hadrons \leftrightarrow Spectroscopy (incl excited and exotic states), lattice QCD, (rare) decays, mixing, light nuclei. Hadron beams \rightarrow multiparton interactions, diffraction, ...

There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy
Hamlet.

LHC RUN 2 IS ON!

$$
\begin{gathered}
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu} \\
+\ldots \ldots \ldots ?
\end{gathered}
$$

LHC Run 1: still no explicit "new physics"
\rightarrow we're still looking for deviations from SM Accurate modeling of QCD improve searches \& precision

QCD - there's a lot of it

High-cross section physics Total $\sigma_{\text {pp }} \sim 100 \mathrm{mb}=10^{11} \mathrm{pb}$ $\sigma_{\mathrm{EW}} \sim 10^{8} \mathrm{fb}=10^{5} \mathrm{pb}$

ATLAS Li EXPERIMENT

Run Number: 162620, Event Number: 16060241

Jets as Projections

Projections to jets provides a universal view of event

Let's start by considering some of the basic ingredients of calculations for processes with QCD jets (~partons).

Interactions in Colour Space

Colour Factors

All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Interactions in Colour Space

Colour Factors

All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Interactions in Colour Space

Colour Factors

All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

(Drell \& Yan, 1970)

Interactions in Colour Space

Colour Factors

All QCD processes have a "colour factor". It counts the enhancement/suppression from the sum/average over colours.

(Drell \& Yan, 1970)

Interactions in Colour Space

Colour Factors

All QCD processes have a "colour factor". It counts the enhancement/suppression from the sum/average over colours.

Quick Guide to Colour Algebra

Colour factors (squared) produce traces

Trace Relation
$\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}$

Example Diagram

Quick Guide to Colour Algebra

Colour factors (squared) produce traces

Trace Relation
$\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}$
$\sum_{A} t_{a b}^{A} b_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3}$

Example Diagram

Quick Guide to Colour Algebra

Colour factors (squared) produce traces

Trace Relation

$$
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}
$$

Example Diagram

$$
\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3}
$$

$$
a>6^{6{ }^{6 \gamma 2} 2}>c
$$

$$
\sum_{C, D} f^{A C D} f{ }_{f}^{B C D}=C_{A} \delta^{A B}, \quad C_{A}=N_{c}=3
$$

คr~6

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d} \quad \text { (Fierz) }
$$

The Gluon

Gluon-Gluon Interactions

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Gluon field strength tensor:

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

Structure constants of SU(3):

$$
\begin{gathered}
f_{123}=1 \\
f_{147}=f_{246}=f_{257}=f_{345}=\frac{1}{2} \\
f_{156}=f_{367}=-\frac{1}{2} \\
f_{458}=f_{678}=\frac{\sqrt{3}}{2}
\end{gathered}
$$

Antisymmetric in all indices
All other $f_{i j k}=0$

Digression: Colour Interference

In general, many different diagrams will contribute to each process, with different colour structures, e.g.:

\rightarrow diagrams squared

+ quantum interferences
If this was all: could define a positive definite probability for each colour structure ~ "LC"

Mixed signs, do not correspond to a unique colour structure (squared)
~"Subleading Colour"; hard to treat in MCs!

Color Flow in MC generators

MC generators use a set of simple rules for color flow, based on large- N_{C} limit (Never Twice Same Color: true up to $\mathrm{O}\left(1 / \mathrm{Nc}^{2}\right)$)

$$
g \rightarrow q \bar{q}
$$

$$
\begin{aligned}
g \rightarrow & g g \\
& \text { eere } \rightarrow \Rightarrow
\end{aligned}
$$

\rightarrow a system of "colour dipoles"

+ Inside each dipole, interference effects can be included (coherence, more later) Also tells us between which partons confining potentials will arise (more in lecture 3)

Color Flow

For an entire Cascade

Coherence of pQCD cascades \rightarrow not much "overlap" between singlet subsystems \rightarrow Leading-colour approximation pretty good

LEP measurements in WW confirm this (at least to order $10 \% \sim 1 / \mathrm{Nc}^{2}$)

Note: (much) more color getting kicked around in hadron collisions \rightarrow more later

QCD at Fixed Order

Distribution of observable: O

In production of $X+$ anything

Fixed Order (All Orders)

Truncate at $k=0, \ell=0$,
\rightarrow Born Level = First Term
Lowest order at which X happens

Loops and Legs

Another representation

Truncate at $k=0, \ell=0, \rightarrow$ Born Level
Lowest order at which X happens

Loops and Legs

Note: $(X+1)$-jet observables only correct at LO

Loops and Legs

Cross sections at LO

$$
\begin{aligned}
& \text { Born @ } \mathrm{LO} \\
& \qquad \sigma_{\text {Born }}=\int\left|M_{X}^{(0)}\right|^{2}
\end{aligned}
$$

Born + n @ LO

$$
\sigma_{\mathrm{X}+1}^{\mathrm{LO}}(R)=\int_{R}\left|M_{X+1}^{(0)}\right|^{2}
$$

Infrared divergent \rightarrow Must be regulated

$$
\begin{aligned}
& \mathrm{R}=\underset{\text { some Infrared Safe phase space region }}{ } \begin{array}{l}
\text { (Often a cut on } p_{\perp}>n \mathrm{GeV} \text {) }
\end{array}
\end{aligned}
$$

Careful not to take it too low!

The Infrared Strikes Back

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0.1$

Truncate at fixed order $=\mathrm{LO}, \mathrm{NLO}, \ldots$
E.g., $\sigma(X+j e t) / \sigma(X) \propto \alpha_{s}$

Example: Pair production of SUSY particles at LHC_{14}, with $\mathrm{Msusy} \approx 600 \mathrm{GeV}$
LHC - spsla - m~600 GeV

FIXED ORDER pQCD	$\sigma_{\text {tot }}[\mathrm{pb}]$	$\tilde{g} \tilde{g}$	$\tilde{u}_{L} \tilde{g}$	$\tilde{u}_{L} \tilde{u}_{L}^{*}$	$\tilde{u}_{L} \tilde{u}_{L}$	$T T$
$p_{T, j}>100 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
inclusive $\mathbf{X}+\mathbf{1}$ "jet"	$\rightarrow \sigma_{1 j}$	2.89	2.74	0.136	0.145	0.73
inclusive $\mathbf{X}+\mathbf{2}$ "jets"	$\rightarrow \sigma_{2 j}$	1.09	0.85	0.049	0.039	0.26

$p_{T, j}>50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

σ for $X+$ jets much larger than naive estimate
$\sigma_{50} \sim \sigma_{\text {tot }}$ tells us that there will "always" be a $~ 50-\mathrm{GeV}$ jet
"inside" a 600-GeV process

All the scales are high, $\mathrm{Q} \gg 1 \mathrm{GeV}$, so perturbation theory should be $\mathrm{OK} \ldots$

Conformal QCD

The Lagrangian of QCD is scale invariant

 (neglecting small quark masses)
Characteristic of point-like constituents

To first approximation, observables depend only on dimensionless quantities, like angles and energy ratios

Also means that when we look closer, patrons (quarks and gluons) must generate ever self-similar patterns $=$ fractals

Note: scaling violation is induced in full QCD, but only by renormalization: $\mathrm{gs}^{2}=4 \pi \alpha_{s}(\mu)$

(some) Physics

Charges Stopped,

 kicked, or created
Radiation

The harder they stop, the harder the fluctations that continue to become radiation

Jets \approx Fractals

- Most bremsstrahlung is driven by divergent propagators \rightarrow simple structure
- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

Partons $a b \rightarrow \quad P(z)=$ DGLAP splitting kernels, with $z=$ energy fraction $=E_{a} /\left(E_{a}+E_{b}\right)$ "collinear":

$$
\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
$$

Coherence \rightarrow Parton j really emitted by (i,k) "colour antenna" (in leading colour approximation) Gluon j \rightarrow "soft": $\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}$

```
+ scaling violation: gs}\mp@subsup{}{2}{2}->4\pi\mp@subsup{\alpha}{s}{}(\mp@subsup{Q}{}{2}
```

Can apply this many times \rightarrow nested factorizations Jets-within-jets-within-jets..\rightarrow lecture on showers

Lessons:

- Each time we add a QCD parton, we get singularities
- Driven by intermediate propagators going "on shell"
- They are universal (process-independent) and imply that, in the singular limits (soft/collinear), QCD amplitudes factorize.

But then don't we get infinite cross sections? And what about when we add loops?

Cross sections at NLO

NLO:

$$
\sigma_{\mathrm{X}}^{\mathrm{NLO}}=\int\left|M_{X}^{(0)}\right|^{2}+\int\left|M_{X+1}^{(0)}\right|^{2}+\int 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0) *}\right]
$$

(note: this is not the I-loop diagram squared)
KLN Theorem (Kinoshita-Lee-Nauenberg)
Sum over 'degenerate quantum states' :
Singularities cancel at complete order (only finite terms left over)

$$
=\sigma_{\text {Born }}+\text { Finite }\left\{\int\left|M_{X+1}^{(0)}\right|^{2}\right\}+\text { Finite }\left\{\int 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0) *}\right]\right\}
$$

$$
\sigma_{\mathrm{NLO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=\sigma_{\mathrm{LO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\left(\frac{\alpha_{s}\left(E_{\mathrm{CM}}\right.}{\pi}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

The Subtraction Idea

How do I get finite\{Real\} and finite\{Virtual\} ?

First step: classify IR singularities using universal functions
EXAMPLE: factorization of amplitudes in the soft limit

Soft Limit $\left(E_{j} \rightarrow 0\right)$:

$\left|\mathcal{M}_{n+1}(1, \cdots, i, j, k, \cdots, n+1)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C}_{i j k} S_{i j k}\left|\mathcal{M}_{n}(1, \cdots, i, k, \cdots, n+1)\right|^{2}$

Universal
"Soft Eikonal"

$$
S_{i j k}\left(m_{I}, m_{K}\right)=\frac{2 s_{i k}}{s_{i j} s_{j k}}-\frac{2 m_{I}^{2}}{s_{i j}^{2}}-\frac{2 m_{K}^{2}}{s_{j k}^{2}}
$$

$$
s_{i j} \equiv 2 p_{i} \cdot p_{j}
$$

The Subtraction Idea

Add and subtract IR limits (SOFT and COLLINEAR)

$$
\mathrm{d} \sigma_{N L O}=\int_{\mathrm{d} \Phi_{m+1}} \underbrace{\left(\mathrm{~d}_{N L O}^{R}\right)}_{\text {Finite by Universality }}-\underbrace{\mathrm{d}_{N L O}^{S}}_{\text {Finite by KLN }}+\int_{\mathrm{d} \Phi_{m+1}}^{\left.\int_{N \Phi_{m}}^{S} \sigma_{N L O}+\int_{\sigma_{N L O}^{V}}\right]}
$$

Choice of subtraction terms:
Singularities mandated by gauge theory

Dipoles (CataniSeymour)
Global Antennae (Gehrmann,
Gehrmann-de Ridder, Glover)
Sector Antennae
(Kosower)

Non-singular terms: up to you (added and subtracted, so vanish)

$$
\begin{gathered}
\frac{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right] \\
\frac{\left|\mathcal{M}\left(H^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(H^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\begin{array}{c}
{\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}+2\right)\right]} \\
\text { SOFT }
\end{array}\right]
\end{gathered}
$$

Structure of $\sigma($ NNLO $)$

Infrared Safety

Definition: an observable is infrared safe if it is insensitive to

SOFT radiation:

Adding any number of infinitely soft particles (zero-energy) should not change the value of the observable

COLLINEAR radiation:

Splitting an existing particle up into two comoving ones (conserving the total momentum and energy) should not change the value of the observable

Note: some people use the word "infrared" to refer to soft only. Hence you may also hear "infrared and collinear safety". Advice: always be explicit and clear what you mean.

Consequences of Collinear Unsafety

Collinear Safe

Infinities cancel
(KLN: 'degenerate states')

Collinear Unsafe

\qquad jet $1 \underset{\text { jet } 2}{ }$
$\alpha_{s}^{n} \times(-\infty)$
$\alpha_{s}^{n} \times(+\infty)$

Infinities do not cancel
Invalidates perturbation theory

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$
\alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \infty \rightarrow \alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \ln p_{t} / \Lambda \rightarrow \alpha_{\mathrm{s}}^{2}+\underbrace{\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{3}}_{\text {BOTH WASTED }}
$$

Lessons: "Stereo Vision"

Use IR Safe algorithms
To study short-distance physics
These days, \approx as fast as $I R$ unsafe algorithms and widely implemented (e.g., FASTJET), including
"Cone-like": SiSCone, Anti-kT, ...
"Recombination-like": $\mathrm{k}_{\mathrm{T}, \mathrm{Cambridge}}$ Aachen,Anti-kT...

Use IR Sensitive observables
E.g., number of tracks, identified particles, ...

To explicitly study hadronization and check models of IR physics

More about IR in lecture on soft QCD ...

Factorization 2: PDFs

Hadrons are composite, with time-dependent structure:

Partons within clouds of further partons, constantly emitted and absorbed

For hadron to remain intact, virtualities $\mathrm{k}^{2}<\mathrm{Mh}^{2}$ High-virtuality fluctuations suppresed by powers of

$$
\frac{\alpha_{s} M_{h}^{2}}{k^{2}}
$$

M_{h} : mass of hadron k^{2} : virtuality of fluctuation
\rightarrow Lifetime of fluctuations $\sim 1 / M_{h}$
Hard incoming probe interacts over much shorter time scale ~ 1/Q
On that timescale, partons \sim frozen
Hard scattering knows nothing of the target hadron apart from the fact that it contained the struck parton \rightarrow factorisation

Factorization Theorem

In DIS, there is a formal proof of factorization

(Collins, Soper, 1987)
Deep Inelastic Scattering (DIS)

Surprise Question:

What's the color factor for DIS?

Note: Beyond LO, f can be more than one parton
\rightarrow We really can write the cross section in factorized form :

$$
\sigma^{\ell h}=\sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}}
$$

$$
\begin{array}{cccc}
\text { Sum over } & \Phi_{f} & f_{i / h} & \text { Differential partonic }
\end{array}
$$

Initial (i) and final (f) parton flavors

$$
=\text { Final-state } \quad=\text { PDFs }
$$

phase space Assumption:

$$
\mathrm{Q}^{2}=\mathrm{QF}^{2}
$$

Hard-scattering Matrix Element(s)

A propos Factorization

Why do we need PDFs, parton showers / jets, etc.? Why are Fixed-Order QCD matrix elements not enough?
F.O. QCD requires Large scales : to guarantee that α_{s} is small enough to be perturbative (not too bad, since we anyway often want to consider large-scale processes [insert your fav one here])
F.O. QCD requires No hierarchies : conformal structure implies that soft/collinear hierarchies are associated with on-shell singularities that ruin fixed-order expansion.

But!!! we collide - and observe - low-scale hadrons, with nonperturbative structure, that participate in hard processes, whose scales are hierarchically greater than $\mathrm{m}_{\text {had }} \sim 1 \mathrm{GeV}$.
\rightarrow A Priori, no perturbatively calculable observables in QCD

Lesson: Factorization \rightarrow can still calculate!

Why is Fixed Order QCD not enough?

: It requires all resolved scales >> ^QCD $^{\text {AND }}$ no large hierarchies
PDFs: connect incoming hadrons with the high-scale process
Fragmentation Functions: connect high-scale process with final-state hadrons (each is a non-perturbative function modulated by initial- and final-state radiation)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections

FFs: needed to compute (semi-)exclusive cross sections

Resummed pQCD: All resolved scales \gg @QCD $^{\text {AND } X}$ Infrared Safe

[^0]
Last Topic: Scaling Violation

Real QCD isn't conformal

The coupling runs logarithmically with the energy scale

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{s}\right) \quad \beta\left(\alpha_{s}\right)=-\alpha_{s}^{2}\left(b_{0}+b_{1} \alpha_{s}+b_{2} \alpha_{s}^{2}+\ldots\right), \\
& b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi} \quad b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}} \\
& \text { ।-Loop } \beta \text { function coefficient }
\end{aligned}
$$

Asymptotic freedom in the ultraviolet

Confinement (IR slavery?) in the infrared

Asymptotic Freedom

QED:

Vacuum polarization
\rightarrow Charge screening

QCD:
Quark Loops
\rightarrow Also charge screening

But only dominant if > 16 flavors!

Asymptotic Freedom

QED:
Vacuum polarization
\rightarrow Charge screening

QCD:

$$
b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi}
$$

Gluon Loops

Dominate if ≤ 16 flavors

Spin-I \rightarrow Opposite Sign

UV and IR

From S. Bethke, Nucl.Phys.Proc.Suppl. 234 (2013) 229
See also PDG Review on QCD. by Dissertori \& Salam

At low scales

Coupling $\alpha_{s}(\mathrm{Q})$ actually runs rather fast with Q

Perturbative solution diverges at a scale Λ_{QCD} somewhere below

$$
\approx 1 \mathrm{GeV}
$$

So, to specify the strength of the strong force, we usually give the value of α_{s} at a unique reference scale that everyone agrees on: Mz_{z}

The Fundamental Parameter(s)

QCD has one fundamental parameter
$\alpha_{s}\left(m_{Z}\right)^{\mathrm{MS}} \alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)}$

... and its sibling

$\alpha_{s}\left(Q^{2}\right)=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}}$
(depends on n_{f}, scheme, and \# of loops)
$b_{0}=\frac{11 N_{C}-2 n_{f}}{12 \pi}$ I ~ 200 MeV
... And all its cousins
$\Lambda^{(3)} \Lambda^{(4)} \Lambda^{(5)} \Lambda_{\text {CMW }} \Lambda_{\text {FSR }} \Lambda_{\text {ISR }} \Lambda_{\text {MPI }}, \ldots$
$\ldots+\mathrm{n}_{\mathrm{f}}$ and quark masses

Will return to these in lecture on Monte Carlos and parton showers

Changing the scale(s)

Why scale variation ~ uncertainty?

Scale dependence of calculated orders must be canceled by contribution from uncalculated ones (+ non-pert)

$$
\begin{aligned}
& \alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)} \text { Expand in } \alpha_{s} \\
& =\alpha_{s}\left(m_{Z}^{2}\right)\left(1-b_{0} \alpha_{s}\left(m_{Z}^{2}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right) \\
& \rightarrow\left(\alpha_{s}\left(Q^{\prime 2}\right)-\alpha_{s}\left(Q^{2}\right)\right)|M|^{2}=\alpha_{s}^{2}\left(Q^{2}\right)|M|^{2}+\ldots \\
& \rightarrow \text { Generates terms of higher order, but proportional to what you } \\
& \text { already have }\left(|\mathrm{M}|^{2}\right) \rightarrow \text { a first naive }{ }^{*} \text { way to estimate uncertainty } \\
& \text { *warning: some theorists believe it is the only way ... but be agnostic! There are other things than scale dependence ... }
\end{aligned}
$$

Asymptotic Freedom

"What this year's Laureates discovered was something that, at first sight, seemed completely contradictory. The interpretation of their mathematical result was that the closer the quarks are to each other, the weaker is the 'colour charge'. When the quarks are really close to
${ }^{*}$ each other, the forfore is so weak that they behave almost as free particles. This phenomenon is called 'asymptotic freedom'. The converse is true when the quarks move apart:
*2 the forentee becomes stronger when the distance increases."

Nobelprize.org
The Official Web Site of the Nobel Prize

The Nobel Prize in Physics 2004
David J. Gross, H. David Politzer, Frank Wilczek

Frank Wilczek

Photos: Copyright © The Nobel Foundation

```
** The force still goes to m as r }->
(Coulomb potential), just less slowly
*2 The potential grows linearly as \(r \rightarrow \infty\), so the force actually becomes constant (even this is only true in "quenched" QCD. In real QCD, the force eventually vanishes for \(r \gg \mid f m\) )
```


[^0]: ${ }^{*}$)pQCD $=$ perturbative QCD

