Recent Developments in Vincia \& Pythia

Peter Skands - U of Oxford \& Monash U.

1. Perturbative Uncertainties (in Showers)
2. Sector Showers \& NNLO Matching
3. EW Showers and Resonance Decays
4. From Showers to Jets: Colour Confusion
... including some questions for discussion ...

Note: see talk by Silvia (Monday) for $N^{(n)}$ LL showers (PanScales, Alaric, etc)

Standard for Shower Uncertainties: Renormalization-scale variations
Example: PYTHIA's DGLAP-based shower

Varying μ_{i} only induces terms proportional to the shower splitting kernels Actual higher-order MEs also have:
Non-singular terms (dominate far from singular limits),
Non-trivial colour factors outside collinear limits,
Higher-order log terms not captured exactly by $\Delta_{n}\left(t_{n}, t_{n+1}\right)$

Non-Singular Variations: Example

Example from Mrenna \& PS, "Automated Parton-Shower Variations in Pythia 8", PRD 94 (2016) 7

Can vary renormalisation-scale and non-singular terms independently

Note: ME corrections were switched off for illustration here. Would reduce red band, but not blue.

(Non-Singular Variations: Effect of Matching to Matrix Elements)

Example from Mrenna \& PS, "Automated Parton-Shower Variations in Pythia 8", PRD 94 (2016) 1
Can vary renormalisation-scale and non-singular terms independently

(Uncertainties: note on the size of uncontrolled log terms)

Schematic Example: starting scale $Q_{0}=100 \mathrm{GeV}$

(2) Sector Showers in VINCIA

VINCIA's shower is unique in being a "Sector Shower"

Partition N-gluon Phase Space into N "sectors" (using step functions).
Each sector corresponds to one specific gluon being the "softest" in the event - the one you would cluster if you were running a jet algorithm (ARCLUS)
Inside each sector, only a single kernel is allowed to contribute (the most singular one)!
Sector Kernel $=$ the eikonal for the soft gluon and its collinear DGLAP limits for $z>0.5$.
\rightarrow Unique properties: shower operator becomes bijective and is a true Markov chain

The crucial aspect:

Only a single history contributes to each phase-space point !
\Longrightarrow Factorial growth of number of histories reduced to constant!
(And the number of sectors only grows linearly with the number of gluons)

($g \rightarrow q \bar{q} \rightarrow$ leftover factorial in number of same-flavour quarks; not a big problem)

Sectorized CKKW-L Merging publicly available from Pythia 8.306

Brooks \& Preuss (2021) "Efficient multi-jet merging with the VINCIA sector shower"

Extensions now pursued:
Sectorized matching at NNLO (proof of concepts in arXiv:2108.07133 \& arXiv:2310.18671)
Sectorized iterated tree-level ME corrections (demonstrated in PS \& Villarejo arXiv:1109.3608)
Sectorized multi-leg merging at NLO (active research grants, with C. Preuss, Wuppertal)

Sectorized Matching at NNLO (in VINCIA)

Idea: harness the power of showers as efficient phase-space generators

a.k.a. "ME Corrections" Sjöstrand et al. (1986, 2001); Giele, Kosower, PS (2011); Lopez-Villarejo, PS (2011)
a.k.a. "Forward-Branching" PS generation Weinzierl, Kosower (1999); Draggiotis, v. Hameren, Kleiss (2000);

Figy, Giele (2018)
Conventional Fixed-Order phase-space generation (eg VEGAS)

Nested phase-space generation in a Shower Markov Chain

Need:
(1) Born-local NNLO K-factors: $k_{\text {NNLO }}\left(\Phi_{2}\right)$
(2) NLO MECs in the first $2 \mapsto 3$ shower branching: $w_{2 \mapsto 3}^{\mathrm{NLO}}\left(\Phi_{3}\right)$
(3) LO MECs for second (iterated) $2 \mapsto 3$ shower branching: $w_{3 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{4}\right)$
(4) Direct $2 \mapsto 4$ branchings for unordered sector with LO MECs: $w_{2 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{4}\right)$

(1) Weight each Born-level event by local K-factor

$$
\begin{aligned}
k_{\mathrm{NNLO}}\left(\Phi_{2}\right) & =1+\frac{\mathrm{V}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{S}}^{\mathrm{NLO}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{VV}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{T}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{S}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)} \\
& +\int \mathrm{d} \Phi_{+1}\left[\frac{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{S}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{RV}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{T}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}\right] \\
& +\int \mathrm{d} \Phi_{+2}\left[\frac{\mathrm{RR}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{S}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}\right]
\end{aligned}
$$

Fixed-Order Coefficients:

Subtraction Terms (not tied to shower formalism):

Note: requires "Born-local" NNLO subtraction terms. Currently only for simplest cases.
Interested in discussing \& exploring connections with local subtraction schemes

(2), (3), (4) Shower Markov chain with Second-Order Corrections

Key aspect

up to matched order, include process-specific NLO corrections into shower evolution:
(2) correct first branching to exclusive ($<t^{\prime}$) NLO rate: [Hartgring, Laenen, PS (2013)]

$$
\begin{aligned}
& \begin{array}{l}
\text { Born } \rightarrow \text { Born }+1 \\
\text { Sudakov Factor }
\end{array}
\end{aligned} \Delta_{2 \mapsto 3}^{\mathrm{NLO}}\left(t_{0}, t^{\prime}\right)=\exp \left\{-\int_{t^{\prime}}^{t_{0}} \mathrm{~d} \Phi_{+1} \underline{\mathrm{~A}_{2 \mapsto 3}\left(\Phi_{+1}\right) w_{2 \mapsto 3}^{\mathrm{NLO}}}\left(\Phi_{2}, \Phi_{+1}\right)\right\}
$$

(3) correct second branching to LO ME: [Giele, Kosower, PS (2011); Lopez-Villarejo, PS (2011)]

Iterated:

(Ordered)

Direct:

(Unordered)

$$
\begin{aligned}
& \text { Born } \rightarrow \text { Born }+2 \\
& \text { Sudakov Factor } \\
& \Delta_{2 \mapsto 4}^{\mathrm{LO}}\left(t_{0}, t\right)=\exp \left\{-\int_{t}^{t_{0}} \mathrm{~d} \Phi_{+2}^{>} \underline{\left.\left.\mathrm{A}_{2 \mapsto 4}\left(\Phi_{+2}\right) w_{2 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{2}, \Phi_{+2}\right)\right\},{ }^{2}\right)}\right.
\end{aligned}
$$

\Rightarrow entirely based on MECs and sectorisation
\Rightarrow by construction, expansion of extended shower matches NNLO singularity structure

But shower kernels do not define NNLO subtraction terms ${ }^{1}$ (!)

Size of the Real-Virtual Correction Factor ((2))

$$
w_{2 \mapsto 3}^{\mathrm{NLO}}=w_{2 \mapsto 3}^{\mathrm{LO}}\left(1+w_{2 \mapsto 3}^{\mathrm{V}}\right)
$$

studied analytically in detail for $Z \rightarrow q \bar{q}$ in Hartgring, Laenen, PS JHEP 10 (2013) 127

\Rightarrow now: generalisation \& (semi-)automation in VINCIA in form of NLO MECs

(Combining iterated $n \rightarrow n+1$ and direct $n \rightarrow n+2$ branchings)

A priori, direct $2 \mapsto 4$ and iterated $2 \mapsto 3$ branchings overlap in ordered region.
In sector showers, iterated $2 \mapsto 3$ branchings are always strictly ordered.

Divide double-emission phase space into strongly-ordered and unordered region:
[Li, Skands 1611.00013]

$$
\mathrm{d} \Phi_{+2}=\underbrace{\mathrm{d} \Phi_{+2}^{>}}_{\text {u.o. }}+\underbrace{\mathrm{d} \Phi_{+2}^{<}}_{\text {s.o. }}
$$

$\mathrm{d} \Phi_{+2}^{<}$: single-unresolved limits \Rightarrow iterated $2 \mapsto 3$
$\mathrm{d} \Phi_{+2}^{>}$: double-unresolved limits \Rightarrow direct $2 \mapsto 4$

Restriction on double-branching phase space enforced by additional veto:

$$
\mathrm{d} \Phi_{+2}^{>}=\sum_{j} \theta\left(p_{\perp,+2}^{2}-\hat{p}_{\perp,+1}^{2}\right) \Theta_{i j k}^{\mathrm{sct}} \mathrm{~d} \Phi_{+2}
$$

Preview: VINCIA NNLO+PS for $H \rightarrow b \bar{b}$

Coloretti, Gehrmann-de Ridder, Preuss, JHEP 06 (2022) 009

Fixed-Order Reference $=$ EERAD3 NLO $H \rightarrow b \bar{b} g$: already quite optimised
Uses analytical MEs, "folds" phase space to cancel azimuthally antipodal points, and uses antenna subtraction $(\rightarrow$ smaller \# of NLO subtraction terms than Catani-Seymour or FKS).

VINCIA NNLO+PS: shower as phase-space generator: efficient \& no negative weights

Looks ~ 5 x faster than EERAD3 (for similar unweighted stats) + is matched to shower \Longrightarrow includes resummation; can calulate any IR safe observable; can be hadronised \rightarrow IR sensitive observables, etc.

Note:
NNLO accuracy in $H \rightarrow 2 j$ implies NLO correction in first emission and LO correction in second emission.

Proof of concepts done for $\mathbf{H \& Z} \rightarrow 2$
Work remains to extend to pp, ep, and ee $\rightarrow n \geq 3$ (\& on marrying this formalism with NnLL accuracy)

(3) Electroweak Radiation in VINCIA

Main component: soft photon emission

$$
\text { [Dittmaier, 2000] }\left|M_{n+1}\left(\{p\}, p_{j}\right)\right|^{2}=-8 \pi \alpha \sum_{x, y}^{n} \sigma_{x} Q_{x} \sigma_{y} Q_{y} \frac{s_{x y}}{s_{x j} s_{y j}}\left|M_{n}(\{p\})\right|^{2}
$$

Example: Quadrupole final state (4-fermion: $e^{+} e^{+} e^{-} e^{-}$)

—— Opposite-charge pairs $>$ positive terms

——Same-charge pairs negative terms
ـ Not well suited for showers
$(\rightarrow$ HERWIG \& SHERPA use YFS)

QED Multipole Showers in VINCIA

Sectorize QED phase space: for each possible photon emission kinematics $p_{\gamma^{\prime}}$ find the 2 charged particles with respect to which that photon is softest > "Dipole Sector"

Use dipole-antenna kinematics for that sector, but sum all the positive and negative antenna terms (w spin dependence) to find coherent emission probability >0
\Longrightarrow QED shower with full soft multipole coherence and DGLAP collinear limits and no negative weights [Kleiss \& Verheyen (2017); PS \& Verheyen (2020)]

Available in PYTHIA 8; directly applicable also to $e^{+} e^{-} \rightarrow \mathrm{Z} / \gamma^{*} \rightarrow f \bar{f}$ and $e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow 4 f$ Also accounts for initial-final interference via interleaved resonance decays; discussed later

Example of QED multipole interferences

High-mass Drell-Yan

$$
\begin{aligned}
& u \bar{u} \rightarrow Z / \gamma^{*} \rightarrow e^{+} e^{-} \\
& m_{e e}^{2}>1 \mathrm{TeV}, p_{\perp, e}>25 \mathrm{GeV} \text { and }\left|\eta_{e}\right|<3.5 \\
& p_{\perp, \gamma}>0.5 \mathrm{GeV} \text { and }\left|\eta_{\gamma}\right|<3.5
\end{aligned}
$$

PYTHIA

Factorizes $u \bar{u}$ and $e^{+} e^{-}$radiation

VINCIA

1) Coherent = full multipole treatment
2) Pairing ~ PYTHIA: only consider "maximally screening" charge pairs;
no genuine multipole effects

Next: QED matrix-element corrections \& applications to QED corrections in B decays

$$
\cos \theta_{\mathrm{CS}}^{*}=2 \frac{p_{e e}^{z}}{\left|p_{e e}^{z}\right|} \frac{p_{e^{+}}^{+} p_{e^{-}}^{-}-p_{e^{+}}^{-} p_{e^{-}}^{+}}{m_{e e} \sqrt{m_{e e}^{2}+p_{\perp, e e}^{2}}}
$$

Weak Showers

Real corrections: EW gauge bosons, tops, Higgs part of jets
Virtual corrections: Universal incorporation of Sudakov logs $\frac{\alpha}{\pi} \ln ^{2}\left(s / Q_{\mathrm{EW}}^{2}\right)$

Features of VINCIA's EW Shower [Brooks, PS, Verheyen (2022)]
Chiral \rightarrow Helicity showers Larkoski, Lopez-Villarejo, PS (2013); Fischer, Lifson, PS (2017)
EW-scale mass corrections \& exact massive phase spaces
Longitudinal polarisations / Goldstone bosons
Treatment of neutral boson interference
Overlap vetos to eliminate double-counting between OCD and EW

Resonance-decay like branchings \rightarrow Interleaved Resonance Decays
Caveat: Our EW antenna functions constructed from collinear limits (~DGLAP) Soft multipole coherence so far only for pure QED, not full EW

Radiation in Decays

Narrow-Width Limit \Leftrightarrow Conventional "sequential" treatment

Treat each decay (sequentially) as if alone in the universe

Example: QED radiation in $t \bar{t}$ production and decay:

Observation: these are also EW vertices.
$>$ Treat decays on similar footing as other shower branchings.

$$
\begin{aligned}
Q_{W} Q_{\bar{d}} & =\frac{+1}{3} \\
-Q_{u} Q_{\bar{d}} & =\frac{-2}{9} \\
Q_{w} Q_{u} & =\frac{+2}{3}
\end{aligned}
$$

Beyond Narrow-Width Limit:

Expect interferences to become important for $E_{\gamma} \lesssim \Gamma_{t}$ (and $E_{\gamma} \lesssim \Gamma_{W}$)
(Note: for charged resonances, VINCIA utilises unique coherent "resonance-final" antenna patterns with global recoil [Brooks, PS (2019)])

Physics Motivation for Interleaved Resonance Decays

Long-wavelength radiation should not be able to resolve short-lived intermediate states
For long wavelengths $\lambda \gtrsim(\hbar c) / \Gamma$ expect interferences (\& recoils) between decays

Long Wavelengths
QED quadrupole:
$-Q_{b} Q_{W^{+}}=\frac{+1}{3}$
$-Q_{b} Q_{W^{-}}=\frac{-1}{3}$
$-Q_{b} Q_{\bar{b}}=\frac{+1}{9}$
$-Q_{W^{+}} Q_{W^{-}}=+1$
$-Q_{W+} Q_{\bar{b}}=\frac{-1}{3}$
$-Q_{W-} Q_{\bar{b}}=\frac{+1}{3}$

Affects radiation spectrum, for energies $E_{\gamma} \lesssim \Gamma$

+ Interferences and recoils between systems => non-local BW modifications

\rightarrow Interleaved Resonance Decays (VINCIA)

High-energy pp collisions - with ISR, Multi-Parton Interactions, and Beam Remnants

Final states with very many coloured partons
With significant overlaps in phase space
Who gets confined with whom?
Each has a colour ambiguity $\sim 1 / N_{C}^{2} \sim 10 \%$ E.g.: random triplet charge has $1 / 9$ chance to be in singlet state with random antitriplet:

$$
\begin{aligned}
& 3 \otimes \overline{3}=8 \oplus 1 \\
& 3 \otimes 3=6 \oplus \overline{3} ; 3 \otimes 8=15 \oplus 6 \oplus 3 \\
& 8 \otimes 8=27 \oplus 10 \oplus \overline{10} \oplus 8_{S} \oplus 8_{A} \oplus 1
\end{aligned}
$$

Many charges \rightarrow Colour Reconnections* (CR) more likely than not - "Colour Promiscuity!" [J. Huston]

"Parton Level"
(Event structure before confinement)

QCD Colour Reconnections \longleftrightarrow String Junctions

Open Strings

$q \bar{q}$ strings (with gluon kinks)

$$
\begin{gathered}
\text { E.g., } Z \rightarrow q \bar{q}+\text { shower } \\
H \rightarrow b \bar{b}+\text { shower }
\end{gathered}
$$

SU(3) String Junction

Closed Strings

Gluon rings
E.g., $H \rightarrow g g+$ shower Open strings with $N_{C}=3$ endpoints $\Upsilon \rightarrow g g g+$ shower

E.g., Baryon-Number violating neutralino decay $\tilde{\chi}^{0} \rightarrow q q q+$ shower

Fragmentation of String Junctions

Assume Junction Strings have same properties as ordinary ones

 (u:d:s, Schwinger pt, etc) $^{\text {(}}$$\rightarrow$ Noqew string-fragmentation parameters

[Sjöstrand \& PS, NPB 659 (2003) 243]
[+ J. Altmann \& PS, in progress]

The Junction Baryon is the most "subleading" hadron in all three "jets".

Generic prediction: low p_{T}
A Smoking Gun for String Junctions: Baryon enhancements at low p_{T}

Confront with Measurements

LHC experiments report very large (factor-10) enhancements in heavy-flavour baryon-to-meson ratios at low p_{T} !

+ Lots of interesting new measurements showing changes in strange vs nonstrange strange hadrons
\& evidence of flow-like effects in pp collisions
\rightarrow modifications to PT spectra

Not reproduced by baseline string/cluster models

> Very exciting! Lots of Activity

Particle Composition: Impact on Jet Energy Scale

ATLAS PUB Note

ATL-PHYS-PUB-2022-021
29th April 2022

Dependence of the Jet Energy Scale on the Particle Content of Hadronic Jets in the ATLAS Detector Simulation

The dependence of the ATLAS jet energy measurement on the modelling in Monte Carlo simulations of the particle types and spectra within jets is investigated. It is found that the hadronic jet response, i.e. the ratio of the reconstructed jet energy to the true jet energy, varies by $\sim \mathbf{1 - 2 \%}$ depending on the hadronisation model used in the simulation. This effect is mainly due to differences in the average energy carried by kaons and baryons in the jet. Model differences observed for jets initiated by quarks or gluons produced in the hard scattering process are dominated by the differences in these hadron energy fractions indicating that measurements of the hadron content of jets and improved tuning of hadronization models can result in an improvement in the precision of the knowledge of the ATLAS jet energy scale.

Variation largest for gluon jets

For $E_{T}=[30,100,200] \mathrm{GeV}$
Max JES variation $=[3 \%, 2 \%, 1.2 \%]$
Fraction of jet E_{T} carried by baryons (and kaons) varies significantly
Reweighting to force similar baryon and kaon fractions
Max variation \rightarrow [1.2\%, 0.8\%, 0.5\%]
Significant potential for improved Jet Energy Scale uncertainties!

Motivates Careful Models \& Careful Constraints

Interplay with advanced UE models
In-situ constraints from LHC data
Revisit comparisons to LEP data

Summary

MC generators connect theory with experiment

Entering era of percent-level perturbative accuracy, with NNLO+N(n)LL accurate MCs

+ much new work on hadronization \& CR
Driven by LHC physics program
But ee often used as test bed \leftrightarrow synergy

Original Figure: $\underline{2203.11601}$

Extra Slides

Note on Different alpha(S) Choices

Correlated or Uncorrelated?

What I would do: 7-point variation (resources permitting \rightarrow use the automated bands?)

(1) Perturbative Uncertainties in Showers

First guess: renormalisation-scale variations,
$\mu_{R}^{2} \rightarrow k_{\mu} \mu_{R}^{2}$, with constant $k_{\mu} \in[0.5,2]$ or $[0.25,4], \ldots$

+ e.g., do for ISR and FSR separately \rightarrow 7-point variations \longrightarrow
Induces "nuisance" terms beyond calculated orders

Running of $\alpha_{s}\left(k \mu^{2}\right)=\alpha_{s}\left(\mu^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(\mu^{2}\right) \ln (k)} \quad$ with $b_{0}=\frac{11 N_{C}-4 T_{R} n_{f}}{12 \pi} \sim 0.6$
\Longrightarrow ME proportional to $\alpha_{s}^{n}\left(\mu^{2}\right)(1 \pm \underbrace{b_{0} \alpha_{s}\left(\mu^{2}\right) \ln k^{n}}_{\text {variation }}+\ldots)$
I think many of us suspect this is unsatisfactory and unreliable Problem: little guidance on what else to do ...

Invitation for Discussions (after talk)

Issue \#1: Multiscale Problems (e.g., a couple of bosons + a couple of jets)
Not well captured by any variation k_{μ} around any single scale
More of an issue for hard-ME calculations than for showers (which are intrinsically multiscale)
Best single-scale approximation = geometric mean of relevant (nested) OCD scales
My recommendation: vary which scales enter this geometric mean

Issue \#2: Terms that are not proportional to the lower orders

Renormalization-scale variations always proportional to what you already:

$$
\mu_{R} \text { variations } \Longrightarrow \mathrm{d} \sigma \rightarrow\left(1 \pm \Delta \alpha_{s}\right) \mathrm{d} \sigma
$$

No new kinematic dependence
But full higher-order matrix elements will also contain genuinely new terms at each order, not proportional to previous orders:

More general $\Longrightarrow \mathrm{d} \sigma \rightarrow \mathrm{d} \sigma \pm \Delta \mathrm{d} \sigma$

Parton Showers: Theory

Most bremsstrahlung is

driven by divergent propagators \rightarrow simple structure

Mathematically, gauge amplitudes

 factorize in singular limits

$$
\begin{gathered}
\underset{\rightarrow \text { collinear: }}{\text { Partons ab }}\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a| | b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2} \\
P(z)=\text { DGLAP splitting kernels", with } z=E_{a} /\left(E_{a}+E_{b}\right)
\end{gathered}
$$

$$
\underset{\rightarrow \text { soft: }}{\text { Gluon } \mathrm{j}}\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

$$
\text { Coherence } \rightarrow \text { Parton j really emitted by (} \mathrm{i}, \mathrm{k} \text {) "dipole" or "antenna" (eikonal factors) }
$$

These are the building blocks of parton showers (DGLAP, dipole, antenna, ...) (+ running coupling, unitarity, and explicit energy-momentum conservation.)

Scale Variations: How big?

What do parton showers do?

In principle, LO shower kernels proportional to a_{s}
Naively: do the analogous factor-2 variations of μ_{Ps}.

There are at least 3 reasons this could be too conservative

1. For soft gluon emissions, we know what the NLO term is
\rightarrow even if you do not use explicit NLO kernels, you are effectively NLO (in the soft gluon limit) if you are coherent and use $\mu_{\mathrm{PS}}=\left(k_{\mathrm{CMW}} \mathrm{P}_{\mathrm{T}}\right)$, with 2-loop running and $\mathrm{k}_{\mathrm{CMW}} \sim 0.65$ (somewhat n_{f}-dependent). [Though there are many ways to skin that cat; see next slides.]
Ignoring this, a brute-force scale variation destroys the NLO-level agreement.
2. Although hard to quantify, showers typically achieve better-than-LL accuracy by accounting for further physical effects like (E, p) conservation
3. We see empirically that (well-tuned) showers tend to stay inside the envelope spanned by factor-2 variations in comparison to data

(Illustration of the "Magic Trick")

Proof-of-Concept NNLO LEP tune (NNLO z Decay, ie with NLO 3-jet corrections - using VINCIA)
NNLO tune (3-jet NLO) with $\alpha_{\mathrm{s}}(\mathrm{Mz})=0.1222_{\text {arlop anming, cmm }}$
NLO tune \sim Monash (3-jet LO) with $\alpha_{s}\left(\mathrm{M}_{\mathrm{z}}\right)=0.139$ \square
\} Comparable values for Λ_{QCD}

Scale variations: How Big?

Poor man's recipe: Use $\sqrt{2}$ instead?
Sure ... but still somewhat arbitrary
Instead: add compensation term to preserve softgluon limit at $O\left(a_{s}{ }^{2}\right)$

Still allowing full factor-2 outside that limit.
Pythia includes such a compensation term, at least in context of automated uncertainty bands
Since aggressive definitions can lead to overcompensation / extremely optimistic predictions \rightarrow very small uncertainty bands, we chose a rather conservative definition for PYTHIA \rightarrow larger bands.

$$
\begin{aligned}
& P^{\prime}(t, z)=\frac{\alpha_{s}\left(k p_{\perp}\right)}{2 \pi}\left(1+(1-\zeta) \frac{\alpha_{s}\left(\mu_{\max }\right)}{2 \pi} \beta_{0} \ln k\right) \frac{P(z)}{t} \\
& \zeta=\left\{\begin{array}{cl}
z & \text { for splittings with a } 1 / z \text { singularity } \\
\begin{array}{cl}
1-z & \text { for splittings with a } 1 /(1-z) \text { singularity } \\
\operatorname{compensation} \\
\min (z, 1-z) & \text { for splittings with a } 1 /(z(1-z)) \text { singularity }
\end{array}
\end{array} .\right.
\end{aligned}
$$

ee \rightarrow hadrons
1-Thrust (udsc)

Matrix-Element Merging — The Complexity Bottleneck

For CKKW-L style merging: (ncl umeps, NL3, unloops,...)
Need to take all contributing shower histories into account.
In conventional parton showers (Pythia, Herwig, Sherpa, ...)
Each phase-space point receives contributions from many possible branching "histories" (aka "clusterings")
\# of histories grows ~ \# of Feynman Diagrams, faster than factorial
Number of Histories for n Branchings

Staring foom a single qq̄ pair	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$
CS Dipole	2	8	48	384	3840	46080	645120

Bottleneck for merging at high multiplicities (+ high code complexity)

Lots of Antenna Functions

$$
\begin{aligned}
a_{f_{\lambda} \rightarrow f_{\lambda} V_{\lambda}}^{F F} & =2(v-\lambda a)^{2} \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} \frac{1}{x_{j}} \\
a_{f_{\lambda} \rightarrow f_{\lambda} V_{-\lambda}}^{F F} & =2(v-\lambda a)^{2} \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} \frac{x_{i}^{2}}{x_{j}} \\
a_{f_{\lambda} \rightarrow f_{-\lambda} V_{\lambda}}^{F F} & =2 \frac{1}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}}\left((v-\lambda a) m_{i} \frac{1}{\sqrt{x_{i}}}-(v+\lambda a) m_{I} \sqrt{x_{i}}\right)^{2} \\
a_{f_{\lambda} \rightarrow f_{\lambda} V_{0}}^{F F} & =\frac{1}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}}\left[(v-\lambda a)\left(\frac{m_{I}^{2}}{m_{j}} \sqrt{x_{i}}-\frac{m_{i}^{2}}{m_{j}} \frac{1}{\sqrt{x_{i}}}-2 m_{j} \frac{\sqrt{x_{i}}}{x_{j}}\right)+(v+\lambda a) \frac{m_{I} m_{i}}{m_{j}} \frac{x_{j}}{\sqrt{x_{i}}}\right]^{2} \\
a_{f_{\lambda} \rightarrow f_{-\lambda} V_{0}}^{F F} & =\frac{\left(m_{I}(v+\lambda a)-m_{i}(v-\lambda a)\right)^{2}}{m_{j}^{2}} \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} x_{j} .
\end{aligned}
$$

$$
\begin{aligned}
a_{V_{\lambda} \rightarrow f_{\lambda} \bar{f}_{-\lambda}}^{F F} & =2(v-\lambda a)^{2} \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} x_{j}^{2} \\
a_{V_{\lambda} \rightarrow f_{-\lambda} \bar{f}_{\lambda}}^{F F F} & =2(v+\lambda a)^{2} \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} x_{i}^{2} \\
a_{V_{\lambda} \rightarrow f_{-\lambda} \bar{f}_{-\lambda}}^{F F} & =2 \frac{1}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}}\left((v+\lambda a) m_{i} \sqrt{\frac{x_{j}}{x_{i}}}+(v-\lambda a) m_{j} \sqrt{\frac{x_{i}}{x_{j}}}\right)^{2} \\
a_{V_{0} \rightarrow f_{\lambda} \bar{f}_{\lambda}}^{F F} & =\frac{\left((v+\lambda a) m_{i}-(v-\lambda a) m_{j}\right)^{2}}{m_{I}^{2}} \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} \\
a_{V_{0} \rightarrow f_{\lambda} \bar{f}_{-\lambda}}^{F F} & =\frac{1}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} \\
& \times\left[(v-\lambda a)\left(2 m_{I} \sqrt{x_{i} x_{j}}-\frac{m_{i}^{2}}{m_{I}} \sqrt{\frac{x_{j}}{x_{i}}}-\frac{m_{j}^{2}}{m_{I}} \sqrt{\frac{x_{i}}{x_{j}}}\right)+(v+\lambda a) \frac{m_{i} m_{j}}{m} \frac{1}{\sqrt{x_{i} x_{j}}}\right]^{2} .
\end{aligned}
$$

$$
a_{V_{\lambda} \rightarrow V_{\lambda} V_{\lambda}}^{F F}=2 g_{v}^{2} \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} \frac{1}{x_{i} x_{j}}
$$

$$
\begin{aligned}
& a_{V_{\lambda} \rightarrow V_{\lambda} H}^{F F}=\frac{e^{2}}{s_{w}^{2}} \frac{m_{v}^{4}}{m_{w}^{2}} \frac{1}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} \\
& a_{V_{\lambda} \rightarrow V_{0} H}^{F F}=\frac{e^{2}}{2 s_{w}^{2}} \frac{m_{v}^{2}}{m_{w}^{2}} \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} x_{i} x_{j} \\
& a_{V_{0} \rightarrow V_{\lambda} H}^{F F}=\frac{e^{2}}{2 s_{w}^{2}} \frac{m_{v}^{2}}{m_{w}^{2}} \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} \frac{x_{j}}{x_{i}} \\
& a_{V_{0} \rightarrow V_{0} H}^{F F}=\frac{e^{2}}{4 s_{w}^{2}} \frac{1}{m_{w}^{2}} \frac{1}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}}\left(m_{I}^{2}-2 m_{i}^{2}\left(x_{i}+\frac{1}{x_{i}}\right)\right)^{2} .
\end{aligned}
$$

Collinear Limits

$$
\tilde{m}_{i j}^{2}=m_{i j}^{2}-\frac{m_{i}^{2}}{z^{2}}-\frac{m_{j}^{2}}{(1-z)^{2}}
$$

λ_{I}	λ_{i}	λ_{j}	$f \rightarrow f^{\prime} V$

λ	λ	λ
$2(v-\lambda a)^{2} \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} \frac{1}{1-z}$		
λ	λ	$-\lambda$
$2(v-\lambda a)^{2} \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} \frac{z^{2}}{1-z}$		

Pure vector
$\lambda \quad-\lambda \quad \lambda \quad 2 \frac{1}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}}\left(m_{I}(v-\lambda a) \sqrt{z}-m_{i}(v+\lambda a) \frac{1}{\sqrt{z}}\right)^{2}$
Pure vector
$\begin{array}{lll}\lambda & -\lambda & -\lambda\end{array}$
$P(z) \propto \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}} \frac{1+z^{2}}{1-z}$
$\begin{array}{lll}\lambda & \lambda & 0\end{array}$
$\frac{1}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}}\left[(v-\lambda a)\left(\frac{m_{I}^{2}}{m_{j}} \sqrt{z}-\frac{m_{i}^{2}}{m_{j}} \frac{1}{\sqrt{z}}-2 m_{j} \frac{\sqrt{z}}{1-z}\right)+(v+\lambda a) \frac{m_{i} m_{I}}{m_{j}} \frac{1-z}{\sqrt{z}}\right]^{2} \quad$ Vector + Scalar
$\lambda \quad-\lambda \quad 0 \quad \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}}(1-z)\left(\frac{m_{i}}{m_{j}}(v-\lambda a)-\frac{m_{I}}{m_{j}}(v+\lambda a)\right)^{2} \rightarrow P(z) \propto \frac{\tilde{m}_{i j}^{2}}{\left(m_{i j}^{2}-m_{I}^{2}\right)^{2}}(1-z)$
Pure scalar

A Brief History of MPI in PYTHIA

$\sigma_{\text {parton-parton }}\left(\hat{p}_{\perp}\right)$
$\frac{\sigma_{\text {parton-parton }}\left(\hat{p}_{\perp}\right)}{\sigma_{\text {hadron-hadron }}}>1$
\Longrightarrow several parton-parton interactions per hadron-hadron imatianctio

Sjöstrand \& van Zijl, 1985:

Sjöstrand \& PS, 2005:
Interleave MPI \& ISR evolutions in one common sequence of рт
Corke \& Sjöstrand, 2011:
Also include FSR in interleaving

QCD Colour Reconnections \longleftrightarrow String Junctions

Stochastically restores colour-space ambiguities according to SU(3) algebra
$>$ Allows for reconnections to minimise string lengths

Dipole-type reconnection

What about the red-green-blue colour singlet state?

In Progress: Strangeness Enhancement from Close-Packing

Idea: each string exists in an effective background produced by the

Close-packing

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks
Strange Junctions

String breaks
vs.
Results in strangeness enhancement focused in baryon sector

String tension could be different from the vacuum case compared to near a junction

Λ_{b} asymmetry

$$
A=\frac{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)-\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)+\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}
$$

Without junction CR , an important source of low-p Λ_{b} production is when $a b$ quark combines with the proton beam remnant.
Not possible for $\bar{\Lambda}_{b}$ (no \bar{p} remnant at LHC)
QCD CR adds large amount of low-pt junction Λ_{b} and $\bar{\Lambda}_{b}$, in equal amounts. Dilutes asymmetry!

Non-Linear String Dynamics?

$\mathrm{MPI} \Longrightarrow$ lots of coloured partons scattered into the final states

Count \# of (oriented) flux lines crossing $y=0$ in pp collisions (according to PYTHIA)

Confining fields may be reaching higher effective representations than simple quark-antiquark (3) ones.

Two approaches in PYTHIA:

1) Colour Ropes (Lund)
2) Close-Packing (Monash)
