

Overview

Introduction: The structure of LHC collisions (in PYTHIA)

Recent Studies (focus on SM precision environments \leftrightarrow BSM backgrounds)

1. NLO Matching Systematics with POWHEG-Box (examples: VBF, t \bar{t})
2. From NLO to NNLO (examples: $t \bar{t}, V, H, V H, V V, \ldots$)
3. The computational bottleneck in ME merging (example: $V+j e t s)$
4. New Discoveries in Hadronization (examples: HF baryons, JES)

NB: want to address/explain state of the art \& systematics in real contexts \rightarrow a bit theory heavy

An LHC collision (in PYTHIA)

Hard	OHard Interaction
Process	\bullet Resonance Decays
	MECs, Matching \& Merging

An LHC collision (in PYTHIA)

An LHC collision (in PYTHIA)

1. NLO Radiation in POWHEG

Generate hardest emission with (exact) tree-level matrix element $\left|M_{X+1}^{(0)}\right|^{2}$
(instead of with approximate parton-shower kernel)

Pseudorapidity of the emitted parton

1. Radiation in POWHEG - in a nutshell

Generate hardest emission with (exact) tree-level matrix element $\left|M_{X+1}^{(0)}\right|^{2}$
(instead of with approximate parton-shower kernel)

Pseudorapidity of the emitted parton

POWHEG emissions are generated in a shower-like manner (MECs)

Combines Matrix-Element Corrections (MEC) [Bengtsson \& Sjöstrand 1987 + ...]
with NLO Born-Level Normalization
[Nason 2004; Fixione, Nason, Oleari 2007]
Sweeping over the phase space, from high to low P_{T}

1. Radiation in POWHEG - in a nutshell

Generate hardest emission with (exact) tree-level matrix element $\left|M_{X+1}^{(0)}\right|^{2}$ (instead of with approximate parton-shower kernel) Then let parton shower take over for all further emissions.

Arbitrary Hard Process Superscript (0) means tree level

Pseudorapidity of the emitted parton

POWHEG emissions are generated in a shower-like manner (MECs)

Combines Matrix-Element Corrections (MEC) [Bengtsson \& Sjöstrand 1987 + ...]
with NLO Born-Level Normalization
[Nason 2004; Fixione, Nason, Oleari 2007]
Sweeping over the phase space, from high to low p_{T}

This is how it is supposed to work

POWHEG-Box

PowHeg-Box: independent of shower generator
Convenient: can be used with any shower
Caveat: must use its own definition of " $\mathrm{PT}^{\prime \prime}$ " $=$ shower's PT_{T}

Naive POWHEG Matching

Continue the shower starting from the POWHEG p_{T} scale (Saved in LHEF SCALUP value)

POWHEG-Box

PowHeg-Box: encodes its own phase-space generator for 1 st emission Output via LHEF. Convenient: can be used with any parton shower Caveat: must use its own definition of "PT" \neq shower's PT

Naive POWHEG Matching

Continue the shower starting from the POWHEG-Box p_{T} scale (Saved in LHEF SCALUP value)

FAILS!

Region \mathbf{A} is double-counted Region \mathbf{B} is left empty

Current best practice

Vetoed "Power Showers" - with PYTHIA's POWHEG hooks (PowHEG:veto = 1)
Let shower fill all of phase space (\Rightarrow lots of double counting but at least no holes) Eliminate double counting: for each shower emission, compute the would-be $p_{\perp i}^{\text {Powheg }}$ and veto any that would double-count $p_{\perp 1}^{\text {Powheg }}$

Vetoed Power Showers

Work very well for simple processes (like Drell-Yan)

But the ambiguities can be much more severe for more complex processes.
Especially ones involving initial-final colour flows

A More Complex Process

Vector boson fusion, $q q \rightarrow q^{\prime} q^{\prime} H$

Multiple emitters

\rightarrow several overlapping phase spaces

And many possible p_{T} definitions:

p_{\perp} with respect to the beam p_{\perp} with respect to the final-state q^{\prime} partons p_{\perp} with respect to either of the $\left(q_{*} q^{\prime}\right)$ dipoles
p_{\perp} with respect to the H ?
(+ PYTHIA defines a problematic ($q^{\prime} q^{\prime}$) dipole)

+ Interpolations/combinations of the above ...
Again, POWHEG-Box generates the first emission, which it judges to be the "hardest" according to its own P_{T} definition

Note: similar concerns for any process with coloured partons in the final state at Born level $t \bar{t}(\& t \rightarrow b W), V / H+j e t(s)$, dijets, trijets, ...

POWHEG-Box Matching Systematics

Varying the POWHEG-Box \leftrightarrow PYTHIA hardness-scale ambiguity

POWHEG: $\mathrm{pThard}=0$ \# Veto at $p_{\perp j ; i}^{\text {POWHEG }}=\mathbf{S C A L U P}=$ scale at which POWHEG says it emitted this parton
POWHEG: pThard $=1$ \# Veto at $\min _{i}\left(p_{\perp j ; i}^{\text {POWHEG }}\right)=$ smallest scale at which POWHEG could have emitted this parton
POINHEG: pThard $=2$ \# Veto at $\min _{i, j}\left(p_{\perp j ; i}^{\text {POWHEG }}\right)=$ smallest scale at which POWHEG could have produced this event

- Powheg + Pythia Default Big variation with pThard choice :) Tends to fill in the rapidity gap even for the 3rd jet (which should be under control in POWHEG VBF)
-Powheg + Pythia Dipole - Powheg + Vincia

Very little dependence on pThard Born-Level NLO accuracy preserved ∇

VBF: $4^{\text {th }}$ Jet $=$ First Pure-Shower Emission

Varying the POWHEG-Box \leftrightarrow PYTHIA hardness-scale ambiguity

POINHEG: pThard $=0$ \# Veto at $p_{\perp j ; i}^{\text {POWHEG }}=\mathbf{S C A L U P}=$ scale at which POWHEG says it emitted this parton
POWHEG: pThard $=1$ \# Veto at $\min _{i}\left(p_{\perp j ; i}^{\text {POWHEG }}\right)=$ smallest scale at which POWHEG could have emitted this parton
POINHEG: $\mathbf{p T h a r d}=\mathbf{2}$ \# Veto at $\min _{i, j}\left(p_{\perp j ; i}^{\text {POWHEG }}\right)=$ smallest scale at which POWHEG could have produced this event
[Nason, Oleari 2013]

Pseudorapidity of the Third Jet

2. From NLO to NNLO

Fixed-Order State of the Art is becoming NNLO \rightarrow few-\% precision Applying such calculations in a collider context requires NNLO matching

MiNNLO ${ }_{P S}$ builds on (extends) POWHEG NLO for $\mathrm{X}+$ jet
Allow the first jet to approach $p_{\perp} \rightarrow 0 \sim X+0$
Tame divergence with analytic (NNLL) Sudakov (introduces additional hardness scale $=$ resummation scale)
Normalize inclusive $\mathrm{d} \sigma_{X}$ to NNLO (ambiguity on "spreading" new contributions in phase space.)

Probably the best you can do with current off-the-shelf parton showers

But is approximate; introduces several new (unphysical) ambiguities:
$p_{\perp}^{\text {Shower }}$ vs $p_{\perp}^{\text {Powhes }}$ vs $Q_{\text {NNLL }}^{\text {resummation }} \&$ differential NNLO spreading

MiNNLOPS inherits some issues from POWHEG-Box

Large dependence on pThard scale

Big variations in predictions for further jets

Calculation "anchored" in NLO for X+jet
\Longrightarrow Also big variations for Born-level (0-jet) observable.

Not the pattern one expects of an NNLO calculation

Recommendations to Users of these Calculations

$\mathrm{MiNNLO}_{\text {ps }}$ is an approximate matching scheme
Does not "match" shower to NNLO point by point in phase space (Impossible to do so with LL showers.)

Does not (always) do vetoed showers
(This can in principle be done.)
Depends on several auxiliary scales
(Intrinsic to scheme. Physical observables should not depend on them \rightarrow vary!)
Comprehensive variations mandatory to estimate scheme uncertainties
Cannot blindly trust the NNLO label
Nor is the subsequent shower guaranteed to preserve accuracy
E.g., Regular POWHEG + proper vetoed showers may do "better" for some observables?

Towards True NNLO Matching

Idea: Use (nested) Shower Markov Chain as NNLO Phase-Space Generator Harnesses the power of showers as efficient phase-space generators for QCD Pre-weighted with the (leading) QCD singular structures = soft/collinear poles

Different from conventional Fixed-Order phase-space generation (eg VEGAS)

Towards True NNLO Matching

Idea: Use (nested) Shower Markov Chain as NNLO Phase-Space Generator
Harnesses the power of showers as efficient phase-space generators for QCD Pre-weighted with the (leading) QCD singular structures = soft/collinear poles

Simply continue shower afterwards
No unphysical scales \Rightarrow small matching systematics

Towards True NNLO Matching

Idea: Use (nested) Shower Markov Chain as NNLO Phase-Space Generator

Harnesses the power of showers as efficient phase-space generators for OCD
Pre-weighted with the (leading) QCD singular structures = soft/collinear poles

Need:
(1) Born-local NNLO K-factors: $k_{N N L O}\left(\Phi_{2}\right)$
(2) NLO MECs in the first $2 \mapsto 3$ shower branching: $w_{2 \mapsto 3}^{\mathrm{NLO}}\left(\Phi_{3}\right)$
(3) LO MECs for second (iterated) $2 \mapsto 3$ shower branching: $w_{3 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{4}\right)$
(4) Direct $2 \mapsto 4$ branchings for unordered sector with LO MECs: $w_{2 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{4}\right)$

Simply continue shower afterwards
No unphysical scales \Rightarrow small matching systematics
(arXiv:2108.07133 \& arXiv:2310.18671)

Preview: VINCIA NNLO+PS for $H \rightarrow b \bar{b}$

Note:
NNLO Reference $=$ EERAD3 NLO $H \rightarrow b \bar{b} g$
Coloretti, Gehrmann-de Ridder, Preuss, JHEP 06 (2022) 009
NNLO accuracy in $H \rightarrow 2 j$ implies NLO correction in first emission and LO correction in second emission.

> So for Thrust,
> NNLO $H \rightarrow b \bar{b}$ is
> effectively
> NLO for $\tau<1 / 3$
> LO for $\tau>1 / 3$

VINCIA NNLO+PS: shower as phase-space generator: efficient \& no negative weights!
> Looks ~ $5 \times$ faster than EERAD3 (for equivalent unweighted stats)

+ is matched to shower + can be hadronized
Proof of concepts now done for $Z / H \rightarrow q \bar{q}$; work remains for $p p$ ($\&$ for NnLL accuracy)

Overview

Introduction: The structure of LHC collisions (in PYTHIA)

Recent Studies (focus on SM precision environments \leftrightarrow BSM backgrounds)

1. NLO Matching Systematics with POWHEG-Box (examples: VBF, tī)
2. From NLO to NNLO (examples: $t \bar{t}, V, H, V H, V V, \ldots$)
3. The computational bottleneck in ME merging (example: $V+j e t s)$
4. New Discoveries in Hadronization (examples: HF baryons, JES)

The Computational Bottleneck in ME Merging

Condensed remarks from talk by T. Moskalets (ATLAS) at CERN Workshop Nov 2023

- Largest fraction of EvGen CPU time is taken by generation of multi-leg MC predictions
- namely, multijet merged Sherpa V+jets

Matrix-Element Merging - The Complexity Bottleneck

For CKKW-L style merging: (incl umers, nı3, un_ops, ...)
Need to take all contributing shower histories into account.
In conventional parton showers (Pythia, Herwig, Sherpa, ...)
Each phase-space point receives contributions from many possible branching "histories" (aka "clusterings")
\# of histories grows ~ \# of Feynman Diagrams, faster than factorial

Number of Histories for n Branchings

Starting from a single $q \bar{q}$ pair	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$
CS Dipole	2	8	48	384	3840	46080	645120

Bottleneck for merging at high multiplicities (+ high code complexity)

Sector Showers (without maths)

VINCIA's shower is unique in being a "Sector Shower" PS \&Villarejo JHEP 11 (2011) 150
Partition N-gluon Phase Space into N "sectors" (using step functions).
Each sector \leftrightarrow one specific gluon being the "softest" in the event
Inside each sector, only one kernel contributes (the most singular one)!
Sector Kernel = the eikonal for the soft gluon and its collinear DGLAP limits for $z>0.5$.
\rightarrow Unique properties: shower operator becomes bijective and is a true Markov chain
The crucial aspect:
Only a single history contributes to each phase-space point!
\Longrightarrow Factorial growth of number of histories reduced to constant!
(And the number of sectors only grows linearly with the number of gluons)
($g \rightarrow q \bar{q} \rightarrow$ leftover factorial in number of same-flavour quarks; not a big problem)

Sectorized CKKW-L Merging publicly available from Pythia 8.306

Brooks \& Preuss, "Efficient multi-jet merging with the VINCIA sector shower", arXiv:2008.09468

Demonstrated constant scaling with multiplicity. Extensions now pursued:
Optimisations of baseline algorithm Sectorized iterated tree-level ME corrections (demonstrated in PS \& Villarejo arXiv:1109.3608) Sectorized multi-leg merging at NLO (active research grants, with C. Preuss, Wuppertal)

Overview

Introduction: The structure of LHC collisions (in PYTHIA)

Recent Studies (focus on SM precision environments \leftrightarrow BSM backgrounds)

1. NLO Matching Systematics with POWHEG-Box (examples: VBF, t \bar{t})
2. From NLO to NNLO (examples: $t \bar{t}, V, H, V H, V V, \ldots$)
3. The computational bottleneck in ME merging (example: $V+j e t s)$
4. New Discoveries in Hadronization (examples: HF baryons, JES)

New Discoveries in Hadronization

LHC experiments report very large (factor-10) enhancements in heavyflavour baryon-tomeson ratios at low p_{T} !

Not predicted by default Pythia (Monash)

Very exciting!

Figure from [Altmann \& Skands, in progress]

LHCb: also in Bottom

Λ_{b} asymmetry

$$
A=\frac{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)-\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)+\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}
$$

Baseline Expectations: ■ \& b quark combines with the proton beam remnant $\Longrightarrow \Lambda_{b}$ production Not possible for $\bar{\Lambda}_{b}$ (no \bar{p} remnant at LHC)

LHCb, JHEP 10 (2021) 060 • arXiv: 2107.09593

QCD CR with "string junctions" [Christiansen \& Skands JHEP 08 (2015) 003]
Adds large amount of low-pT Λ_{b} and $\bar{\Lambda}_{b}$, in equal amounts. Dilutes asymmetry!

What are String Junctions?

Open Strings

$q \bar{q}$ strings (with gluon kinks)

> E.g., $Z \rightarrow q \bar{q}+$ shower $H \rightarrow b \bar{b}+$ shower

SU(3) String Junction

Closed Strings

Gluon rings
E.g., $H \rightarrow g g+$ shower Open strings with $N_{C}=3$ endpoints $\Upsilon \rightarrow g g g+$ shower

E.g., Baryon-Number violating neutralino decay $\tilde{\chi}^{0} \rightarrow q q q+$ shower

How do QCD Colour Reconnections Create String Junctions?

Stochastically restores colour-space ambiguities according to SU(3) algebra
$>$ Allows for reconnections to minimise string lengths

Dipole-type reconnection

What about the rea-green-blue colour singlet state?

Junctions!

What do String Junctions do?

Assume Junction Strings have same properties as ordinary ones (u:d:s, Schwinger p_{T}, etc)
> No new string-fragmentation parameters

What a strange world we live in, said Alice

We also know ratios of strange hadrons to pions strongly increase with event activity

In Progress: Strangeness Enhancement from Close-Packing
Idea: each string exists in an effective background produced by the others

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks

String tension could be different from the vacuum case compared to near a junction

Particle Composition: Impact on Jet Energy Scale

ATLAS PUB Note
ATL-PHYS-PUB-2022-021
29th April 2022

Dependence of the Jet Energy Scale on the Particle Content of Hadronic Jets in the ATLAS Detector Simulation

The dependence of the ATLAS jet energy measurement on the modelling in Monte Carlo simulations of the particle types and spectra within jets is investigated. It is found that the hadronic jet response, i.e. the ratio of the reconstructed jet energy to the true jet energy, varies by $\sim \mathbf{1 - 2 \%}$ depending on the hadronisation model used in the simulation. This effect is mainly due to differences in the average energy carried by kaons and baryons in the jet. Model differences observed for jets initiated by quarks or gluons produced in the hard scattering process are dominated by the differences in these hadron energy fractions indicating that measurements of the hadron content of jets and improved tuning of hadronization models can result in an improvement in the precision of the knowledge of the ATLAS jet energy scale.

Variation largest for gluon jets
For $\mathrm{E}_{\mathrm{T}}=[30,100,200] \mathrm{GeV}$
Max JES variation $=[3 \%, 2 \%, 1.2 \%]$
Fraction of jet E_{T} carried by baryons (and kaons) varies significantly
Reweighting to force similar baryon and kaon fractions

Max variation \rightarrow [1.2\%, 0.8\%, 0.5\%]
Significant potential for improved Jet Energy Scale uncertainties!

Motivates Careful Models \& Careful Constraints

Interplay with advanced UE models
In-situ constraints from LHC data
Revisit comparisons to LEP data

Summary \& Outlook

State of the art for perturbation theory: NNLO (\rightarrow N3LO)

Matching to showers + hadronization mandatory for collider studies (+ resummation extends range)

Now: can use off-the-shelf showers with MiNNLOps

Based on POWHEG-Box + Analytical Resummation + NNLO normalisation
Approximate method; depends on several auxiliary unphysical scales \rightarrow can exhibit large variations

Work in progress: VinciaNNLO \rightarrow Friday

Based on nested shower-like phase-space generation with second-order MECs True NNLO matching \rightarrow Expect small matching systematics
So far only worked out for colour-singlet decays.
(Also developing extensions towards NLL, NNLL showers ...)

Beautiful Strings

New discoveries at LHC on particle composition, esp. baryons and strangeness
New research grant with LHCb (Warwick) focusing on strings with b-quark endpoints And QED corrections in B decays

Extra Slides

Parton Showers: Theory

Most bremsstrahlung is

driven by divergent propagators \rightarrow simple structure

Mathematically, gauge amplitudes factorize in singular limits

$$
\begin{aligned}
& \stackrel{\text { Partons ab }}{\rightarrow \text { collinear: }}\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2} \\
& \qquad P(z)=\text { DGLAP splitting kernels", with } z=E_{a} /\left(E_{a}+E_{b}\right) \\
& \underset{\rightarrow \text { soft: }}{\text { Gluon j }}\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2} \\
& \\
& \text { Coherence } \rightarrow \text { Parton j really emitted by (i,k) "dipole" or "antenna" (eikonal factors) }
\end{aligned}
$$

These are the building blocks of parton showers (DGLAP, dipole, antenna, ...) (+ running coupling, unitarity, and explicit energy-momentum conservation.)

Confinement in PYTHIA: The Lund String Model

Simplified (leading- N_{c}) "colour flow" \rightarrow determine between which partons to set up confining potentials

Map from Partons to Strings:
"Linear confinement"

Quarks \Rightarrow string endpoints; gluons \Rightarrow transverse "kinks"
System then evolves as a string world sheet

+ String breaks via spontaneous $q \bar{q}$ pair creation ("Schwinger mechanism") \rightarrow hadrons

The String Fragmentation Function

Consider a string break $\}$, producing a meson M , and a leftover string piece

The meson M takes a fraction z of the quark momentum,
Probability distribution in $z \in[0,1]$ parametrised by Fragmentation Function, $f\left(z, Q_{\mathrm{HAD}}^{2}\right)$

Automated Hadronization Uncertainties

Problem:

Given a colour-singlet system that (randomly) broke up into a specific set of hadrons:

What is the relative probability that same system would have resulted, if the fragmentation parameters had been different?

Would this particular final state become more likely ($w^{\prime}>1$)? Or less likely ($w^{\prime}<1$)
Crucially: maintaining unitarity \Longrightarrow inclusive cross section remains unchanged!
August 2023: Bierlich, Ilten, Menzo, Mrenna, Szewc, Wilkinson, Youssef, Zupan
[Reweighting MC Predictions \& Automated Fragmentation Variations in Pythia 8, 2308.13459]
Method is general; demonstrated on variations of the 7 main parameters governing longitudinal and transverse fragmentation functions in PYTHIA 8
https://gitlab.com/uchep/mlhad-weights-validation
Pythia 8.311

Demonstration

Example: Longitudinal Fragmentation Function (Lund Symmetric FF)

$f(z) \sim$ scaled light-cone hadron momentum fraction

$$
\propto \frac{1}{z^{1+r_{Q} b m_{Q}^{2}}}(1-z) \exp \left(-\frac{b m_{\perp}^{2}}{z}\right)
$$

variations
Reweighting Methodology:
Accept-Reject Algorithm (analogous to shower variations):

$$
w^{\prime}=w \prod_{i \in \text { accepted }} R_{i, \text { accept }}^{\prime}(z) \prod_{j \in \text { rejected }} R_{j, \text { reject }}^{\prime}(z)
$$

with

$$
R_{\mathrm{accept}}^{\prime}(z)=\frac{P_{\mathrm{accept}}^{\prime}(z)}{P_{\mathrm{accept}}(z)} \quad R_{\mathrm{reject}}^{\prime}(z)=\frac{P_{\text {reject }}^{\prime}(z)}{P_{\text {reject }}(z)}=\frac{1-P_{\mathrm{accept}}^{\prime}(z)}{1-P_{\mathrm{accept}}(z)}
$$

A Brief History of MPI in PYTHIA

$\sigma_{\text {parton-parton }}\left(\hat{p}_{\perp}\right)$
 $\sigma_{\text {hadron-hadron }}$

\Longrightarrow several parton-parton interactions per hadron-hadron interaction: MPI

Sjöstrand \& van Zijl, 1985:
Cast as Sudakov-style evolution equation, analogous to the $\sigma_{\mathrm{X}+\mathrm{jet}}\left(p_{\perp}\right) / \sigma_{\mathrm{X}}$ one of showers

Figure from Sjöstrand \& PS, 2005

