Non-Perturbative Aspects of Event Simulation

Peter Skands — University of Oxford \& Monash University

Set of 2 Lectures for Graduate Students in Particle Physics

1. Non-Perturbative aspects of Event Simulation in ee Collisions
2. Non-Perturbative aspects of Event Simulation in $p p$ Collisions (+ optionally: PYTHIA tutorial)

The Problem

Theory Goal: Use LHC measurements to test hypotheses about Nature

Problem \#1: have no exact solutions to QFT for the SM or Beyond How to make predictions to form (reliable) conclusions?

"Fundamental" parameters

Problem \#2: we are colliding - and observing - hadrons Strongly bound states of quarks and gluons.

From Partons to Pions

Consider a parton emerging from a hard scattering (or decay) process

Hard means:
Large momentum transfer $Q_{\text {Hard }} \gg 1 \mathrm{GeV}$

It showers
(bremsstrahlung)

It ends up at a low effective factorization scale

How about I just call it a hadron?
\rightarrow "Local Parton-Hadron Duality"

Local Parton Hadron Duality \leftrightarrow "Independent Fragmentation"

Local
Parton
Hadron
Duality

Fast parton

$Q_{\text {Factorization }}$
"Fragmentation Function" $F_{\pi / q}\left(Q_{F}, x\right)$

Late 70s MC models: Independent Fragmentation

E.g., PYTHIA (then called JETSET) anno 1978

LU TP 78-18
November, 1978
A Monte Carlo Program for Quark Jet Generation
T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is presented, that simulates the fragmentation of a fast parton into a jet of mesons. It uses an iterative scaling scheme and is compatible with the jet model of Field and Feynman.

GURROUTINE JETGENKN)
COMMON /JET/ $\mathrm{K}(100,2), \mathrm{P}(100,5)$
, SIGR, SIGM, CX2, EBEG, WFIN, IFLBEG
COMMON TOATA1/ MESO $(7,2), \operatorname{CMIX}(b ; 2), \operatorname{PMAS}(19)$
IFLSGN=(10-1FLBEG)/5
$W=2$. *EREG
$I=0$
$I P D=0$
IPD $=0$
C 1 FLAVOUR AND PT FOR FIRST QUARK
IFLI=IABS(IFLBEG)
PT1=SIGMA*SQRT(-ALOG(RANF(D)))
PHI $1=6.2832 *$ RANF (0)
PYI=PT1*SIN(PHII

$100 \mathrm{I}=\mathrm{I}+1$

2 FLAVOUR ANO PT FOR NEXT AN
IFL $2=1+$ INT (RANF (0)/PUD)
PT2=SIGMA*SQRT(-ALOG(RANF(0)))
$\mathrm{PHI2}=6.2832 *$ RANF (0)
$\mathrm{P} \times 2=\mathrm{PT} 2 * \operatorname{CoS}(\mathrm{PHI} 2)$
C 3 MYZ MESON FORMED, SPIN ADDED ANO FLAVOUR MIXED
$K(I, 1)=M E S O(3 *(I F L 1-1)+I F L 2, I F L S G N)$
ISPIN $=$ INT (PSI + RANF (01$)$)
$K(I, 2)=1+9 * 1 S P I N+K(I, 1)$
IF (K (I, 1). LE. 6) GOTO 110
TMIX $=$ RANF (0)
$K M=K(1,1)-6+3 * I S P I N$
$K(I, 2)=8+9 * I S P I N+I N T(T M I X+E M I X(K M, 1))+I N T(T M I X+C M I X(K M, 2))$ c 4 MESON MASS FROM TABLE; PT FROM CONSTITUENTS
G 4 MESON MASSMAS 110 (I 1,2$)$)
$P(I, 1)=P X_{1}+P X_{2}$
$\mathrm{F}(1,2)=\mathrm{PY} 1+\mathrm{PY} 2$
PMTS $=P(1,1) * * 2+P(1,2) * * 2+P(1,5) * * 2$
C PANDOM CHOICE OF $X=(E+P I) M E S O N /(E+P Z) A V A I L A B L E ~ G I V E S ~ E ~ A N O ~ P I ~$
$\mathrm{X}=$ RANF (0)
IF (RANF (0) $, L T, C X 2$) $X=1,-X * *(1, / 3$.
$P(I ; 3)=(X * W-P M T S /(X * W)) / 2$.
$P(I, 4)=(X * W+P M T S /(X * W)) / 2$.
c a IF UNSTABLE, DECAY CHAIN INTO STABLE PARTICLES
120 IPD=IPD+1
IF (K (IPD, 2).GE.8) CALL DECAY (IPD,I
IF (IPD.LT.I.AND.I.LE. 96) GOTO 120
C 7 FLAVOUR AND OT OF GUARK FORMED IN PAIR WITH ANTIQUARK ABOVE
$I F L 1=I F L 2$
$P \times 1=-P \times 2$
$P Y 1=-P Y 2$
PYi $=-P Y 2$ ENOUGH E PZ LEFT, GO TO 2
C 8 IF ENOUGH E+
IF (W.GT. WFIN.AND.I.LE. 95) GOTO 100
$\mathrm{n}=\mathrm{I}$
RETURN
END

Colour Neutralization

As a physical model, however, LPHD is a not a good starting point
The point of confinement is that partons are coloured.

A physical hadronization model

Should involve at least two partons, with opposite colour charges

A strong confining field emerges between the two when their separation $\gtrsim 1 \mathrm{fm}$

Two Partons: Linear Confinement

In lattice QCD, one can compute the potential energy of a coloursinglet $q \bar{q}$ state, as a function of the distance, r , between the q and \bar{q}

"Cornell Potential" fit: $V(r)=-\frac{a}{r}+\kappa r \quad$ with $\kappa \sim 1 \mathrm{GeV} / \mathrm{fm} \quad(\rightarrow$ could lift a 16-ton truck)

From Partons to Strings

Linear Potential motivates a Model:

Let colour field between each pair of "colour-connected" partons collapse into
a narrow flux tube
For $\left|p_{z}\right| \gg \Lambda_{\mathrm{QCD}}$: flux tube \rightarrow much
"longer" than "wide"
Limit: infinitely narrow \rightarrow Relativistic 1+1 dimensional worldsheet - String

Uniform energy density к ~ $1 \mathrm{GeV} / \mathrm{fm}$
(Neglecting Coulomb effects near endpoints)

What does it mean that two partons are "colour connected"?

Between which partons should confining potentials form?
E.g., if we have events with lots of quarks and gluons

Complication:

Every quark-gluon vertex contains an SU(3) Gell-Mann matrix in colour space! (And $g \rightarrow g g$ vertices contain further complicated structures)

- Who ends up confined with whom?

Colour Tracing

Colour Flow in Event Generators

Event Generators use simplified "colour flow" - to trace colour correlations through hard processes \& showers > determine which partons end up "colour connected"
Based on SU(N) group product: $N \otimes \bar{N}=\left(N^{2}-1\right) \oplus 1$
Fundamental representation (quarks) \downarrow
Antifundamental representation (antiquarks) $\downarrow \quad \uparrow \quad \begin{gathered}\text { Singlet (becomes irrelevant for large } N \text {) }\end{gathered}$
Thus, for large N ("leading colour"), we can approximate ($N^{2}-1$) $\sim N \otimes \bar{N}$
LC: gluons \rightarrow direct products of colour and anticolour; for $\operatorname{SU}(3)$ this is valid to $\sim 1 / N_{C}^{2} \sim 10 \%$ \Rightarrow Rules for colour flow (= colour-space vertices) in MC Event Generators:

$$
\begin{gathered}
g \rightarrow g g \\
\text { ecter } \rightarrow=
\end{gathered}
$$

(Note: the "colour dipoles" in dipole and antenna showers are also based on these rules)

LC Colour Flow in an ee Collision

$\mathrm{MCs}: N_{C} \rightarrow \infty$ limit formalised by letting each "colour line" be represented by a unique Les Houches colour tag ${ }^{\dagger}$ (no interference between different colour lines in this limit)
t: hep-ph/0109068; hep-ph/0609017

A corresponding event record from PYTHIA, up to the second gluon emission

| $\boldsymbol{\#}$ | id | name | status | mothers | daughters | colours | p_x | p_y | p_z | e | m | | | |
| :--- | :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 23 | (ZO) | -22 | 3 | 4 | 6 | 7 | | 0.000 | 0.000 | 0.000 | 91.188 | 91.188 | |
| 6 | 3 | (s) | -23 | 5 | 0 | 10 | 0 | 101 | 0 | -12.368 | 16.523 | 40.655 | 45.594 | 0.000 |
| 7 | -3 | (sbar) | -23 | 5 | 0 | 8 | 9 | 0 | 101 | 12.368 | -16.523 | -40.655 | 45.594 | 0.000 |
| $\mathbf{8}$ | 21 | (g) | -51 | 7 | 0 | 13 | 0 | 103 | 101 | 9.243 | -9.146 | -29.531 | 32.267 | 0.000 |
| 9 | -3 | sbar | 51 | 7 | 0 | | | 0 | 103 | 3.084 | -7.261 | -10.973 | 13.514 | 0.000 |
| 10 | 3 | (s) | -52 | 6 | 0 | 11 | 12 | 101 | 0 | -12.327 | 16.406 | 40.505 | 45.406 | 0.000 |
| 11 | 21 | g | -51 | 10 | 0 | | | 101 | 102 | -2.834 | -2.408 | 1.078 | 3.872 | 0.000 |
| 12 | 3 | s | 51 | 10 | 0 | | | 102 | 0 | -10.246 | 17.034 | 38.106 | 42.979 | 0.000 |
| 13 | 21 | g | 52 | 8 | 0 | | | 103 | 101 | 9.996 | -7.366 | -28.211 | 30.823 | 0.000 |

Colour Reconnections? (CR)

Consider two (uncorrelated) parton systems

NB: much more important in LHC collisions \rightarrow next lecture

Textbook example: $e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow$ hadrons

With a probability of $1 / 9$, both options should be possible (remaining 8/9 allow LC only)
Choose "lowest-energy" one (cf action principle) (assuming genuine quantum superpositions to be rare.)
\rightarrow small shift in W mass ("string drag") (\rightarrow now important for top quark mass at LHC)
LEP-2: No-CR excluded at 99.5\% CL [Phys.Rept. 532 (2013) 119; arXiv:1302.3415]
Measurements consistent with $\sim 1 / N_{C}^{2}$ expectation but not much detailed information.

From Partons to Strings

Map:

Quarks \rightarrow String Endpoints

$$
\begin{aligned}
& \text { Gluons } \rightarrow \text { Transverse } \\
& \text { Excitations (kinks) }
\end{aligned}
$$

Gluon $=$ kink on string, carrying energy and momentum

Physics then in terms of string worldsheet evolving in spacetime

"Nambu-Goto action" \Longrightarrow Area Law. (Classically equivalent to Polyakov Action) $\}$

Fundamental concepts in string theory.
Beyond scope of these lectures.

The motion of strings

In Spacetime:

String tension $\approx 1 \mathrm{GeV} / \mathrm{fm}$

$$
\left|\frac{\mathrm{d} E}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} E}{\mathrm{~d} t}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} t}\right|=\kappa
$$

\rightarrow a $10-\mathrm{GeV}$ quark can travel 10 fm before all its kinetic energy is transformed to potential energy in the string.
Then it must start moving the other way.

For small kinetic energies ($\lesssim 1 \mathrm{GeV}$)

\rightarrow "yo-yo" model of mesons:

For larger kinetic energies

String breaks \rightarrow several mesons
\rightarrow String Fragmentation
\qquad
(Note: formulated in momentum space, not spacetime)

String Breaking

In "unquenched" QCD
$g \rightarrow q \bar{q} \Longrightarrow$ The strings will "break"
Non-perturbative so can't use $P_{g \rightarrow q \bar{q}}(z)$
Our model: Schwinger mechanism

\rightarrow Gaussian suppression of high $m_{\perp}=\sqrt{m_{q}^{2}+p_{\perp}^{2}}$

Assume probability of string break constant per unit world-sheet area

The String Fragmentation Function (in momentum space)

Consider a string break \Uparrow, producing a meson M, and a leftover string piece

The meson M takes a fraction z of the quark momentum,
Probability distribution in $z \in[0,1]$ parametrised by Fragmentation Function, $f\left(z, Q_{\mathrm{HAD}}^{2}\right)$

The Lund Symmetric Fragmentation Function

$$
f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b\left(m_{h}^{2}+p_{\perp h}^{2}\right)}{z}\right)
$$

Note: In principle, a can be flavour-dependent. In practice, we usually only distinguish between baryons and mesons

Demonstration

Example: Varying the a Parameter (Lund Symmetric FF)

$f(z) \sim$ scaled light-cone hadron momentum fraction $\propto \frac{1}{z^{1+r_{Q} b m_{Q}^{2}}}(1-z) \exp \left(-\frac{b m_{\perp}^{2}}{z}\right)$

Iterative String Breaks (in momentum space)

Recall: String breaks are causally disconnected \rightarrow May iterate from outside-in

Note: using light-cone momentum coordinates: $p_{+}=E+p_{z}$

On average, expect energy* of $\mathrm{n}^{\text {th }}$ "rank" hadron to scale like ~

$$
E_{n} \sim\langle z\rangle(1-\langle z\rangle)^{n-1} E_{0}
$$

[^0]
Breakup of a String System (in spacetime)

Illustrations by T. Sjöstrand
Repeat for large system \rightarrow Lund Model

$$
\left|\frac{\mathrm{d} E}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} E}{\mathrm{~d} t}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} t}\right|=\kappa
$$

A simple prediction: constant rapidity density of hadrons along string

Rapidity

$$
\underset{\lll}{y}=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\frac{1}{2} \ln \left(\frac{\left(E+p_{z}\right)^{2}}{E^{2}-p_{z}^{2}}\right) \rightarrow \ln \left(\frac{2 E}{m_{\perp}}\right) \quad \text { (in limit of small } m_{\perp}=\sqrt{m^{2}+p_{\perp}^{2}}
$$

Recall: expect energy of $\mathbf{n}^{\text {th }}$ "rank" hadron $E_{n} \sim\langle z\rangle(1-\langle z\rangle)^{n-1} E_{0}$

$$
\Longrightarrow y_{n} \sim y_{1}+(n-1) \ln (1-\langle z\rangle)
$$

Rapidity difference between two adjacent hadrons:

$$
\Delta y=y_{n+1}-y_{n} \sim \ln (1-\langle z\rangle) \quad \longleftarrow \text { Constant, independent of } n\left(\text { and of } E_{0}\right)
$$

Predicts a flat (uniform) rapidity "plateau" (along the string axis):
Also called "Lightcone scaling"; this is exactly what is observed in practice.

The Rapidity Plateau

Expect ~ flat Rapidity Plateau along string axis

Estimate of rapidity range for fixed E_{q} :
$\langle y\rangle_{1} \sim \ln \left(\frac{2\langle z\rangle E_{q}}{\left\langle m_{\perp}\right\rangle}\right)$
~ 5 for $\left.E_{q} \sim 100 \mathrm{GeV},<\mathrm{z}\right\rangle \sim 0.5$, and $\left\langle m_{\perp}\right\rangle \sim 0.5 \mathrm{GeV}$
Changing $E_{q} \Longrightarrow$ logarithmic change in rapidity range:

$$
\left\langle n_{\mathrm{ch}}\right\rangle \approx c_{0}+c_{1} \ln E_{\mathrm{cm}}, \sim \text { Poissonian multiplicity distribution }
$$

The Rapidity Plateau

Expect ~ flat Rapidity Plateau along string axis

Estimate of rapidity range for fixed E_{q} :
$\langle y\rangle_{1} \sim \ln \left(\frac{2\langle z\rangle E_{q}}{\left\langle m_{\perp}\right\rangle}\right)$
~ 5 for $E_{q} \sim 100 \mathrm{GeV},<z>\sim 0.5$, and $\left\langle m_{\perp}\right\rangle \sim 0.5 \mathrm{GeV}$

Changing $E_{q} \Longrightarrow$ logarithmic change in rapidity range:

[^1]

Actual difference is smaller $\longmapsto \sim 0.5$
(some energy also goes to increase particle production in the central region, 3-jet events)

Gluon Kinks: The Signature Feature of the Lund Model

Gluons are connected to two string pieces

vs composition of background and bremsstrahlung combinatorics

See also
Larkoski et al., JHEP 1411 (2014) 129
Thaler et al., Les Houches, arXiv:1605.04692

(Alternative: The Cluster Model - Used in Herwig and Sherpa)

In "unquenched" QCD

$g \rightarrow q \bar{q} \Longrightarrow$ The strings will "break"
Non-perturbative so can't use $P_{g \rightarrow q \bar{q}}(z)$
Alternative: force $g \rightarrow q \bar{q}$ at end of shower

Next Lecture: LHC collisions

Extra Slides

Parton Showers: Theory

Most bremsstrahlung is

driven by divergent propagators \rightarrow simple structure

Mathematically, gauge amplitudes factorize in singular limits

$$
\left.\begin{array}{l}
\underset{\rightarrow \text { Partons ab }}{\rightarrow \text { collinear: }}\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2} \\
\qquad P(z)=\text { DGLAP splitting kernels", with } z=E_{a} /\left(E_{a}+E_{b}\right) \\
\underset{\rightarrow \text { soft: }}{\text { Gluon } \mathrm{j}} \mid
\end{array}\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}\right)
$$

These are the building blocks of parton showers (DGLAP, dipole, antenna, ...) (+ running coupling, unitarity, and explicit energy-momentum conservation.)

The same event, including all four branchings that were shown in the figure

no	id	name	status	mothers		daughters			ours	p_x	P_y	P_z	e	m
0	90	(system)	-11							0.000	0.000	0.000	91.188	91.188
1	11	(e-)	-12			3	0			0.000	0.000	45.594	45.594	0.001
2	-11	(e+)	-12			4	0			0.000	0.000	-45.594	45.594	0.001
3	11	(e-)	-21	1	0	5	0			0.000	0.000	45.594	45.594	0.000
4	-11	(e+)	-21	2	0	5	0			0.000	0.000	-45.594	45.594	0.000
5	23	(ZO)	-22	3	4	6	7			0.000	0.000	0.000	91.188	91.188
6	3	(s)	-23	5	0	10	0	101	0	-12.368	16.523	40.655	45.594	0.000
7	-3	(sbar)	-23	5	0	8	9	0	101	12.368	-16.523	-40.655	45.594	0.000
8	21	(g)	-51	7	0	13	0	103		9.243	-9.146	-29.531	32.267	0.000
9	-3	sbar	51	7	0			0	103	3.084	-7.261	-10.973	13.514	0.000
10	3	(s)	-52	6	0	11	12	101	0	-12.327	16.406	40.505	45.406	0.000
11	21	(g)	-51	10	0	16	0	101		-2.834	-2.408	1.078	3.872	0.000
12	3	(s)	-51	10	0	19	0	102	0	-10.246	17.034	38.106	42.979	0.000
13	21		-52	8	0	14	15	103		9.996	-7.366	-28.211	30.823	0.000
14	21	g	51	13	0			122		0.503	0.347	-5.126	5.162	0.000
15	21	9	51	13	0			103		8.892	-7.272	-23.060	25.763	0.000
16	21	(g)	-52	11	0	17	18	101		-2.234	-2.848	1.053	3.769	0.000
17	-1	dbar	51	16	0				102	-0.471	-0.509	-0.471	0.839	0.000
18	1	d	51	16	0			101	0	-1.894	-2.119	2.015	3.484	0.000
19	3	s	52	12	0			102	0	-10.114	16.815	37.615	42.426	0.000

Parameters (in PYTHIA): String Tuning

Hadron energy fractions
p_{T} in string breaks

Fragmentation Function

The "Lund a and b parameters"
Or use a and $\langle z\rangle$ instead (less correlated) A. Jueid et al., JCAP 05 (2019) 007

$+\Delta a_{\text {diquark }}$ for baryons

Scale of string-breaking process

Shower cutoff and $\left\langle p_{\perp}\right\rangle$ in string breaks

Mesons

Strangeness suppression, Vector/Pseudoscalar, $\eta, \eta^{\prime}, \ldots$

Baryons

Baryon-to-meson ratios, Spin-3/2 vs Spin-1/2,
"popcorn", colour reconnections (junctions), ...?

IR Safe Observables: Sensitivity to Hadronization Parameters

PYTHIA 8 (hadronization on) Vs (hadronization off)

 Important point: These observables are IR safe \rightarrow minimal hadronisation corrections Big differences in how sensitive each of these are to hadronisation \& over what range

The shaded bins provide constraints for the non-perturbative tuning stage. You want your hadronization power corrections to do the "right thing" eg at low Thrust.

Hadronization Corrections: Fragmentation Tuning

Now use infrared sensitive observables - sensitive to hadronization + first few bins of previous (IR safe) ones

How many hadrons do you get?

And how much momentum do they carry?

Longitudinal FF

 parameters a and b.Transverse P_{T} broadening in string breaks (curtails high-N tail, and significantly affects event shapes)

Further parameter
adiquark requires
looking at a baryon spectrum
Z (hadronic)

$$
<\mathrm{N}_{\mathrm{ch}}\left(\mathrm{M}_{\mathrm{z}}\right)>\sim 21
$$

Fragmentation Tuning - Know what Physics Goes In

Somewhat sensitive to particle composition: heavier hadrons are harder!

$$
f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b\left(m_{h}^{2}+p_{\perp h}^{2}\right)}{z}\right)
$$

+ particle decays
\rightarrow effects of feed-down!

$$
\begin{aligned}
& \rho \rightarrow \pi \pi \\
& K^{*} \rightarrow K \pi \\
& \eta \rightarrow \pi \pi \pi
\end{aligned}
$$

Meson and Baryon Rates and Ratios

From PS et al., "Tuning PYTHIA 8.1: the Monash 2013 Tune", Eur.Phys.J.C 74 (2014) 8

[^0]: ${ }^{*}$) more correctly, the p_{+}light-cone momentum coordinate

[^1]: $\left\langle n_{\mathrm{ch}}\right\rangle \approx c_{0}+c_{1} \ln E_{\mathrm{cm}}, \sim$ Poissonian multiplicity distribution

