Non-Perturbative Aspects of Event Simulation

Peter Skands — University of Oxford & Monash University

Set of 2 Lectures for Graduate Students in Particle Physics **1.** Non-Perturbative aspects of Event Simulation in *ee* Collisions **2.** Non-Perturbative aspects of Event Simulation in *pp* Collisions (+ optionally: PYTHIA tutorial)

The Problem

Theory Goal: Use LHC measurements to test hypotheses about Nature

Problem #1: have no **exact** solutions to QFT for the SM or Beyond How to make predictions to form (**reliable**) conclusions?

"Fundamental" parameters

Problem #2: we are colliding — and observing – hadrons Strongly bound states of quarks and gluons.

From Partons to Pions

Consider a parton emerging from a hard scattering (or decay) process

→ "Local Parton-Hadron Duality"

Local Parton Hadron Duality \leftrightarrow "Independent Fragmentation"

"Fragmentation Function" $F_{\pi/q}(Q_F, x)$

Late 70^s MC models: Independent Fragmentation

E.g., PYTHIA (then called JETSET) anno 1978

Field-Feynman was an early fragmentation model.

SUBROUTINE JETGEN(N) COMMON /JET/ K(100:2); P(100:5) COMMON /PAR/ PUD, PS1, SIGMA, CX2, EBEG, WFIN, IFLBEG COMMON /DATA1/ MESO(9,2), CMIX(6,2), PMAS(19) IFLSGN=(10-IFLBEG)/5 W=2.*E8EG T = D IPD=0 C 1 FLAVOUR AND PT FOR FIRST QUARK IFL1=IABS(IFLBEG) PT1=SIGMA*SQRT(-ALOG(RANF(D))) PHI1=6.2832*RANF(0) PX1=PT1*COS(PHI1) PY1=PT1*SIN(PHI1) 100 I=I+1 C 2 FLAVOUR AND PT FOR NEXT ANTIQUARK TFL2=1+INT(RANF(0)/PUD) PT2=SIGMA*SQRT(-ALOG(RANF(D))) PH12=6.2832*RANF(0) PX2=PT2*COS(PHI2) PY2=PT2*SIN(PHI2) C 3 MESON FORMED, SPIN ADDED AND FLAVOUR MIXED K(I,1)=MESO(3*(IFL1-1)+IFL2,IFLS6N) ISPIN=INT(PS1+RANF(0)) K(I,2)=1+9*ISPIN+K(I:1) IF(K(I,1).LE.6) GOTO 110 TMIX=RANF(0) KM=K(1,1)-6+3*ISPIN K(I,2)=8+9*ISPIN+INT(TMIX+CMIX(KM,1))+INT(TMIX+CMIX(KM,2)) C 4 MESON MASS FROM TABLE, PT FROM CONSTITUENTS 110 P(1,5)=PMAS(K(1,2)) P(1,1) = PX1 + PX2P(1,2)=PY1+PY2 PMTS=P(1,1)**2+P(1,2)**2+P(1,5)**2 C 5 RANDOM CHOICE OF X=(E+PZ)MESON/(E+PZ)AVAILABLE GIVES E AND PZ X = RANF(0)IF(RANF(0).LT.CX2) X=1.-X**(1./3.) P(1,3)=(X*W-PMTS/(X*W))/2. P(1,4)=(X*W+PMTS/(X*W))/2. C 6 IF UNSTABLE, DECAY CHAIN INTO STABLE PARTICLES 120 IPD=IPD+1 IF(K(IPD,2).GE.8) CALL DECAY(IPD,I) IF(IPD.LT.I.AND.I.LE.96) GOTO 120 C 7 FLAVOUR AND PT OF QUARK FORMED IN PAIR WITH ANTIQUARK ABOVE IFL1=IFL2 PX1=-PX2 PV1=-PY2 C 8 IF ENOUGH E+PZ LEFT, GO TO 2 W = (1 - X) * WIF(W.GT.WFIN.AND.I.LE.95) GOTO 100 N = IRETURN END

Colour Neutralization

As a physical model, however, LPHD is a not a good starting point The point of confinement is that partons are **coloured**.

A physical hadronization model

Should involve at least **two** partons, with opposite colour charges

A strong **confining field** emerges between the two when their separation ≈ 1fm

Two Partons: Linear Confinement

In lattice QCD, one can compute the potential energy of a coloursinglet $q\bar{q}$ state, as a function of the distance, r, between the q and \bar{q}

From Partons to Strings

Linear Potential motivates a Model:

Let colour field between each pair of "colour-connected" partons collapse into a **narrow flux tube**

For $|p_z| \gg \Lambda_{\rm QCD}$: flux tube \rightarrow much "longer" than "wide"

Limit: infinitely narrow → Relativistic 1+1 dimensional worldsheet — String

Uniform energy density κ ~ 1 GeV / fm (Neglecting Coulomb effects near endpoints)

What does it mean that two partons are "colour connected"?

Between which partons should confining potentials form?

E.g., if we have events with lots of quarks and gluons

Complication:

Every quark-gluon vertex contains an SU(3) Gell-Mann matrix in colour space!

(And $g \rightarrow gg$ vertices contain further complicated structures)

> Who ends up confined with whom?

Colour Tracing

Colour Flow in Event Generators

Event Generators use simplified "colour flow" — to trace colour correlations through hard processes & showers ➤ determine which partons end up "colour connected"

Based on SU(N) group product: $N \otimes \overline{N} = (N^2 - 1) \oplus 1$

Fundamental representation (quarks) - - - - Singlet (becomes irrelevant for large *N*) Antifundamental representation (antiquarks) - - Adjoint Representation (gluons)

Thus, for large N ("leading colour"), we can approximate $(N^2 - 1) \sim N \otimes \overline{N}$

LC: gluons \rightarrow direct products of colour and anticolour; for SU(3) this is valid to ~ $1/N_C^2$ ~ 10% \Rightarrow Rules for colour flow (= colour-space vertices) in MC Event Generators:

(Note: the "colour dipoles" in dipole and antenna showers are also based on these rules)

A corresponding event record from PYTHIA, up to the second gluon emission

#	id	name	status	mothers	daughters	colours	p_x	p_y	p_z	е	m	
5	23	(Z0)	-22	3 4	67		0.000	0.000	0.000	91.188	91.188	
6	3	(s)	-23	5 0	10 0	101 0	-12.368	16.523	40.655	45.594	0.000	
7	-3	(sbar)	-23	5 0	89	0 101	12.368	-16.523	-40.655	45.594	0.000	
8	21	(g)	-51	7 0	13 0	103 101	9.243	-9.146	-29.531	32.267	0.000	
9	-3	sbar	51	7 0		0 103	3.084	-7.261	-10.973	13.514	0.000	
10	3	(s)	-52	6 0	11 12	101 0	-12.327	16.406	40.505	45.406	0.000	
11	21	g	-51	10 0		101 102	-2.834	-2.408	1.078	3.872	0.000	
12	3	S	51	10 0		102 0	-10.246	17.034	38.106	42.979	0.000	
13	21	g	52	8 0		103 101	9.996	-7.366	-28.211	30.823	0.000	

Colour Reconnections? (CR)

With a probability of 1/9, both options should be possible (remaining 8/9 allow LC only)

Choose "lowest-energy" one (cf action principle) (assuming genuine quantum superpositions to be rare.)

 \rightarrow small shift in W mass ("string drag") (\rightarrow now important for top quark mass at LHC)

LEP-2: No-CR excluded at 99.5% CL [Phys.Rept. 532 (2013) 119; arXiv:1302.3415]

Measurements consistent with $\sim 1/N_C^2$ expectation but not much detailed information.

From Partons to Strings

Gluon = kink on string, carrying energy and momentum

Physics then in terms of string worldsheet evolving in spacetime

"Nambu-Goto action" \implies Area Law. (Classically equivalent to Polyakov Action)

Fundamental concepts in string theory. Beyond scope of these lectures.

The motion of strings

In Spacetime:

String tension $\approx 1 \text{ GeV/fm}$

→ a 10-GeV guark can travel 10 fm before all its kinetic energy is transformed to potential energy in the string.

Then it must start moving the other way.

For small kinetic energies $(< 1 G_{-})^{(A)}$ $\left|\frac{\mathrm{d}E}{\mathrm{d}z}\right| = \left|\frac{\mathrm{d}p_z}{\mathrm{d}z}\right| = \left|\frac{\mathrm{d}E}{\mathrm{d}t}\right| = \left|\frac{\mathrm{d}p_z}{\mathrm{d}t}\right| = \kappa$

→ "yo-yo" model of meson:

For larger kinetic energies

String breaks \rightarrow several mesons

→ String Fragmentation

(Note: formulated in momentum space, not spacetime)

$$\left|\frac{\mathrm{d}E}{\mathrm{d}z}\right| = \left|\frac{\mathrm{d}p_z}{\mathrm{d}z}\right| = \left|\frac{\mathrm{d}E}{\mathrm{d}t}\right| = \left|\frac{\mathrm{d}p_z}{\mathrm{d}t}\right| = \kappa$$

String Breaking

Assume probability of string break constant per unit world-sheet area

 \vec{g}

The String Fragmentation Function (in momentum space)

Consider a string break \Leftrightarrow , producing a meson M, and a leftover string piece The meson M takes a fraction z of the quark momentum,

Probability distribution in $z \in [0,1]$ parametrised by **Fragmentation Function**, $f(z, Q_{HAD}^2)$

The Lund Symmetric Fragmentation Function

Note: In principle, a can be flavour-dependent. In practice, we usually only distinguish between baryons and mesons

Demonstration

[Reweighting MC Predictions & Automated Fragmentation Variations in Pythia 8, 2308.13459]

Example: Varying the *a* Parameter (Lund Symmetric FF)

Iterative String Breaks (in momentum space)

Recall: String breaks are causally disconnected \rightarrow May iterate from outside-in

Note: using light-cone momentum coordinates: $p_+ = E + p_z$

On average, expect energy* of n^{th} "rank" hadron to scale like ~

$$E_n \sim \langle z \rangle (1 - \langle z \rangle)^{n-1} E_0$$

*) more correctly, the p+ light-cone momentum coordinate

Breakup of a String System (in spacetime)

Illustrations by T. Sjöstrand

Repeat for large system → Lund Model

A simple prediction: constant rapidity density of hadrons along string

Rapidity $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) = \frac{1}{2} \ln \left(\frac{(E + p_z)^2}{E^2 - p_z^2} \right) \rightarrow \ln \left(\frac{2E}{m_\perp} \right) \quad \text{(in limit of small } m_\perp = \sqrt{m^2 + p_\perp^2}$ $\ll E$

Recall: expect energy of nth "rank" hadron $E_n \sim \langle z \rangle (1 - \langle z \rangle)^{n-1} E_0$ $\implies y_n \sim y_1 + (n-1) \ln(1 - \langle z \rangle)$

Rapidity difference between two adjacent hadrons:

 $\Delta y = y_{n+1} - y_n \sim \ln(1 - \langle z \rangle) \quad \leftarrow \text{Constant, independent of } n \text{ (and of } E_0\text{)}$

Predicts a flat (uniform) rapidity "plateau" (along the string axis): Also called **"Lightcone scaling";** this is exactly what is observed in practice.

The Rapidity Plateau

Expect ~ flat Rapidity Plateau along string axis

Estimate of rapidity range for fixed E_q :

 $\langle y \rangle_1 \sim \ln\left(\frac{2\langle z \rangle E_q}{\langle m_\perp \rangle}\right)$ ~ 5 for $E_q \sim 100 \text{ GeV}, \langle z \rangle \sim 0.5$, and $\langle m_\perp \rangle \sim 0.5 \text{ GeV}$

Changing $E_q \implies$ logarithmic change in rapidity range:

 $\langle n_{\rm Ch} \rangle \approx c_0 + c_1 \ln E_{\rm Cm}$, \sim Poissonian multiplicity distribution

The Rapidity Plateau

Expect ~ flat Rapidity Plateau along string axis

Estimate of rapidity range for fixed E_q :

$$\left\langle y \right\rangle_1 \sim \ln\left(\frac{2\left\langle z \right\rangle E_q}{\left\langle m_\perp \right\rangle}\right)$$

~ 5 for $E_q \sim 100 \text{ GeV}, \ \langle z \rangle \sim 0.5$, and $\left\langle m_\perp \right\rangle \sim 0.5 \text{ GeV}$

Changing $E_q \implies$ logarithmic change in rapidity range:

 $\langle n_{\rm Ch} \rangle \approx c_0 + c_1 \ln E_{\rm Cm}$, \sim Poissonian multiplicity distribution

(some energy also goes to increase particle production in the central region, **3-jet events**)

Gluon Kinks: The Signature Feature of the Lund Model

Gluons are connected to two string pieces

P. Skands

(Alternative: The Cluster Model — Used in Herwig and Sherpa)

In "unquenched" QCD

Extra Slides

Parton Showers: Theory

see e.g PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Most bremsstrahlung is

driven by divergent propagators → simple structure

Mathematically, gauge amplitudes factorize in singular limits

Partons ab

$$\rightarrow$$
 collinear: $|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)|^2 \xrightarrow{a||b} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots, a+b, \ldots)|^2$

P(z) =**DGLAP splitting kernels**", with $z = E_a/(E_a + E_b)$

Gluon j

$$\rightarrow$$
 soft: $|\mathcal{M}_{F+1}(\ldots,i,j,k\ldots)|^2 \xrightarrow{j_g \to 0} g_s^2 \mathcal{C} \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots,i,k,\ldots)|^2$

Coherence \rightarrow Parton j really emitted by (i,k) "dipole" or "antenna" (eikonal factors)

These are the **building blocks of parton showers** (DGLAP, dipole, antenna, ...) (+ running coupling, unitarity, and explicit energy-momentum conservation.)

no	id	name	status	mot	ners	daughters		colo	ours	p_x	p_y	p_z	е	m
0	90	(system)	-11							0.000	0.000	0.000	91.188	91.188
1	11	(e-)	-12			3	0			0.000	0.000	45.594	45.594	0.001
2	-11	(e+)	-12			4	0			0.000	0.000	-45.594	45.594	0.001
3	11	(e-)	-21	1	0	5	0			0.000	0.000	45.594	45.594	0.000
4	-11	(e+)	-21	2	0	5	0			0.000	0.000	-45.594	45.594	0.000
5	23	(Z0)	-22	3	4	6	7			0.000	0.000	0.000	91.188	91.188
6	3	(s)	-23	5	0	10	0	101	0	-12.368	16.523	40.655	45.594	0.000
7	-3	(sbar)	-23	5	0	8	9	0	101	12.368	-16.523	-40.655	45.594	0.000
8	21	(g)	-51	7	0	13	0	103	101	9.243	-9.146	-29.531	32.267	0.000
9	-3	sbar	51	7	0			0	103	3.084	-7.261	-10.973	13.514	0.000
10	3	(s)	-52	6	0	11	12	101	0	-12.327	16.406	40.505	45.406	0.000
11	21	(g)	-51	10	0	16	0	101	102	-2.834	-2.408	1.078	3.872	0.000
12	3	(s)	-51	10	0	19	0	102	0	-10.246	17.034	38.106	42.979	0.000
13	21	(g)	-52	8	0	14	15	103	101	9.996	-7.366	-28.211	30.823	0.000
14	21	g	51	13	0			122	101	0.503	0.347	-5.126	5.162	0.000
15	21	g	51	13	0			103	122	8.892	-7.272	-23.060	25.763	0.000
16	21	(g)	-52	11	0	17	18	101	102	-2.234	-2.848	1.053	3.769	0.000
17	-1	dbar	51	16	0			0	102	-0.471	-0.509	-0.471	0.839	0.000
18	1	d	51	16	0			101	0	-1.894	-2.119	2.015	3.484	0.000
19	3	c	52	12	0			102	0	-10 114	16 815	37 615	42 426	0 000

The same event, including all four branchings that were shown in the figure

Parameters (in PYTHIA): String Tuning

Fragmentation Function

The "Lund *a* and *b* parameters" Or use *a* and $\langle z \rangle$ instead (less correlated) A. Jueid et al., JCAP 05 (2019) 00 + $\Delta a_{\text{diquark}}$ for baryons

p_{T} in string breaks

Scale of string-breaking process Shower cutoff and $\langle p_{\perp} \rangle$ in string breaks

Meson Multiplets

Mesons

Strangeness suppression, **Vector/Pseudoscalar**, η , η' , ...

Baryon Multiplets

Baryon-to-meson ratios, **Spin-3/2 vs Spin-1/2**, "popcorn", colour reconnections (junctions), ... ?

IR Safe Observables: Sensitivity to Hadronization Parameters

PYTHIA 8 (hadronization on) Vs (hadronization off)

Important point: These observables are IR safe \rightarrow minimal hadronisation corrections Big differences in how sensitive each of these are to hadronisation & over what range

The shaded bins provide constraints for the non-perturbative tuning stage. You want your hadronization power corrections to do the "right thing" eg at low Thrust.

Hadronization Corrections: Fragmentation Tuning

Now use infrared **sensitive** observables - sensitive to hadronization + first few bins of previous (IR safe) ones

> momentum do they carry? 91 GeV ee Z (hadronic 91 GeV ee Z (hadronic dσ/dξ_p Charged multiplicity (particle-level, charged) Log of scaled momentum (OPAL All events) р/ $\xi_p = \ln$ **Multiplicity Distribution** 10 of Charged Particles (tracks) Momentum Distribution at LEP ($Z \rightarrow hadrons$) of Charged Particles (tracks) at LEP ($Z \rightarrow hadrons$) 10-2 ALEPH 1996 S3486095 OPAL 1998 S3780481 hia 6.426 Pythia 8.162 Sherna 1.4.0 2.5.2, Pythia 6.426, Pythia 8.162, Sherpa 1.4.0, Vincia 1.0.2 20

And how much

How many hadrons do you get?

Longitudinal FF parameters a and b.

-5

dN/dN

₹ 10⁻¹

10

10

10

10-5

Transverse pT broadening in string breaks (curtails high-N tail, and significantly affects event shapes)

Further parameter a_{diquark} requires looking at a baryon spectrum

 $<N_{ch}(M_Z)> \sim 21$

40

N_{ch}

P. Skands

P. Skands

32

Meson and Baryon Rates and Ratios

From PS et al., "Tuning PYTHIA 8.1: the Monash 2013 Tune", Eur.Phys.J.C 74 (2014) 8

