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๏ Use LHC measurements to test hypotheses about Nature 

Elementary Fields, 
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Problem 1: no exact solutions to QFT  
➜ Perturbative Approximations 
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New insights into 
perturbation theory — 

at non-trivial orders  
➜ new techniques  
(& new applications)

New measurements 
have challenged 

conventional paradigms 
➜ study confinement  

beyond static limit
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Hard Process  &  Fixed-Order Corrections
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Perturbative Approaches
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๏P.T. ~ Calculate the area of a shape ( ) with higher and higher detail 
•Difference from exact area  

dσ
∝ αn+1

LO NLO

N2LO N3LO

Example: Koch Snowflake

Note: (over)simplified analogy, mainly for IR structure. More at each order than shown here.
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๏P.T. ~ Calculate the area of a shape ( ) with higher and higher detail 
•Difference from exact area  

dσ
∝ αn+1

LO NLO

N2LO N3LO

Example: Koch Snowflake

Note: (over)simplified analogy, mainly for IR structure. More at each order than shown here.
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•Massless gauge theories 
•Scale invariance ➜ fractal substructure 
•(+ not hard to build in running coupling)
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Perturbation Theory as a Markov Chain
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๏Stochastic differential evolution in “hardness” scale 
•  for generic observable “ ”, expressed as a Markov chain:dσ O

 
dσ
dO

= ∫ dΦ0 |MBorn |2 (1 + FNLO + …)
Fixed−Order Matching Coefficients

𝒮(Φ0, O)

Shower

+∫ dΦ+1

Sudakov Factor

Δ (Φn, Qn+1)

Branching Kernel

|Mn+1 |2

|Mn |2 𝒮(Φn+1, O)

𝒮+1(Φn, O) =
′ Sudakov Factor′ 

Δ (Φn, QIR)
Evaluate O on Φn

δ (Ô(Φn) − O)

MARKOV CHAIN

SUDAKOV FACTOR Δ(Φn, Q) = exp (−∫
Q2

n

Q2

dΦ+1
|Mn+1 |2

|Mn |2 )
UNITARITY

Kernel

Unitarity
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(a.k.a. Parton Shower)
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 QCD seminar 
May 13

→

Encoding “leading" pole structures



Why go beyond Fixed-Order perturbation theory?
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๏Fixed-Order calculations most accurate for single-scale problems 
•Effective accuracy reduced for processes/observables with scale hierarchies  

๏Schematic example:  
•NNLO calculation of the rate of events passing a jet veto: 

๏  

•

 — arising from integrals over propagators  

•

NNLO Matrix-Element Corrections in VINCIA Peter Skands

1. Introduction

The presence of infrared (IR) poles in amplitudes with partons that can become soft and/or
collinear complicates making precise predictions in theories with massless gauge bosons (such as
QED and QCD). Although the resulting IR singularities can be treated consistently and cancel order
by order in the relevant gauge coupling(s), they leave a legacy in physical observables in the form of
logarithms of scale ratios. If significant scale hierarchies are present in the process or observables
at hand, these logarithms counteract the naive coupling-power suppression of higher-order terms.
This reduces the effective accuracy of fixed-order calculations for multi-scale problems.

This is a concern for ongoing experimental and phenomenological studies, e.g. at the LHC,
where ever-more complex final states are being targeted — and accurately measured — with
multiple resolved objects each of which defines an intrinsic scale, and/or for observables sensitive
to substructure. It also applies to differential observables that cover a wide range of scales over their
domain(s), which are often well described by fixed-order perturbation theory in hard tails while
log-enhanced terms affect the bulk/peak of the differential distributions.

To give a schematic example, an NNLO QCD calculation of a cross section with a jet veto
would include the following terms:

LOz}|{
�0 +

NLOz              }|              {
UB (!

2
+ ! + �1) +

NNLOz                             }|                             {
U

2
B (!

4
+ !

3
+ !

2
+ ! + �2) , (1)

whereUB is the QCD coupling constant, �8 denote non-log terms at each order and !
< in this example

represents terms proportional to powers of logs of the jet-veto scale to a scale characteristic of the
Born-level hard process. If the scales are such that U!2

⇠ 1 then all terms U
=
B !

2= would be of
order unity, invalidating any fixed-order truncation of the series. For less extreme hierarchies, the
consequence is a reduction of the effective relative accuracy of the truncation.

At face value, fixed-order calculations are therefore always most accurate for single-scale
problems, while their effective accuracy for processes/observables with scale hierarchies is reduced.

The applicability of perturbation theory can be extended to multi-scale problems by resumming
the log-enhanced terms to all orders, now using a logarithmic order counting in which a rate like
that in eq. (1) is (re)expressed, here shown schematically up to NNLO+N4DL accuracy:
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where the “double-log” (DL) counting in the exponent here is intended to emphasise that we focus
on towers of logs that dominate in kinematical regions in which UB!

2
⇠ 1 (as distinct from the

widely used N=LL counting which is based on UB! ⇠ 1). The fixed-order cofficient �1 is needed
both for NLO matching and also for NNDL accuracy, and the coefficient �2 is required for matching
to NNLO and for N4DL accuracy. In shower parlance, exponentials such as the one in eq. (2) are
called Sudakov factors; we call them that below.

2

L ∝ ln(p⊥veto2 / Q2
hard) ∝

dp2
⊥

p2
⊥

dy

•Total loss of predictivity for   .  
๏ Reduced precision even for higher veto scales. Logs counteract naive suppression.

p⊥veto ≪ Qhard ⟹ αsL2 ∼ 1



The Case for Embedding Fixed-Order Calculations within Showers
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 NNLO + NNLL ⇒

Resummation extends domain of 
validity of perturbative calculations 

Showers ➤ Fully exclusive final states 

➜ can model non-perturbative physics,  
full-event analyses, fiducial cuts, …

L ≡ | log(Q2/Q2
Born) |

Not quite there yet — but close …



Warmup: NLO + Shower with POWHEG
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Generic emission phase space๏POWHEG generates hardest 
emission in a shower-like 
manner (MECs) 

๏Matrix-Element Corrections (MECs) 
[Bengtsson & Sjöstrand 1987 + …]  
๏+ NLO Born Normalization  
๏[Nason 2004; Fixione, Nason, Oleari 
2007]  

๏Sweeping over phase space, 
from high to low pT 

๏Shower then takes over and 
generates all further emissions

(Just focusing on the real-radiation part)

๏Nason 2004;  
๏Fixione, Nason, Oleari 2007



Powheg Box — A Subtlety
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๏[Alioli et al, 2010]

Mismatched phase-space regions

Can be important for complex / 
multi-scale processes. 

VBF: Höche et al., SciPost Phys. 12 (2022) 1
E.g., Nason, Oleari arXiv:1303.3922

๏Industry Standard: "Powheg Box”  
•Exploits having its own definition of “pT”  

๏  shower’s definition of pT 
•Breaks clean matching 

๏Solution: Vetoed Showers 
๏ (+ truncated showers) 

•Works very well for simple cases 

๏Induces an uncertainty/ambiguity  
•Purely associated with the                        
matching scheme (not physical)

≠

https://arxiv.org/abs/2106.10987
https://arxiv.org/abs/2106.10987
https://arxiv.org/abs/1303.3922


2. From NLO to NNLO
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๏MiNNLOPS builds on (extends) POWHEG NLO for X + jet 
•Allow the first jet to approach  ~ X + 0 
•Tame divergence with analytic (NNLL) Sudakov 

๏ (introduces additional hardness scale                              
= resummation scale) 

•Normalize inclusive  to NNLO 
๏ (  ambiguity on how to “spread” the additional 

contributions in phase space.) 

๏~ Best you can do with current off-the-shelf parton showers 
•Is approximate; introduces some ambiguities:  

๏  vs  vs   &  differential NNLO spreading  
๏ (+ possible efficiency bottleneck:  singularity  Sudakov veto)

p⊥ → 0

dσX
𝒪(α3

s )

pShower
⊥ pPowheg

⊥ Qresummation
NNLL

p⊥ → 0 ×

σX+1(0) σX+2(0) σX+3(0) …

σX+1(1) σX+2(1) …

σX+1(2) …

…

1

2

0

0 1 2 3
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s

Legs

[Hamilton et al. 1212.4504, 
Monni et al. 1908.06987]

σX+0(0) σX+1(0) σX+2(0) σX+3(0) …

σX+0(1) σX+1(1) σX+2(1) …

σX+0(2) σX+1(2) …

σX+0(3) …

1

2

0

0 1 2 3

Lo
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s

Legs

๏off-the-shelf parton showers

What if we could 
lift that restriction?



Towards True* NNLO Matching
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๏Idea: Use (nested) Shower Markov Chain as NNLO Phase-Space Generator 
•Harnesses the power of showers as efficient phase-space generators for QCD  

๏ Pre-weighted with the (leading) QCD singular structures = soft/collinear poles 

•

๏Different from conventional Fixed-Order phase-space generation (eg VEGAS)

Born Born +1 Born +2Singularities Singularities

*In the sense of the fixed-order and shower calculations matching each other point by point in each phase space

Born +2

Born +1

Born

Sho
w

er evo
lutio

n



๏Continue shower afterwards  
•No auxiliary / unphysical scales  

๏  expect small matching systematics⇒

Towards True* NNLO Matching

16

*In the sense of the fixed-order and shower calculations matching each other point by point in each phase space

Born +2

Born +1

Born

…
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NNLO + …

NLO + …

LO + …

Shower

VINCIA NNLO
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• (arXiv:2108.07133 & arXiv:2310.18671)

Need: 
➊ Born-Local NNLO ( ) K-factors:  

➋ NLO ( ) MECs in the first  shower emission:  

➌ LO ( ) MECs for next (iterated)  shower emission:  

➍ Direct  branchings for unordered sector, with LO ( ) MECs: 

𝒪(α2
s ) kNNLO(Φ2)

𝒪(α2
s ) 2 → 3 k2→3

NLO(Φ3)
𝒪(α2

s ) 2 → 3 k3→4
LO (Φ4)

2 → 4 𝒪(α2
s ) k2→4

LO (Φ4)

https://inspirehep.net/literature/1905669
https://arxiv.org/abs/2310.18671


Fixed-order matching: Vincia
[C. Preuss’ talk]
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NNLO+PS matching in hadronic Higgs decays
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NNLO+PS

NNLO

1-Thrust (parton level)

Plot made by C. Preuss 

1
3

13 CPU Hours

VINCIA NNLO

Preview: VINCIA NNLO+PS for H → bb̄
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๏VINCIA NNLO+PS: shower as phase-space generator: efficient & no negative weights!  
•➤ Looks ~ 5 x faster than EERAD3 (for equivalent unweighted stats)   

๏ + is matched to shower (add shower resummation without auxiliary input/scales)  + can be hadronized 

๏Proof of concepts now done for ; work remains for  (& for NnLL accuracy)Z/H → qq̄ pp

Coloretti, Gehrmann-de Ridder, Preuss, JHEP 06 (2022) 009

๏“NNLO” Reference = EERAD3 NLO H → bb̄g
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So for Thrust, 
NNLO  is 

effectively  

NLO for   
LO for 

H → bb̄

τ < 1/3
τ > 1/3

VINCIA NNLO

https://arxiv.org/abs/2202.07333
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๏What a strange world we live in, said ALICE 
•Ratios of strange hadrons to pions strongly 
increase with event activity 

June 
2017

D.D.	Chinellato	– 38th	 International	Conference	on	High	Energy	Physics

Relative Strangeness 
Production
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• Quantified via strange to non-strange 
integrated particle ratios vs d"#$/d&

• Significant enhancement of strange 
and multi-strange particle production 

• MC predictions do not describe this 
observation satisfactorily

5

ALICE, arXiv:1606.07424
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[1] Comput. Phys. Commun. 178 (2008) 852–867
[2] JHEP 08 (2011) 103
[3] Phys. Rev. C 92, 034906 (2015)

[1]
[2]

[3]

(sss)

(dss)

(uds)

(ds̄)

LHC  pp s = 7 TeV

Default 
Pythia.  
(Monash)

๏ Conventional models (eg 
PYTHIA Monash) ➜ constant 

strangess fractions
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 Λ+
c

(cud)
๏LHC experiments also 
report very large (factor-10) 
enhancements in heavy-
flavour baryon-to-meson 
ratios at low pT! 

•

Figure from Altmann & PZS, String Junctions Revisited, in progress

(Just showing  here; same 
pattern for other heavy-flavour 
baryons & also seen by LHCb)

Λ+
c

Charm hadron composition – 1

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers

Charm hadronization in pp (1):

26

More charm quarks in baryons in pp than in e+e– and ep collisions

Charm quarks hadronize into baryons 40% of the time

~ 4 times more than in e+e–

arXiv:2105.06335 talk Luigi Dello Stritto

K. Reygers, EPS-HEP 2021

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers
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PYTHIA 8.243, Monash 2013

          PYTHIA 8.243, CR-BLC:
Mode 0 Mode 2
Mode 3

SHM+RQM
Catania
QCM

ALI-DER-493847

Charm hadronization in pp (3)

28

 ratio in pp significantly different than in e+e–�+c /D0
arXiv:2011.06079

Charm quark fragmentation not universal!

e+e�
Standard PYTHIA 8 below data

Fair description by 
‣ PYTHIA 8 with CR 
‣ Coalescence + fragmentation (Catania) 
‣ SH mode + RQM  

(T = 170 MeV, additional states crucial)

Measurement of charmed hadrons down to 
unprecedentedly low pT at midrapidity

�+c (udc) � pK��+
� pK0s

arXiv:2106.08278

⇤+
c /D0 four times higher

than in e+e�!
But e+e� result recovered
at large p?.

Torbjörn Sjöstrand Nonperturbative models in PYTHIA slide 6/23

(Will come back 
to these)

•Conventional models (eg 
PYTHIA Monash) ➜ constant 
baryon-to-meson ratio
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๏On lattice, compute potential energy of a colour-singlet  state, as 
function of the distance, r, between the  and  

๏

qq̄
q q̄

P.  S k a n d s

Long Wavelengths > 10-15 m

๏Quark-Antiquark Potential 
•As function of separation distance

17

46 STATIC QUARK-ANTIQUARK POTENTIAL: SCALING. . . 2641

Scaling plot
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FIG. 4. All potential data of the five lattices have been scaled to a universal curve by subtracting Vo and measuring energies and

distances in appropriate units of &E. The dashed curve correspond to V(R)=R —~/12R. Physical units are calculated by exploit-
ing the relation &cr =420 MeV.

AM~a=46. 1A~ &235(2)(13) MeV .

Needless to say, this value does not necessarily apply to
full QCD.
In addition to the long-range behavior of the confining

potential it is of considerable interest to investigate its ul-
traviolet structure. As we proceed into the weak cou-
pling regime lattice simulations are expected to meet per-

turbative results. Although we are aware that our lattice
resolution is not yet really suScient, we might dare to
previe~ the continuum behavior of the Coulomb-like
term from our results. In Fig. 6(a) [6(b)] we visualize the
confidence regions in the K-e plane from fits to various
on- and off-axis potentials on the 32 lattices at P=6.0
[6.4]. We observe that the impact of lattice discretization
on e decreases by a factor 2, as we step up from P=6.0 to

150

140

Barkai '84 o
MTC '90
Our results:---

130-

120-

110-

100-

80—

5.6 5.8 6.2 6.4

FIG. 5. The on-axis string tension [in units of the quantity c =&E /(a AL ) ] as a function of P. Our results are combined with pre-
vious values obtained by the MTc collaboration [10]and Barkai, Moriarty, and Rebbi [11].

~ Force required to lift a 16-ton truck

LATTICE QCD SIMULATION. 
Bali and Schilling Phys Rev D46 (1992) 2636

What physical!
system has a !
linear potential?

Short Distances ~ “Coulomb”

“Free” Partons

Long Distances ~ Linear Potential

“Confined” Partons 
(a.k.a. Hadrons)

(in “quenched” approximation)

V (r) = �a

r
+ r
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“Cornell Potential” fit: with κ ∼ 1 GeV/fm

What physical system has a 
linear potential?



From Partons to Strings
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๏Map: 

๏Physics then in terms of string worldsheet evolving in spacetime 
•“Nambu-Goto action”  Area Law.⟹

• Quarks → String 
Endpoints

•Gluons → Transverse 
Excitations (kinks)



String Breaking
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๏Non-perturbative  
•  The strings will “break” 
•Non-perturbative so can’t use  
•Our model: Schwinger mechanism 
•Assume const probability per unit world-
sheet area: 

•

g → qq̄
⟹

Pg→qq̄(z)
String Break

q

Meson

P.  S k a n d s

String Breaks

๏In QCD, strings can (and do) break! 
•(In superconductors, would require magnetic monopoles) 
•In QCD, the roles of electric and magnetic are reversed 
•Quarks (and antiquarks) are “chromoelectric monopoles” 
•There are at least two possible analogies ~ tunneling:

18

Schwinger Effect

+

÷
Non-perturbative creation 
of e+e- pairs in a strong 
external Electric field

~E

e-

e+

P / exp

✓
�m2 � p2?

/⇡

◆

Probability from 
Tunneling Factor

( is the string tension equivalent)

C
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N
O

N
IC

A
L

Hawking Radiation

M

~g

Non-perturbative creation 
of radiation quanta in a 
strong gravitational field

HORIZONHORIZON

Thermal (Boltzmann) Factor

P / exp

✓
�E

kBTH

◆

Linear Energy Exponent

A
LT

ER
N

AT
IV

E?

 Suppression of  relative to  
(+ occasionally get a “diquark” too ➜ baryons) 
 universal (constant) ratios (for constant , )

⟹ m2
s /κ m2

u,d /κ

⟹ m κ

J. Schwinger, Phys. Rev. 82 (1951) 664

Fragmentation starts in the middle and spreads outwards:

z

tqq m2
⊥

m2
⊥

1
2

but breakup vertices causally disconnected
⇒ can proceed in arbitrary order
⇒ left–right symmetry

P(1,2) = P(1) × P(1 → 2)

= P(2) × P(2 → 1)

⇒ Lund symmetric fragmentation function
f(z) ∝ (1 − z)a exp(−bm2

⊥/z)/z  0
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๏Regard tension  as an emergent quantity? 
Not fundamental strings                            

๏May depend on (invariant) time   
•E.g., hot strings which cool down 

Hunt-Smith & PZS EPJC 80 (2020) 11  

๏May depend on  (excitations) 
Working with E. Carragher & J. March-Russell in Oxford. 

๏May depend on environment (e.g., other strings nearby) 
•Two approaches (so far) within Lund string-model context: 

๏ Colour Ropes [Bierlich, Gustafson, Lönnblad, Tarasov JHEP 03 (2015) 148; + more recent…] 
๏ Close-Packing [Fischer & Sjöstrand JHEP 01 (2017) 140; Altmann & PZS in progress …]

κ

τ

σ

Cyclonic and Anticyclonic Winds



Non-Linear String Dynamics
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J. Altmann         Monash University

Strangeness Enhancement
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10
6 Other higher 

multiplets

Clear observations of strangeness enhancement with 
respect to charged multiplicity [e.g. ALICE Nature Pays. 13, 535 (2017)]

Multiplets (y=0, pp 7 TeV) 

higher 
multiplets

Plot by J. Altmann
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๏MPI  lots of coloured partons scattered into the final states  
•Count # of (oriented) flux lines crossing  in pp collisions (according to PYTHIA) 

๏ And classify by SU(3) multiplet:

⟹
y = 0

E.g.:
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Monash

QCD

Close-packing  
+ strange junctions  
+ diquark suppression

J. Altmann       Monash University

Collective Effects

Diquark formation via successive colour 
fluctuations (popcorn mechanism)

vs.

Strange Junctions

Strangeness Enhancement

Dense string environments 

→ Casimir scaling of effective string tension 

→ Higher probability of strange quarks

String tension could be different from the 
vacuum case compared to near a junction

Close-packing

String breaks

Diquark Suppression

What if we allow the blue fluctuation to 
break a nearby string?

Multiplets (y=0, pp 7 TeV) 

 Note: LHC  smaller 
than at LEP

p/π

๏ Altmann & PZS work in progress …

➜ Is “emergent tension” 
driving strangeness 
enhancement in pp?

27 27

Confining fields may be reaching 
higher effective representations 

than simple  (3) ones.qq̄



Baryon Number Violation & String Topologies: 

Sjöstrand & PZS NPB 659 (2003) 243

Junction

What about Baryon Number?

28

Open Strings
Closed Strings

SU(3) String Junction

 strings (with gluon kinks) 

E.g.,  + shower 

 + shower

qq̄
Z → qq̄

H → bb̄

Gluon rings 

E.g.,  + shower 

 + shower

H → gg
Υ → ggg

Open strings with  endpoints 
E.g., Baryon-Number violating 

neutralino decay  + shower

NC = 3

χ̃0 → qqq

Types of string topologies:

https://arxiv.org/abs/hep-ph/0212264


Figure 2.6. Junction system, involving a Y-shaped string topology between three quarks.

Figure 2.7 shows the formation of junctions due to CR, showing the reconfiguration

of three qq̄ pairs into a junction and antijunction.

(a) (b)

Figure 2.7. (a) Strings spanning qq̄ pairs. (b) A reconfiguration of the strings instead forming

a junction and corresponding antijunction. This junction configuration can only form if the

overall qqq (and thus also q̄q̄q̄) are in an overall colour singlet state.

The string-fragmentation mechanism for junctions can be formulated as an exten-

sion (albeit a complicated one) of the model for a simple string stretched between a

qq̄ pair [17]. The inclusion of junction fragmentation results in a higher number of

baryonic final states as the baryon number of the junction topology is preserved by the

fragmentation process, as seen in Figure 2.8. It should be noted that though the total

number of baryonic final states increases (i.e.
P

|B| increases where B is the baryon
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Extra baryon-antibaryon productionFor example:

Christiansen & PZS 2015

“String junctions”

qC0
qB3

qA2

qB2

q̄B3

q̄q̄B1

q̄B2

qB0

qqB1

qA1

q̄A2

qA0

q̄A1

First Stage: Legs A and B

qqAB

qC4 q̄C4 qC3 q̄C3 qC2 q̄C2 qC1 q̄C1
qC0

q̄B3

qB2

q̄B2

q̄q̄B1

qqB1

qB0

q̄A2

qA1

q̄A1

qA0

Second Stage: Leg C

Figure 15: Illustration of the two main stages of junction fragmentation. Left: first, the junction
rest frame (JRF) is identified, in which the pull directions of the legs are at 120� to each other.
(If no solution is found, the CM of the parton system is used instead.) The two lowest-energy
legs (A and B) in this frame are then fragmented from their respective endpoints inwards, towards
a fictitious other end which is assigned equal energy and opposite direction, here illustrated by
gray dashed lines. This fragmentation stops when any further hadrons would be likely to have
negative rapidities along the respective string axes. Right: the two leftover quark endpoints from
the previous stage (qA2 and qB3) are combined into a diquark (qq

AB
) which is then used as endpoint

for a conventional fragmentation along the last leg, alternating randomly between fragmentation
from the qC end and the qqAB end as usual.

describe the spacetime picture for qq pairs, based on methods developed in ref. [293].
From the linear potential V (r) = r, the equations of motion are

����
dpz,q/q

dt

���� =
����
dpz,q/q

dz

���� =
����
dEq/q

dt

���� =
����
dEq/q

dz

���� =  . (304)

The sign on each derivative is negative if the distance between the quark is increasing, and positive if
the distance is decreasing. After sampling Ehi and phi for each hadron, these equations lead to simple
relations between the space-time and momentum-energy pictures, zi�1�zi = Ehi/ and ti�1� ti = phi/,
where zi and ti denote the spacetime coordinates of the ith breakup point (note that zi�1 > zi since
points are enumerated from right to left). In the massless approximation, the endpoints are given by
z0,n = t0,n = ±

p
s/2. This specifies the breakup points, but there is still some ambiguity as to where the

hadron itself is produced. The default in Pythia 8.3 is the midpoint between the two breakup points, but
it is also possible to specify an early or late production vertex at the point where the light cones from the
two quark-antiquark pairs intersect.

A complete knowledge of both the spacetime and momentum pictures violates the Heisenberg un-
certainty principle. This is compensated for in part by introducing smearing factors for the production
vertices, but outgoing hadrons are still treated as having a precise location and momentum. Despite not
being a perfectly realistic model, there is no clear systematic bias in this procedure, and any inaccuracies
associated with this violation are expected to average out.

There are several further complications to these process. One is more complicated topologies such as
those involving gluons or junctions. Another is the fact that the massless approximation is poor for heavy
qq pairs. For massive quarks, instead of moving along their light cones, the quarks move along hyperbolae
E

2
� p

2

z = m
2
+ p

2

? = m
2

?. Both these issues are addressed in more detail in ref. [293].

7.1.5 Junction topologies

Junction topologies in their simplest form arise when three massless quarks in a colour-singlet state move
out from a common production vertex, a textbook example of which is given by a baryon-number-violating
supersymmetric decay �

0
! qqq. In that case it is assumed that each of them pull out a string piece,

a “leg”, to give a Y-shaped topology, where the three legs meet in a common vertex, the junction. This
junction is the carrier of the baryon number of the system: the fragmentation of the three legs from the
quark ends inwards will each result in a remaining quark near to the junction, and these three will form a
baryon around it.
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Illustration from Pythia 8.3 manual

“Junction baryon”

Sjöstrand & PZS 2002; Altmann & PZS 2024

Illustration by J. Altmann
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๏Stochastic sampling of SU(3) group probabilities  (e.g., ) 
•  Random (re)connections in colour space (weighted by group weights)

3 ⊗ 8 = 15 ⊕ 6 ⊕ 3

⟹
Charm hadron composition – 1

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers

Charm hadronization in pp (1):

26

More charm quarks in baryons in pp than in e+e– and ep collisions

Charm quarks hadronize into baryons 40% of the time

~ 4 times more than in e+e–

arXiv:2105.06335 talk Luigi Dello Stritto

K. Reygers, EPS-HEP 2021

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers
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)c (GeV/

T
p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.80
/D

+ c
Λ

ALICE
| < 0.5y|

 = 5 TeVspp, 
 = 13 TeVspp, 

PYTHIA 8.243, Monash 2013

          PYTHIA 8.243, CR-BLC:
Mode 0 Mode 2
Mode 3

SHM+RQM
Catania
QCM

ALI-DER-493847

Charm hadronization in pp (3)

28

 ratio in pp significantly different than in e+e–�+c /D0
arXiv:2011.06079

Charm quark fragmentation not universal!

e+e�
Standard PYTHIA 8 below data

Fair description by 
‣ PYTHIA 8 with CR 
‣ Coalescence + fragmentation (Catania) 
‣ SH mode + RQM  

(T = 170 MeV, additional states crucial)

Measurement of charmed hadrons down to 
unprecedentedly low pT at midrapidity

�+c (udc) � pK��+
� pK0s

arXiv:2106.08278

⇤+
c /D0 four times higher

than in e+e�!
But e+e� result recovered
at large p?.

Torbjörn Sjöstrand Nonperturbative models in PYTHIA slide 6/23

Pythia Default 
(Monash) ~ LEP High pT ~ LEP

ALICE 2021

×
10Pre-

dicted 
this

String Formation Beyond Leading Colour 
Christiansen & PZS JHEP 08 (2015) 003


Mode 0, 2, 3 are different causality 
restrictions (0 = none)

New source of low-pT 
heavy-flavour baryonsLimiting case: one 

leg is a low-pT 
heavy quark 

➤ Heavy-flavour 
“Diquarks”

c

Λ
+ c

/D
0

Altmann & PZS in progress 

+ Collaboration with M. Kreps, Warwick

https://arxiv.org/abs/1505.01681


Outlook

30

๏New insights into perturbation theory at non-trivial orders 
•NNLO for many hard processes (and N3LO for simple ones) 
•Several recent showers achieve NLL for arbitrary (IR safe) observables (e.g., PanScales, Alaric) 

๏ (& NNLL accuracy not too far, possibly already achieved in evolution variable) 
๏ (Off-the-shelf coherent ones: at most NLL (?) in observables ~ evolution variable) 

•+ New ways to combine them (e.g., MiNNLOPS, VinciaNNLO, Geneva) 

๏➜ New Paradigm for Perturbative Calculations: NNLO + NNLL matched MCs 
•Expect shift from educated guesses to %-level precision (+ theoretically elegant) 

๏New measurements have challenged naive ideas of hadronization  
•Appears certain we are seeing effects beyond the static  limit 
•But is it string interactions / junctions? Is it thermal / QGP? Coalescence? …  
•Last shot hasn’t been fired … 

qq̄
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Parton Showers: Theory

32

Mathematically, gauge amplitudes 
factorize in singular limits

a

b

Partons ab  
→ collinear:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

 = DGLAP splitting kernels”, with P(z) z = Ea /(Ea + Eb)

/ 1

2(pa · pb) i

j

k

Gluon j 
→ soft: |MF+1(. . . , i, j, k. . . )|2

jg!0! g2sC
(pi · pk)

(pi · pj)(pj · pk)
|MF (. . . , i, k, . . . )|2

Coherence → Parton j really emitted by (i,k) “dipole” or “antenna” (eikonal factors)

see e.g PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Most bremsstrahlung is 
driven by divergent 
propagators → simple structure

These are the building blocks of parton showers (DGLAP, dipole, antenna, …) 
(+ running coupling, unitarity, and explicit energy-momentum conservation.)

http://arxiv.org/abs/arXiv:1207.2389


๏Between which partons should confining potentials form? 
•E.g., if we have events with lots of quarks and gluons

 
๏Complication:  

•Every quark-gluon vertex contains an SU(3) Gell-Mann matrix in colour space! 
๏ (And  vertices contain further complicated structures) 

•➤ Who ends up confined with whom?

d�̂0

g → gg

What does it mean that two partons are “colour connected”?

33

qi qj

ga

(−igstaijγ
µ)(−igs ta
ij γμ)



๏Colour Flow in Event Generators 
•Event Generators use simplified “colour flow” — to trace colour correlations through hard 
processes & showers ➤ determine which partons end up “colour connected”  
•Based on SU(N) group product:  

๏Thus, for large  (“leading colour”), we can approximate  
•LC: gluons  direct products of colour and anticolour; for SU(3) this is valid to ~  ~ 10% 
•➾ Rules for colour flow (= colour-space vertices) in MC Event Generators: 

•    
(Note: the “colour dipoles” in dipole and antenna showers are also based on these rules)

N ⊗ N̄ = (N2 − 1) ⊕ 1

N (N2 − 1) ∼ N ⊗ N̄
→ 1/N2

C

q ! qg

Figure 1.1: Color development of a shower in e+e� annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay �� ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably a⇥ect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order �em ln Q/me, or even of order �em ln Q/me ln E�/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut o⇥ below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not a⇥ected by it.
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g ! gg

Colour Tracing
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Fundamental representation (quarks) 

Antifundamental representation (antiquarks) Adjoint Representation (gluons)
Singlet (becomes irrelevant for large ) N



LC Colour Flow in an  Collisionee
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“Les Houches Colour Tags”

•MCs:  limit formalised by 
letting each “colour line” be 
represented by a unique Les Houches 
colour tag† (no interference between 
different colour lines in this limit)

NC → ∞

†: hep-ph/0109068; hep-ph/0609017 

       #        id  name            status     mothers   daughters     colours      p_x        p_y        p_z         e          m
5 23 (Z0)            -22  3     4     6     7   0.000 0.000 0.000 91.188 91.188
6 3 (s)             -23  5     0    10     0   101     0    -12.368 16.523 40.655 45.594 0.000
7 -3 (sbar)          -23  5     0     8     9     0   101    12.368 -16.523 -40.655 45.594 0.000
8 21 (g)             -51  7     0    13     0   103   101    9.243 -9.146 -29.531 32.267 0.000
9 -3 sbar          51  7     0     0   103    3.084 -7.261 -10.973 13.514 0.000
10 3 (s)             -52  6     0    11    12   101     0    -12.327 16.406 40.505 45.406 0.000
11 21 g             -51 10     0   101   102    -2.834 -2.408 1.078 3.872 0.000
12 3 s             51 10     0   102     0    -10.246 17.034 38.106 42.979 0.000
13 21 g             52  8     0   103   101    9.996 -7.366 -28.211 30.823 0.000

A corresponding event record from PYTHIA, up to the second gluon emission



Colour Reconnections? (CR)
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๏Consider two (uncorrelated) parton systems   
•Textbook example:  

๏With a probability of 1/9, both options should be possible   (remaining 8/9 allow LC only) 
๏ Choose “lowest-energy” one (cf action principle) (assuming genuine quantum superpositions to be rare.) 

•➜ small shift in W mass (“string drag”) (➜ now important for top quark mass at LHC) 

๏LEP-2: No-CR excluded at 99.5% CL [Phys.Rept. 532 (2013) 119; arXiv:1302.3415]  
๏ Measurements consistent with ~  expectation but not much detailed information.

e+e− → W+W− → hadrons

1/N2
C

Probability for 
uncorrelated  

pair to 
accidentally be in 

colour-singlet 
state follows from  

 
 ☛ 1 in 9 ☚ 
= 1/NC2

qq̄

3 ⊗ 3̄ = 8 ⊕ 1

lengths). Broadly, one may distinguish between two classes of CR e↵ects; colour-space

ambiguities and dynamical reconfigurations.

Colour-space ambiguity allows for multiple partons to potentially carry identical

colours. As colour space is a finite gauge theory, there is thus a probability to have

“colour accidents”. These colour accidents occur when there are multiple partons car-

rying the same colour charge resulting in multiple possible string topologies.

(a) (b)

Figure 1.3. Two possible string topologies for the given colour configurations. (a) String

configuration before CR e↵ects. (b) Alternative topology allowed by CR.

(a) (b)

Figure 1.4. Feynman diagrams showing an ee ! WW process where each W boson decays

into a qq̄ pair. The green lines indicate colour flow, where colours are represented above the

feynman diagram lines, and anticolours are represented below them. (a) Before CR e↵ects,

with the string stretched between each quark-antiquark pair as they are created. (b) After

CR e↵ects are allowed, showing an alternative string configuration whilst still ensuring colour

singlet final states.

8

Leading Colour Alternative possibility

Illustrations from honours thesis by J. Altmann

string
 #1

string
 #2

string
 #1

string
 #2

NB: much more important in 
LHC collisions ➜ next lecture

https://arxiv.org/abs/1302.3415


The String Fragmentation Function (in momentum space)
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๏Consider a string break , producing a meson M, and a leftover string piece 
•The meson  takes a fraction  of the quark momentum,  
•Probability distribution in  parametrised by Fragmentation Function, 

M z
z ∈ [0,1] f(z, Q2

HAD)

String Break

q

M

Fragmentation starts in the middle and spreads outwards:

z

tqq m2
⊥

m2
⊥

1
2

but breakup vertices causally disconnected
⇒ can proceed in arbitrary order
⇒ left–right symmetry

P(1,2) = P(1) × P(1 → 2)

= P(2) × P(2 → 1)

⇒ Lund symmetric fragmentation function
f(z) ∝ (1 − z)a exp(−bm2

⊥/z)/z  0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

f(z), a = 0.5, b= 0.7

mT
2 = 0.25
mT

2 = 1
mT

2 = 4

time

spatial 
separation

leftover string, 
further string breaks 

Spacelike Separation from  

Observation: All string breaks are causally disconnected

Lorentz invariance  string breaks can be considered 
in any order. Imposes “left-right symmetry” on the FF

⟹

Timelike 
Separation from 

: no string

 FF constrained to a form with two free parameters,      
 & : constrained by fits to measured hadron spectra

⟹
a b

Lund Symmetric 
Fragmentation 

Function
f(z) ∝

1
z

(1 − z)aexp (−
b(m2

h + p2
⊥h)

z )
Supresses 

high-z hadrons
Supresses 

low-z hadronsWill return to illustrations of these parameters later (tuning)



Iterative String Breaks (in momentum space)
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๏Recall: String breaks are causally disconnected → May iterate from outside-in

u(�p�0, p+)

dd̄

ss̄

�+(�p�0 � �p�1, z1p+)

K0(�p�1 � �p�2, z2(1� z1)p+)

...

QIR

shower

· · ·

QUV

Fig. 21: Illustration of the iterative selection of flavours and momenta in the Lund string fragmentation model.

practice this is only approximately true for B⇤/B. For lighter flavours, the difference in phase space
caused by the V –S mass splittings implies a suppression of vector production. Thus, for D⇤/D, the
effective ratio is already reduced to about ⇠ 1.0 – 2.0, while for K⇤/K and ⇢/⇡, extracted values
range from 0.3 – 1.0. Recall, as always, that these are production ratios of primary hadrons, hence
feed-down complicates the extraction of these parameters from experimental data, in particular for
the lighter hadron species. The production of higher meson resonances is assumed to be low in a
string framework23. For diquarks, separate parameters control the relative rates of spin-1 diquarks vs.
spin-0 ones and, likewise, have to extracted from data, with resulting values of order (qq)1/(qq)0 ⇠
0.075 – 0.15.

With p2

? and m2 now fixed, the final step is to select the fraction, z, of the fragmenting end-
point quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string
picture is substantially more predictive than for the flavour selection. Firstly, the requirement that the
fragmentation be independent of the sequence in which breakups are considered (causality) imposes
a “left-right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) /
1
z
(1� z)a exp

✓
�

b (m2

h + p2

?h)
z

◆
, (68)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). As a
by-product, the probability distribution in invariant time ⌧ of q0q̄ breakup vertices, or equivalently
� = (⌧)2, is also obtained, with dP/d� / �a exp(�b�) implying an area law for the colour flux,
and the average breakup time lying along a hyperbola of constant invariant time ⌧0 ⇠ 10�23s [68].
The a and b parameters are the only free parameters of the fragmentation function, though a may
in principle be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder
fragmentation function for heavier hadrons (in the rest frame of the string).

The iterative selection of flavours, p?, and z values is illustrated in figure 21. A parton produced
in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale
QIR, with 3-momentum ~p = (~p?0, p+), where the “+” on the third component denotes “light-cone”
momentum, p± = E ± pz . Next, an adjacent dd̄ pair from the vacuum is created, with relative
transverse momenta ±p?1. The fragmenting quark combines with the d̄ from the breakup to form a

23The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are
poorly known and thus may result in a worse overall description when included.
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 Note: using light-cone momentum coordinates: p+ = E + pz

On average, expect energy* of nth “rank” hadron to scale like ~ 

En ∼ ⟨z⟩(1 − ⟨z⟩)n−1E0

*) more correctly, the p+ light-cone momentum coordinate

“First rank” 
hadron

“Second rank” 
hadron



A simple prediction: constant rapidity density of hadrons along string
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๏Rapidity 

•

       (in limit of small 

)  

๏Recall: expect energy of nth “rank” hadron  
•

  

๏Rapidity difference between two adjacent hadrons: 
•           Constant, independent of  (and of ) 

๏Predicts a flat (uniform) rapidity “plateau” (along the string axis):  
•Also called “Lightcone scaling”; this is exactly what is observed in practice.

y =
1
2

ln (
E + pz

E − pz ) =
1
2

ln (
(E + pz)2

E2 − p2
z ) → ln ( 2E

m⊥ ) m⊥ = m2 + p2
⊥

≪ E

En ∼ ⟨z⟩(1 − ⟨z⟩)n−1E0

⟹ yn ∼ y1 + (n − 1)ln(1 − ⟨z⟩)

Δy = yn+1 − yn ∼ ln (1 − ⟨z⟩) ⟵ n E0



The Rapidity Plateau 
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๏Expect ~ flat Rapidity Plateau along 
string axis 

•Estimate of rapidity range for fixed : 

๏

 

๏ ~ 5 for 100 GeV,  <z> ~ 0.5, and  GeV 

๏Changing   logarithmic change in 
rapidity range:

Eq

⟨y⟩1 ∼ ln (
2 ⟨z⟩ Eq

⟨m⊥⟩ )
Eq ∼ ⟨m⊥⟩ ∼ 0.5

Eq ⟹

Rapidity with respect 
to “Sphericity Axis”



The Rapidity Plateau 
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Rapidity with respect 
to “Sphericity Axis”

91 GeVECM =

206 GeV

ln ( 206
91 ) = 0.8

Actual difference is smaller ∼ 0.5
(some energy also goes to increase particle 

production in the central region, 3-jet events)

๏Expect ~ flat Rapidity Plateau along 
string axis 

•Estimate of rapidity range for fixed : 

๏

 

๏ ~ 5 for 100 GeV,  <z> ~ 0.5, and  GeV 

๏Changing   logarithmic change in 
rapidity range:

Eq

⟨y⟩1 ∼ ln (
2 ⟨z⟩ Eq

⟨m⊥⟩ )
Eq ∼ ⟨m⊥⟩ ∼ 0.5

Eq ⟹
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Figure 5: The jet pT dependence of (a) the di↵erence in the average charged-particle multiplicity (p
track
T > 0.5 GeV)

between the more forward and the more central jet. The band for the data is the sum in quadrature of the systematic
and statistical uncertainties and the error bars on the data points represent the statistical uncertainty. Bands on the
simulation include MC statistical uncertainty. The jet pT dependence of (b) the average charged-particle multiplicity
(p

track
T > 0.5 GeV) for quark- and gluon-initiated jets, extracted with the gluon fractions from Pythia 8.175 with the

CT10 PDF. In addition to the experimental uncertainties, the error bands include uncertainties in the gluon fractions
from both the PDF and ME uncertainties. The MC statistical uncertainties on the open markers are smaller than
the markers. The uncertainty band for the N3LO pQCD prediction is determined by varying the scale µ by a factor
of two up and down. The markers are truncated at the penultimate pT bin in the right because within statistical
uncertainty, the more forward and more central jet constituent charged-particle multiplicities are consistent with
each other in the last bin.
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Gluon Kinks: The Signature Feature of the Lund Model
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๏Gluons are connected to two string pieces 

•Each quark connected to one string piece 
๏ Expect factor ~  more particles in gluon jets 

๏Important for discriminating new-physics signals  
•Decays to quarks vs decays to gluons,  
•vs composition of background and bremsstrahlung combinatorics

2 ∼ CA/CF

1980: string (colour coherence) e↵ect

quark

antiquark

gluon

string motion in the event plane
(without breakups)

Predicted unique event structure;
inside & between jets.
Confirmed first by JADE 1980.

Generator crucial
to sell physics!

(today: PS, M&M, MPI, . . . )

Torbjörn Sjöstrand Status and Developments of Event Generators slide 5/28

ATLAS, Eur.Phys.J. C76 (2016) no.6, 322 

See also 
Larkoski et al., JHEP 1411 (2014) 129 
Thaler et al., Les Houches, arXiv:1605.04692

Quark Jets

Gluon Jets



What do String Junctions do?
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๏Assume Junction Strings have same properties as ordinary ones (u:d:s, Schwinger pT, …) 
•➤ No new string-fragmentation parameters 
•

SciPost Physics Codebases Submission

qC0
qB3

qA2

qB2

q̄B3

q̄q̄B1

q̄B2

qB0

qqB1

qA1

q̄A2

qA0

q̄A1

First Stage: Legs A and B

qqAB

qC4 q̄C4 qC3 q̄C3 qC2 q̄C2 qC1 q̄C1
qC0

q̄B3

qB2

q̄B2

q̄q̄B1

qqB1

qB0

q̄A2

qA1

q̄A1

qA0

Second Stage: Leg C

Figure 16: Illustration of the two main stages of junction fragmentation. (left) First, the
junction rest frame (JRF) is identified, in which the pull directions of the legs are at 120�

to each other. (If no solution is found, the CM of the parton system is used instead.) The
two lowest-energy legs (A and B) in this frame are then fragmented from their respective
endpoints inwards, towards a fictitious other end which is assigned equal energy and
opposite direction, here illustrated by grey dashed lines. This fragmentation stops when
any further hadrons would be likely to have negative rapidities along the respective
string axes. (right) The two leftover quark endpoints from the previous stage (qA2 and
qB3) are combined into a diquark (qqAB) that is then used as endpoint for a conventional
fragmentation along the last leg, alternating randomly between fragmentation from the
qC end and the qqAB end as usual.

separately, each as if it were a qq string, with a fictitious q in the opposite direction to the q.
All fragmentation is from the q end of the respective system, however, and keeps on going until
almost all the original q energy is used up, resulting in the situation illustrated in the left-hand
pane of fig. 16. At that stage the remaining unmatched two quarks (qA2 and qB3 in the figure) are
combined into a diquark, carrying the unspent energy and momentum. This diquark now forms
one end of the remaining string out to the third quark, which can be fragmented as a normal string
system, illustrated in the right-hand pane of fig. 16. One criterion that the procedure works, e.g.
that the fragmentation of the two first legs is stopped at about the right remaining energy, is that
the junction baryon is formed with a low momentum and with minimal directional bias in the
junction rest frame. Additional checks are also made to ensure that the final string mass is above
the threshold for string fragmentation. Otherwise, repeated attempts are made, starting over with
the first two strings.

Unfortunately real-life applications introduce a number of complications. One such is that the
pull is more complicated when the endpoints are not massless. Then, in a fraction of the events,
there is no analytic solution. Typically this happens when a massive quark is almost at rest in the
configurations that come closest to balance, and an approximate balance along these lines may be
obtained. An even more complicated case is when a leg is stretched via a number of intermediate
gluons between the junction and the endpoint quark, as would be a natural consequence of parton-
shower evolution in the �0! qqq decay. Then the initial motion of the junction is set by the gluon
nearest to it. But often this gluon has low energy and, once that is lost to the drawn-out string, it is
the direction of the next-nearest gluon that sets a new net pull. Thus, there is no frame where the
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The Junction Baryon is the most “subleading” 
hadron in all three “jets”.  

Generic prediction: low pT 

A Smoking Gun for String Junctions: Baryon enhancements at low pT

[Sjöstrand & PS, NPB 659 (2003) 243] 

[+ J. Altmann & PS, in progress]

https://arxiv.org/abs/2309.01557


LHCb: also in Bottom
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๏  asymmetryΛb

Bottom asymmetries

uncertainties on the Pythia models shown here are only due to the limited sample size
of about 12.5 million events. The results of the Pythia hadronisation model describing
the data best, along with the predictions of the heavy-quark recombination model are
presented in Fig. 11. The uncertainties on the heavy-quark recombination model are the
systematic uncertainties given in Ref. [5]. Overall, the predictions from the heavy-quark
recombination model are consistently higher than the 8TeV measurements, but remain
within uncertainties. For Pythia, only the model CR1 shows a good agreement with
the

p
s = 7 TeV measurements but it is also consistently higher at 8TeV. The two other

tested settings predict asymmetries that are too large, exhibiting the strongest deviation
at low transverse momentum.
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Figure 10: Comparison of the �0
b production asymmetry predicted by the various Pythia

models, where CR1 refers to the QCD-inspired model and CR2 refers to the gluon-move model,
and the measured production asymmetries. Results versus �0

b (left) rapidity y and (right) pT are
shown for centre-of-mass energies of (top)

p
s = 7 TeV and (bottom)

p
s = 8 TeV. Uncertainties

on the predictions are due to limited simulation sample sizes.

9 Conclusions

The most precise measurements of the �0
b production asymmetry in

p
s = 7 TeV and 8 TeV

proton-proton collisions have been presented. A new method to estimate asymmetries in
the interaction of protons and antiprotons with the detector material has been developed.
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Bottom asymmetries

uncertainties on the Pythia models shown here are only due to the limited sample size
of about 12.5 million events. The results of the Pythia hadronisation model describing
the data best, along with the predictions of the heavy-quark recombination model are
presented in Fig. 11. The uncertainties on the heavy-quark recombination model are the
systematic uncertainties given in Ref. [5]. Overall, the predictions from the heavy-quark
recombination model are consistently higher than the 8TeV measurements, but remain
within uncertainties. For Pythia, only the model CR1 shows a good agreement with
the

p
s = 7 TeV measurements but it is also consistently higher at 8TeV. The two other

tested settings predict asymmetries that are too large, exhibiting the strongest deviation
at low transverse momentum.
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models, where CR1 refers to the QCD-inspired model and CR2 refers to the gluon-move model,
and the measured production asymmetries. Results versus �0

b (left) rapidity y and (right) pT are
shown for centre-of-mass energies of (top)

p
s = 7 TeV and (bottom)

p
s = 8 TeV. Uncertainties

on the predictions are due to limited simulation sample sizes.
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QCD-based CR

Default (Monash)

LHCb, JHEP 10 (2021) 060 • arXiv: 2107.09593

“Gluon-Move” CR

Baseline Expectations:       &  
 quark combines with the proton 

beam remnant   production 
Not possible for  (no  remnant at LHC)

b
⟹ Λb

Λ̄b p̄

QCD CR with “string junctions”    
Adds large amount of low-pT  and , in equal amounts. Dilutes asymmetry!

Bottom asymmetries

uncertainties on the Pythia models shown here are only due to the limited sample size
of about 12.5 million events. The results of the Pythia hadronisation model describing
the data best, along with the predictions of the heavy-quark recombination model are
presented in Fig. 11. The uncertainties on the heavy-quark recombination model are the
systematic uncertainties given in Ref. [5]. Overall, the predictions from the heavy-quark
recombination model are consistently higher than the 8TeV measurements, but remain
within uncertainties. For Pythia, only the model CR1 shows a good agreement with
the

p
s = 7 TeV measurements but it is also consistently higher at 8TeV. The two other

tested settings predict asymmetries that are too large, exhibiting the strongest deviation
at low transverse momentum.
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b production asymmetry predicted by the various Pythia

models, where CR1 refers to the QCD-inspired model and CR2 refers to the gluon-move model,
and the measured production asymmetries. Results versus �0

b (left) rapidity y and (right) pT are
shown for centre-of-mass energies of (top)

p
s = 7 TeV and (bottom)

p
s = 8 TeV. Uncertainties

on the predictions are due to limited simulation sample sizes.
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Λb Λ̄b

Bottom asymmetries

uncertainties on the Pythia models shown here are only due to the limited sample size
of about 12.5 million events. The results of the Pythia hadronisation model describing
the data best, along with the predictions of the heavy-quark recombination model are
presented in Fig. 11. The uncertainties on the heavy-quark recombination model are the
systematic uncertainties given in Ref. [5]. Overall, the predictions from the heavy-quark
recombination model are consistently higher than the 8TeV measurements, but remain
within uncertainties. For Pythia, only the model CR1 shows a good agreement with
the

p
s = 7 TeV measurements but it is also consistently higher at 8TeV. The two other

tested settings predict asymmetries that are too large, exhibiting the strongest deviation
at low transverse momentum.
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on the predictions are due to limited simulation sample sizes.
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Bottom asymmetries

uncertainties on the Pythia models shown here are only due to the limited sample size
of about 12.5 million events. The results of the Pythia hadronisation model describing
the data best, along with the predictions of the heavy-quark recombination model are
presented in Fig. 11. The uncertainties on the heavy-quark recombination model are the
systematic uncertainties given in Ref. [5]. Overall, the predictions from the heavy-quark
recombination model are consistently higher than the 8TeV measurements, but remain
within uncertainties. For Pythia, only the model CR1 shows a good agreement with
the

p
s = 7 TeV measurements but it is also consistently higher at 8TeV. The two other

tested settings predict asymmetries that are too large, exhibiting the strongest deviation
at low transverse momentum.
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shown for centre-of-mass energies of (top)
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s = 7 TeV and (bottom)

p
s = 8 TeV. Uncertainties

on the predictions are due to limited simulation sample sizes.

9 Conclusions

The most precise measurements of the �0
b production asymmetry in

p
s = 7 TeV and 8 TeV

proton-proton collisions have been presented. A new method to estimate asymmetries in
the interaction of protons and antiprotons with the detector material has been developed.
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A =
�(⇤0

b) � �(⇤
0

b)

�(⇤0

b) + �(⇤
0

b)

CR1 = CR-BLC, no enhancement at low p?.
Enhanced ⇤b production at low p?, like for ⇤c, dilutes asymmetry?
Asymmetries observed also for other charm and bottom hadrons.
Revived field of study?

Torbjörn Sjöstrand Nonperturbative models in PYTHIA slide 9/23

[Christiansen & Skands JHEP 08 (2015) 003] 

https://arxiv.org/abs/2107.09593
https://arxiv.org/abs/1505.01681

