NNLO + Strings

Peter Skands — U of Oxford \& Monash U.

Introduction \& Overview

Current state of the art for perturbation theory: NNLO (\rightarrow N3LO)
Matching to showers + hadronization mandatory for explicit collider studies
(+ resummation extends range; hadronization \rightarrow explicit power corrections; MPI \rightarrow UE, ...)

1. Can use off-the-shelf (LL) showers, e.g. with MiNNLO ${ }_{\text {pS }}$

Based on POWHEG-Box \oplus Analytical Resummation \oplus NNLO normalisation
Approximate method; depends on several auxiliary scales / choices \rightarrow can exhibit large variations
2. This talk: VinciaNNLO

Based on nested shower-style phase-space generation with 2nd_order MECs
True NNLO matching \rightarrow Expect small matching systematics
So far only worked out for colour-singlet decays.
(Also developing extensions towards NLL (\rightarrow NNLL) showers ...)

+ Strings
New discoveries at LHC, especially baryons and strangeness: possible interpretations

An LHC collision (in PYTHIA)

Hard	OHard Interaction
Process	\bullet Resonance Decays
	MECs, Matching \& Merging

An LHC collision (in PYTHIA)

An LHC collision (in PYTHIA)

The Case for Embedding Fixed-Order Calculations in Showers

Resummation extends domain of validity of perturbative calculations

Showers > Fully exclusive final states + non-perturbative corrections

Target for next generation of MCs: \%-level precision @ LHC \Rightarrow NNLO + NNLL

Warmup: NLO Matching with POWHEG Box Alobetat 2000|

(Just focusing on the real-radiation part)

POWHEG generates the 1 st (hardest) emission in a shower-like manner (MECs)

Combines Matrix-Element
Corrections (MEC) [Bengtsson \& Sjöstrand $1987+\ldots$...]
with NLO Born-Level Normalization [Nason 2004; Fixione, Nason, Oleari 2007]

Sweeping over the phase space, from high to low P_{T}

Shower then takes over and generates all softer emissions

Pseudorapidity of the emitted parton

Powheg-Box - Important Caveat

PowHeg-Box uses its own definition of " p_{T} " \neq shower's p_{T}

Naive POWHEG Matching
Continue the shower starting from the POWHEG-Box p_{T} scale (Saved in LHEF SCALUP value)

```
FAILS!
```

Region \mathbf{A} is double-counted
Region \mathbf{B} is left empty

Pseudorapidity of the emitted parton

Current best practice

Vetoed "Power Showers" - with PYTHIA's POWHEG hooks (PowHEG:veto = 1)
Let shower fill all of phase space (\Rightarrow lots of double counting but at least no holes) Eliminate double counting: for each shower emission, compute the would-be $p_{\perp i}^{\text {Powheg }}$ and veto any that would double-count $p_{\perp 1}^{\text {Powheg }}$

[^0]
Vetoed Power Showers

Work very well for simple processes (like Drell-Yan)

But the ambiguities can be much more severe for more complex processes.
Especially ones involving initial-final colour flows

2. From NLO to NNLO

MiNNLO ${ }_{P S}$ builds on (extends) POWHEG NLO for $\mathbf{X}+$ jet
Allow the first jet to approach $p_{\perp} \rightarrow 0 \sim X+0$
Tame divergence with analytic (NNLL) Sudakov
(introduces additional hardness scale
= resummation scale)
Normalize inclusive d σ_{X} to NNLO (ambiguity on how to "spread" the additional
 contributions in phase space.)
~ Best you can do with current off-the-shelf parton showers
But is approximate; introduces several new (unphysical) ambiguities:
$p_{\perp}^{\text {Shower vs }} p_{\perp}^{\text {Powhes }}$ vs $Q_{N N L L}^{\text {resummation }} \&$ differential NNLO spreading

MiNNLOps inherits some issues from POWHEG-Box

Large dependence on pThard scale

Big variations in predictions for further jets

Calculation "anchored" in NLO for X+jet
\Longrightarrow Also big variations for Born-level (0-jet) observable.

Not the pattern one expects of an NNLO calculation

Recommendations to Users of these Calculations

$\mathrm{MiNNLO}_{\text {ps }}$ is an approximate matching scheme
Does not "match" shower to NNLO point by point in phase space (Impossible to do with LL showers.)

Does not always do vetoed showers
(This can in principle be done.)
Depends on several auxiliary scales
(Intrinsic to scheme. Physical observables should not depend on them \rightarrow vary!)
Comprehensive variations mandatory to estimate scheme uncertainties
Cannot blindly trust the NNLO label
Nor is the subsequent shower guaranteed to preserve accuracy
E.g., Regular POWHEG + proper vetoed showers may do "better" for some observables?

Towards True NNLO Matching

Idea: Use (nested) Shower Markov Chain as NNLO Phase-Space Generator Harnesses the power of showers as efficient phase-space generators for QCD Pre-weighted with the (leading) QCD singular structures = soft/collinear poles

Different from conventional Fixed-Order phase-space generation (eg VEGAS)

Towards True NNLO Matching

Idea: Use (nested) Shower Markov Chain as NNLO Phase-Space Generator Harnesses the power of showers as efficient phase-space generators for QCD Pre-weighted with the (leading) QCD singular structures = soft/collinear poles

Simply continue shower afterwards (à la original MECs and Powheg)
No unphysical scales \Rightarrow expect small matching systematics

Sector antennae Kosower, hep-ph/9710213 hep--ph/0311272 (+ Larkoski \& Peskin 0908.2450, 1106.2182)

Divide the n-gluon phase space up into n non-overlapping sectors
Inside each of which only the most singular (\sim "classical") kernel is allowed to contribute.

Example: $Z \rightarrow q \bar{q} g g g$

Lorentz-invariant sector definitions based on "ARIADNE p_{T} ": Gustafon \& Petersson. NPB 306 (1988) 746

$$
p_{\perp j}^{2}=\frac{s_{i j} s_{j k}}{s_{i j k}} \quad \text { with } s_{i j} \equiv 2\left(p_{i} \cdot p_{j}\right) \quad \text { (+ generalisations for heavy-quark emitters) Brooks, Preuss \& PS 2003.00702 }
$$

\rightarrow Unique properties (which turn out to be useful for matching):
Clean scale definitions; shower operator is bijective \& true Markov chain

Proof of Concept in VINCIA

Focus on hadronic \mathbf{Z} decays (for now)
"Two-loop MEC"

Need:
(1) Born-Local NNLO $\left(O\left(\alpha_{s}^{2}\right)\right)$ K-factors: $k_{\mathrm{NNLO}}\left(\Phi_{2}\right)$
(2) NLO $\left(\mathcal{O}\left(\alpha_{s}^{2}\right)\right)$ MECs in the first $2 \rightarrow 3$ shower emission: $k_{\mathrm{NLO}}^{2 \rightarrow 3}\left(\Phi_{3}\right)$
(3 LO $\left(\mathcal{O}\left(\alpha_{s}^{2}\right)\right)$ MECs for next (iterated) $2 \rightarrow 3$ shower emission: $k_{\mathrm{LO}}^{3 \rightarrow 4}\left(\Phi_{4}\right)$
(4) Direct $2 \rightarrow 4$ branchings for unordered sector, with LO $\left(\mathcal{O}\left(\alpha_{s}^{2}\right)\right)$ MECs: $k_{\mathrm{LO}}^{2 \rightarrow 4}\left(\Phi_{4}\right)$

(1) Weight each Born-level event by local K-factor

$$
\begin{aligned}
k_{\mathrm{NNLO}}\left(\Phi_{2}\right) & =1+\frac{\mathrm{V}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{S}}^{\mathrm{NLO}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{VV}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{T}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{S}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)} \\
& +\int \mathrm{d} \Phi_{+1}\left[\frac{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{S}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{RV}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{T}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}\right] \\
& +\int \mathrm{d} \Phi_{+2}\left[\frac{\mathrm{RR}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{S}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}\right]
\end{aligned}
$$

Fixed-Order Coefficients:

Subtraction Terms:

(not directly tied to shower formalism but must be fully local in Born kinematics Φ_{2})

Note: requires "Born-local" NNLO subtraction terms (simple for colour-singlet production).

The Shower Operator (its $2^{\text {nd }}$-order expansion)

This is the part that differs most from standard fixed-order methods

Recall: the +1 and +2 phase spaces are generated via nested sequences of shower-style branchings. Each of which produces an all-orders expansion!
We expand these to second order and correct them to NNLO

(2) \& (3) Iterated $2 \rightarrow 3$ Branchings with NNLO Corrections

Key Aspect:

 Up to matched order, include process-specific $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ corrections into shower evolution(2) Correct $1^{\text {st }}$ branching to (fully differential) NLO 3-jet rate [Hartgring, Laenen, Ps (2013]]
$\Delta_{2 \rightarrow 3}^{\mathrm{NLO}}\left(\frac{m_{Z}}{2}, p_{\perp 1}\right)=\exp \left\{-\int_{p_{\perp 1}}^{\frac{m_{Z}}{2}} \mathrm{~d} \Phi_{[2]+1} \frac{\left|M_{Z \rightarrow 3}^{(0)}\left(\Phi_{3}\right)\right|^{2}}{\left|M_{Z \rightarrow 2}^{(0)}\left(\Phi_{2}\right)\right|^{2}} k_{\mathrm{NLO}}^{Z \rightarrow 3}\left(\Phi_{2}, \Phi_{+1}\right)\right\}$

I will return to the definition of the NLO correction factor $k_{\mathrm{NLO}}^{Z \rightarrow 3}\left(\Phi_{2}, \Phi_{+1}\right)$
(3) Correct $2^{\text {nd }}$ branching to LO ME [Giele, Kosower, PS (2011); Lopez-Villarejo, PS (2011)]

$$
\Delta_{3 \rightarrow 4}^{\mathrm{LO}}\left(p_{\perp 1}, p_{\perp 2}\right)=\exp \left\{-\int_{p_{\perp 2}}^{p_{\perp 1}} \mathrm{~d} \Phi_{[3]+1} \frac{\left|M_{\mathrm{Z} \rightarrow 4}^{(0)}\left(\Phi_{4}\right)\right|^{2}}{\left|M_{Z \rightarrow 3}^{(0)}\left(\Phi_{3}\right)\right|^{2}}\right\}
$$

Entirely based on sectorization and (iterated) Matrix-Element Corrections

(Sectorization defines $d \Phi_{[n]+1}$ and allows to use simple ME ratios instead of partial-fractionings)

Caveat: Double-Unresolved Phase-Space Points

Iterated shower branchings are strictly ordered in shower p_{T}

Not all 4-parton phase-space points can be reached this way!
In general, strong ordering cuts out part of the double-real phase space
~ double-unresolved regions; no leading logs here but can contain subleading ones

Vice to Virtue: [Li, PZS (2017)]

Divide double-emission phase space into strongly-ordered and unordered regions (according to the shower ordering variable)
Unordered clusterings \Leftrightarrow new direct double branchings
Complementary phase-space regions:

$$
\mathrm{d} \Phi_{[2]+2}=\Theta\left(\hat{p}_{\perp 1}-p_{\perp 2}\right) \mathrm{d} \Phi_{[2]+1} \mathrm{~d} \Phi_{[3]+1}+\Theta\left(\hat{p}_{\perp 1}+p_{\perp 2}\right) \mathrm{d} \Phi_{[2]+2}
$$

Born +2

Generated by iterated, ordered branchings

Generated by new direct
$2 \rightarrow 4$ branchings

(4) (New: Direct $2 \rightarrow 4$ Double-Branching Generator)

Developed in: Li \& PZS, A Framework for Second-Order Showers, PLB 771 (2017) 59

Sudakov trial integral for direct double branchings with $p_{\perp} \in\left[p_{\perp 0}, p_{\perp 2}\right]$:
Scale of intermediate

Unordered Sector:
$-\ln \Delta\left(p_{\perp 0}^{2}, p_{\perp 2}^{2}\right)=\int_{0}^{p_{\perp 0}^{2}} \mathrm{~d} \hat{p}_{\perp}^{2} \int_{p_{\perp 2}^{2}}^{p_{\perp 0}^{2}} \mathrm{~d} p_{\perp}^{2} \Theta\left(p_{\perp}^{2}-\hat{p}_{\perp}^{2}\right) \frac{N}{p_{\perp}^{4}}$
Generic overestimate of doublebranching kernel in unordered region

Trick: swap integration order
\Rightarrow outer integral along p_{\perp} instead of \hat{p}_{\perp} :

$$
=\int_{p_{\perp 2}^{2}}^{p_{\perp 0}^{2}} \mathrm{~d} p_{\perp}^{2} \int_{0}^{p_{\perp}^{2}} \mathrm{~d} \hat{p}_{\perp}^{2} \frac{N}{p_{\perp}^{4}} \equiv \int_{p_{\perp 2}^{2}}^{p_{\perp 0}^{2}} \mathrm{~d} p_{\perp}^{2} F\left(p_{\perp}^{2}\right)
$$

\rightarrow First generate physical scale $p_{\perp 2}$, then generate $0<\hat{p}_{\perp}<p_{\perp 2}+$ two z and φ choices

Summary: Shower Markov chain with NNLO Corrections

(2) Correct $1^{\text {st }}(2 \rightarrow 3)$ branching to (fully differential) NLO 3-jet rate
$\Delta_{2 \rightarrow 3}^{\text {[Harging, Laenen, PS (2013] }}\left(\frac{m_{Z}}{2}, p_{\perp 1}\right)=\exp \left\{-\int_{p_{\perp 1}}^{\frac{m_{Z}}{2}} \mathrm{~d} \Phi_{[2]+1} \frac{\left|M_{Z}^{(0)}\left(\Phi_{3}\right)\right|^{2}}{\left|M_{Z \rightarrow 2}^{(0)}\left(\Phi_{2}\right)\right|^{2}} k_{\mathrm{NLO}}^{Z \rightarrow 3}\left(\Phi_{2}, \Phi_{+1}\right)\right\}$

Direct:
(3) Correct $2^{\text {nd }}(3 \rightarrow 4)$ branching to LO ME $_{[G \text { Giele, Kosower, PS (20111); Lopez-Villarejo, PS (2011)] }}$

$$
\Delta_{3 \rightarrow 4}^{\mathrm{LO}}\left(p_{\perp 1}, p_{\perp 2}\right)=\exp \left\{-\int_{p_{\perp 2}}^{p_{\perp 1}} \mathrm{~d} \Phi_{[3]+1}^{\mathrm{O}} \frac{\left|M_{Z \rightarrow 4}^{(0)}\left(\Phi_{4}\right)\right|^{2}}{\left|M_{Z \rightarrow 3}^{(0)}\left(\Phi_{3}\right)\right|^{2}}\right\}
$$

(4) Add direct $2 \rightarrow 4$ branching and correct it to LO ME $\left[\begin{array}{ll}\text { Li, ps (2017) } \\ \end{array}\right.$

$$
\Delta_{2 \rightarrow 4}^{\mathrm{LO}}\left(p_{\perp 1}, p_{\perp 2}\right)=\exp \left\{-\int_{p_{\perp 2}}^{p_{\perp 1}} \mathrm{~d} \Phi_{[2]+2}^{\mathrm{U}} \frac{\left|M_{\mathrm{Z} \rightarrow 4}^{(0)}\left(\Phi_{4}\right)\right|^{2}}{\left|M_{\mathrm{Z} \rightarrow 2}^{(0)}\left(\Phi_{2}\right)\right|^{2}}\right\}
$$

Entirely based on MECs and Sectorization

By construction, expansion of extended shower matches NNLO singularity structure.
But shower kernels do not define NNLO subtraction terms* (!)

Real-Virtual Corrections: NLO MECs

$$
k_{2 \rightarrow 3}^{\mathrm{NLO}}=\left(1+w_{2 \rightarrow 3}^{\mathrm{V}}\right)
$$

Hartgring, Laenen, PS (2013)
Campbell, Höche, Li, Preuss, PS, 2108.07133

Local correction given by three terms:

$$
\begin{aligned}
w_{2 \mapsto 3}^{\mathrm{V}}\left(\Phi_{2}, \Phi_{+1}\right)= & \left(\frac{\mathrm{RV}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}+\frac{\mathrm{I}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}\right. \\
\mathrm{NLO} \text { Born }+1 j & \left.+\int_{0}^{t} \mathrm{~d} \Phi_{+1}^{\prime}\left[\frac{\mathrm{RR}\left(\Phi_{2}, \Phi_{+1}, \Phi_{+1}^{\prime}\right)}{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}-\frac{\mathrm{S}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}, \Phi_{+1}^{\prime}\right)}{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}\right]\right) \\
\mathrm{NLO} \text { Born } & -\left(\frac{\mathrm{V}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}^{\mathrm{NLO}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\int_{0}^{t_{0}} \mathrm{~d} \Phi_{+1}^{\prime}\left[\frac{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}^{\prime}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{S}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}^{\prime}\right)}{\mathrm{B}\left(\Phi_{2}\right)}\right]\right) \\
\text { shower } & +\left(\frac{\alpha_{\mathrm{S}}}{2 \pi} \log \left(\frac{\kappa^{2} \mu_{\mathrm{PS}}^{2}}{\mu_{\mathrm{R}}^{2}}\right)+\int_{t}^{t_{0}} \mathrm{~d} \Phi_{+1}^{\prime} \mathrm{A}_{2 \mapsto 3}\left(\Phi_{+1}^{\prime}\right) w_{2 \mapsto 3}^{\mathrm{LO}}\left(\Phi_{2}, \Phi_{+1}^{\prime}\right)\right)
\end{aligned}
$$

- First and third term from NLO shower evolution, second from NNLO matching
- Calculation can be (semi-)automated, given a suitable NLO subtraction scheme

Size of the Real-Virtual Correction Factor (2)

$$
k_{2 \rightarrow 3}^{\mathrm{NLO}}=\left(1+w_{2 \rightarrow 3}^{\mathrm{V}}\right)
$$

studied analytically in detail for $Z \rightarrow q \bar{q}$ in Hartgring, Laenen, PS JHEP 10 (2013) 127

\Rightarrow now: generalisation \& (semi-)automation in VINCIA in form of NLO MECs

Preview: VINCIA NNLO+PS for $H \rightarrow b \bar{b}$

Note:
NNLO Reference $=$ EERAD3* NLO $H \rightarrow b \bar{b} g$
Coloretti, Gehrmann-de Ridder, Preuss, JHEP 06 (2022) 009
NNLO accuracy in $H \rightarrow 2 j$ implies NLO correction in first emission and LO correction in second emission.

So for Thrust,
NNLO $H \rightarrow b \bar{b}$ is
effectively
NLO for $\tau<1 / 3$
LO for $\tau>1 / 3$

VINCIA NNLO+PS: shower as phase-space generator: efficient \& no negative weights!
> Looks ~ $5 \times$ faster than EERAD3 (for equivalent unweighted stats)

+ is matched to shower + can be hadronized
Proof of concepts now done for $Z / H \rightarrow q \bar{q}$; work remains for $p p$ ($\&$ for NnLL accuracy)

From Partons to Strings

After the shower: Simplified (leading- N_{C} "colour flow" \rightarrow determine between which partons to set up confining potentials

Map from Partons to Strings:
Quarks \Rightarrow string endpoints; gluons \Rightarrow transverse "kinks"
System then evolves as a string world sheet

+ String breaks via spontaneous $q \bar{q}$ pair creation ("Schwinger mechanism") \rightarrow hadrons

Confinement in LHC Collisions

High-energy pp collisions - with ISR, Multi-Parton Interactions, and Beam Remnants
Final states with very many coloured partons With significant overlaps in phase space Who gets confined with whom?

Each has a colour ambiguity $\sim 1 / N_{C}^{2} \sim 10 \%$ E.g.: random triplet charge has $1 / 9$ chance to be in singlet state with random antitriplet:

$$
\begin{aligned}
& 3 \otimes \overline{3}=8 \oplus 1 \\
& 3 \otimes 3=6 \oplus \overline{3} \quad ; \quad 3 \otimes 8=15 \oplus 6 \oplus 3 \\
& 8 \otimes 8=27 \oplus 10 \oplus \overline{10} \oplus 8_{S} \oplus 8_{A} \oplus 1
\end{aligned}
$$

Many charges \rightarrow Colour Reconnections* (CR)
More likely than not

QCD Colour Reconnections \longleftrightarrow String Junctions

Open Strings

$q \bar{q}$ strings (with gluon kinks)

> E.g., $Z \rightarrow q \bar{q}+$ shower $H \rightarrow b \bar{b}+$ shower

Closed Strings

Gluon rings
E.g., $H \rightarrow g g+$ shower $O p e n$ strings with $N_{C}=3$ endpoints $\Upsilon \rightarrow g g g+$ shower

SU(3) String Junction

E.g., Baryon-Number violating neutralino decay $\tilde{\chi}^{0} \rightarrow q q q+$ shower

Fragmentation of String Junctions

Assume Junction Strings have same properties as ordinary ones (u:d:s, Schwinger p_{T}, etc) $>$ No new string-fragmentation parameters

Confront with Measurements

LHC experiments report very large (factor-10) enhancements in heavy-flavour baryon-to-meson ratios at low p_{T} !

+ Lots of interesting new measurements showing changes in strange vs nonstrange strange hadrons
\& evidence of flow-like effects in pp collisions
\rightarrow modifications to P_{T} spectra

Not reproduced by baseline string/cluster models
p_{\perp}

> Very exciting! Lots of Activity

What a strange world we live in, said Alice

We also know ratios of strange hadrons to pions strongly increase with event activity

Non-Linear String Dynamics?

MPI \Longrightarrow lots of coloured partons scattered into the final states

Count \# of (oriented) flux lines crossing $y=0$ in pp collisions (according to PYTHIA) And classify by SU(3) multiplet:

Confining fields may be reaching higher effective representations than simple quark-antiquark (3) ones.
E.g.: 27

Two approaches in PYTHIA:

1) Colour Ropes (Lund)
2) Close-Packing (Monash)

In Progress: Strangeness Enhancement from Close-Packing

Idea: each string exists in an effective background produced by the others

Close-packing

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks

String tension could be different from the vacuum case compared to near a junction

Summary \& Outlook

State of the art for perturbation theory: NNLO (\rightarrow N3LO)

Matching to showers + hadronization mandatory for collider studies
(+ resummation extends range; hadronization \rightarrow explicit power corrections; MPI \rightarrow UE, ...)

1. Can use off-the-shelf (LL) showers, e.g. with MiNNLO ${ }_{\text {pS }}$

Based on POWHEG-Box \oplus Analytical Resummation \oplus NNLO normalisation
Approximate method; depends on several auxiliary scales / choices \rightarrow can exhibit large variations

2. This talk: VinciaNNLO

Based on nested shower-style phase-space generation with 2nd_order MECs
True NNLO matching \rightarrow Expect small matching systematics
So far only worked out for colour-singlet decays Will soon start on Drell-Yan, VBF, ...
(Also developing extensions towards NLL (\rightarrow NNLL) showers ...)

+ Strings
New discoveries at LHC for baryons and strangeness string interactions, string junctions?

Extra Slides

Parton Showers: Theory

see e.g PS, Introduction to OCD, TASI 2012, arXiv:1207.2389

Most bremsstrahlung is

driven by divergent propagators \rightarrow simple structure

Mathematically, gauge amplitudes

 factorize in singular limits

$$
\left.\begin{array}{l}
\stackrel{\text { Partons ab }}{\rightarrow \text { collinear: }}\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2} \\
\qquad P(z)=\text { DGLAP splitting kernels", with } z=E_{a} /\left(E_{a}+E_{b}\right) \\
\underset{\rightarrow \text { soft: }}{\text { Gluon } \mathrm{j}} \mid
\end{array}\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}\right)
$$

These are the building blocks of parton showers (DGLAP, dipole, antenna, ...) (+ running coupling, unitarity, and explicit energy-momentum conservation.)

QCD Colour Reconnections \longleftrightarrow String Junctions

Stochastically restores colour-space ambiguities according to SU(3) algebra
$>$ Allows for reconnections to minimise string lengths

Dipole-type reconnection

What about the red-green-blue colour singlet state?

LHCb: also in Bottom

Λ_{b} asymmetry

$$
A=\frac{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)-\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)+\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}
$$

Without junction CR , an important source of low-p Λ_{b} production is when $a b$ quark combines with the proton beam remnant.
Not possible for $\bar{\Lambda}_{b}$ (no \bar{p} remnant at LHC)
QCD CR adds large amount of low-pt junction Λ_{b} and $\bar{\Lambda}_{b}$, in equal amounts. Dilutes asymmetry!

[^0]:
 Pseudorapidity of the emitted parton

