Status and progress of VINCIA

Christian T Preuss (ETH Zürich)

PSR 2023 Milan Bicocca University 07/06/2023

ETH zürich

Full-fledged antenna shower in PYTHIA 8.3 (as of October 2019)

- based on sector showers [Brooks, CTP, Skands 2003.00702] with dedicated merging framework [Brooks, CTP 2008.09468]
- generic NLO matching via PowhegHooks [Höche, Mrenna, Payne, CTP, Skands 2106.10987]
- FF, IF, II antenna kinematics [Fischer, Prestel, Ritzmann, Skands 1605.06142]
- dedicated resonance-final (RF) shower [Brooks, Skands 1907.08980]
- multipole QED shower [Skands, Verheyen 2002.04939]
- full-fledged interleaved EW shower [Brooks, Skands, Verheyen 2108.10786]
- helicity dependence in shower and MECs [Fischer, Lifson, Skands 1708.01736]
- exact treatment of mass corrections [Gehrmann-De Ridder, Ritzmann, Skands 1108.6172]
- dedicated default tuning (similar to PYTHIA's Monash tune)

New developments:

second-order shower evolution and fully-differential NNLO QCD matrix element corrections [Campbell, Höche, Li, CTP, Skands 2108.07133]

Status

Sector showers [Brooks, CTP, Skands 2003.00702]

Idea: combine antenna shower with deterministic jet-clustering algorithm [Lopez-Villarejo, Skands 1109.3608]

• let shower only generate emissions that would be clustered by a $(3 \mapsto 2)$ jet algorithm (\sim ARCLUS [Lönnblad Z.Phys.C 58 (1993)])

- \Rightarrow softest gluon always regarded as the emitted one
- \Rightarrow only one (most singular) splitting kernel contributes per phase space point

Resonance-final antenna showers [Brooks, Skands 1907.08980]

Unique coherent "resonance-final" antenna pattern with global recoil.

VINCIA gives **narrower** *b*-jets than default PYTHIA (survives MPI+hadronisation). Highly important for precision top-mass studies!

QED multipole showers [Skands, Verheyen 2002.04939]

No large- N_{C} limit in QED \Rightarrow need to account for full multipole structure.

In VINCIA taken into account by **sectorisation** of phase space:

$$|M_{n+1}|^2 pprox a^{\text{QED}}(\{p\}, p_j) \sum_{\{i,k\}} \Theta(p_{\perp,ijk}^2) |M_n|^2$$

Positive (blue) and negative (orange) contributions included **without negative weights**.

Adapted from R. Verheyen.

Interleaved EW showers [Brooks, Skands, Verheyen 2108.10786]

All SM 1 \mapsto 2 splittings included (helicity dependent!), fully interleaved with resonance decays and resonance showers.

Adapted from R. Verheyen.

Matching and Merging

Highly efficient matching and merging (also in complicated topologies) via dedicated PowhegHooks and merging framework.

POWHEG NLO+PS matching in VBF

[Brooks, CTP 2008.09468]

[Höche, Mrenna, Payne, CTP, Skands 2106.10987]

Work in Progress

VINCIANNLO [Campbell, Höche, Li, CTP, Skands 2108.07133]

Idea: "POWHEG at NNLO"

$$\langle O \rangle_{\text{NNLO+PS}}^{\text{VINCIA}} = \int d\Phi_2 \, \mathrm{B}(\Phi_2) \underbrace{k_{\text{NNLO}}(\Phi_2)}_{\text{local K-factor}} \underbrace{\mathcal{S}_2(t_0, O)}_{\text{shower operator}}$$

Need:

- (1) Born-local NNLO K-factors: $k_{NNLO}(\Phi_2)$
- (2) NLO MECs in the first $2 \mapsto 3$ shower branching: $w_{2\mapsto 3}^{\text{NLO}}(\Phi_3)$
- (3) LO MECs for second (iterated) 2 \mapsto 3 shower branching: $w^{\text{LO}}_{3\mapsto4}(\Phi_4)$
- (4) Direct $2 \mapsto 4$ branchings for unordered sector with LO MECs: $w_{2\mapsto 4}^{LO}(\Phi_4)$

Born-local K-factor

(1) weight each Born-level event by local K-factor

$$\begin{split} k_{\rm NNLO}(\Phi_2) &= 1 + \frac{V(\Phi_2)}{B(\Phi_2)} + \frac{I_{\rm NLO}^{\rm NLO}(\Phi_2)}{B(\Phi_2)} + \frac{VV(\Phi_2)}{B(\Phi_2)} + \frac{I_{\rm T}(\Phi_2)}{B(\Phi_2)} + \frac{I_{\rm S}(\Phi_2)}{B(\Phi_2)} \\ &+ \int d\Phi_{+1} \left[\frac{R(\Phi_2, \Phi_{+1})}{B(\Phi_2)} - \frac{S^{\rm NLO}(\Phi_2, \Phi_{+1})}{B(\Phi_2)} + \frac{RV(\Phi_2, \Phi_{+1})}{B(\Phi_2)} - \frac{T(\Phi_2, \Phi_{+1})}{B(\Phi_2)} \right] \\ &+ \int d\Phi_{+2} \left[\frac{RR(\Phi_2, \Phi_{+2})}{B(\Phi_2)} - \frac{S(\Phi_2, \Phi_{+2})}{B(\Phi_2)} \right] \end{split}$$

Adapted from P. Skands.

Note: requires "Born-local" NNLO subtraction terms. Currently only for simplest cases.

Second-order MECs

Key aspect

up to matched order, include process-specific NLO corrections into shower evolution: (2) correct first branching to exclusive (< t') NLO rate:

$$\Delta^{\mathrm{NLO}}_{2\mapsto3}(t_0,t') = \exp\left\{-\int_{t'}^{t_0} \mathsf{d}\Phi_{+1} \operatorname{A}_{2\mapsto3}(\Phi_{+1}) \mathsf{w}^{\mathrm{NLO}}_{2\mapsto3}(\Phi_2,\Phi_{+1})\right\}$$

(3) correct second branching to LO ME:

$$\Delta_{3\mapsto4}^{\mathrm{LO}}(t',t) = \exp\left\{-\int_{t}^{t'} \mathrm{d}\Phi_{+1}' \mathrm{A}_{3\mapsto4}(\Phi_{+1}') w_{3\mapsto4}^{\mathrm{LO}}(\Phi_{3},\Phi_{+1}')\right\}$$

(4) add direct $2 \mapsto 4$ branching and correct it to LO ME:

$$\Delta_{2\mapsto4}^{\mathrm{LO}}(t_0,t) = \exp\left\{-\int_t^{t_0} \mathrm{d}\Phi_{+2}^> \mathrm{A}_{2\mapsto4}(\Phi_{+2}) w_{2\mapsto4}^{\mathrm{LO}}(\Phi_2,\Phi_{+2})\right\}$$

- $\Rightarrow\,$ entirely based on MECs and sectorisation
- \Rightarrow by construction, expansion of extended shower matches NNLO singularity structure But shower kernels do not define NNLO subtraction terms¹ (!)

 $^{^1 {\}rm This}$ would be required in an " ${\rm Mc@NnLO}$ " scheme, but difficult to realise in antenna showers.

Real-virtual corrections

Real-virtual correction factor ("POWHEG in the exponent")

$$w_{2\mapsto3}^{\mathrm{NLO}} = w_{2\mapsto3}^{\mathrm{LO}} \left(1 + w_{2\mapsto3}^{\mathrm{V}}\right)$$

studied analytically in detail for $Z \rightarrow q\bar{q}$ in [Hartgring, Laenen, Skands 1303.4974]:

Now: generalisation & (semi-)automation in VINCIA in form of NLO MECs

Interleaved single and double branchings

A priori, direct $2 \mapsto 4$ and iterated $2 \mapsto 3$ branchings overlap in ordered region. In sector showers, iterated $2 \mapsto 3$ branchings are always strictly ordered.

Restriction on double-branching phase space enforced by additional veto:

$$\mathrm{d}\Phi_{+2}^{>} = \sum_{j} \theta \left(p_{\perp,+2}^2 - \hat{p}_{\perp,+1}^2 \right) \Theta_{ijk}^{\mathrm{sct}} \, \mathrm{d}\Phi_{+2}$$

Real and double-real corrections

Direct 2 \mapsto 4 shower component fills **unordered region** of phase space $p_{\perp,4}^2 > p_{\perp,3}^2$.

Sectorisation enforces strict cutoff at $p_{\perp,4}^2 = p_{\perp,3}^2$ in iterated 2 \mapsto 3 shower. No recoil effects!

Application: VINCIANNLO in $H ightarrow b ar{b}$

By construction, partial width is accurate to NNLO.

NNLO accuracy at Born level also implies NLO correction in first emission and LO correction in second emission.

Second-order antenna functions [Braun-White, Glover, CTP 2302.12787]

Ideally, want to implement second-order corrections in shower **beyond first (double-)emission** (e.g. for NNLL).

Conceptually, second-order antenna-shower framework fully developed in [Hartgring, Laenen, Skands 1303.4974] and [Li, Skands 1611.00013].

In practice, existing second-order antenna functions in general not suitable for shower algorithms:

- no well-defined radiators
- spurious limits

New algorithm allows to **build suitable** real-emission antena functions directly from list of **required limits** $\{L_1, L_2, \ldots\}$, carefully removing **overlap** between different limits.

Extension to **one-loop antennae** underway (requires manipulation of **explicit poles**).

Final Remarks: logarithmic accuracy

Conclusions

Current status

Full-fledged sector-antenna shower for ISR and FSR, including resonance-final shower, multipole QED shower, and interleaved EW shower.

Efficient sector-based LO merging strategies & POWHEG hooks.

Soon..

VINCIANNLO implementation of SM colour-singlet decays $(V/H \rightarrow q\bar{q}, H \rightarrow gg)$ Automation of iterated tree-level MECs. Using interfaces to MadGraph and COMIX. Final-final double branchings $(2 \mapsto 4)$

Next few years

Iterated NLO MECs for final-state radiators. Using interface to MCFM. Incoming partons (2 \rightarrow 4, NLO MECs, NNLO+PS, ...)

Stay tuned: pythia-news@cern.ch