Status and progress of VINCIA

Christian T Preuss (ETH Zürich)

PSR 2023
Milan Bicocca University
07/06/2023

ETHzürich

VINCIA overview

C.T. Preuss, P. Skands

Full-fledged antenna shower in PYTHIA 8.3 (as of October 2019)

- based on sector showers [Brooks, CTP, Skands 2003.00702] with dedicated merging framework [Brooks, CTP 2008.09468]
- generic NLO matching via PowhegHooks [Höche, Mrenna, Payne, CTP, Skands 2106.10987]
- FF, IF, II antenna kinematics [Fischer, Prestel, Ritzmann, Skands 1605.06142]
- dedicated resonance-final (RF) shower [Brooks, Skands 1907.08980]
- multipole QED shower [Skands, Verheyen 2002.04939]
- full-fledged interleaved EW shower [Brooks, Skands, Verheyen 2108.10786]
- helicity dependence in shower and MECs [Fischer, Lifson, Skands 1708.01736]
- exact treatment of mass corrections [Gehrmann-De Ridder, Ritzmann, Skands 1108.6172]
- dedicated default tuning (similar to PYTHIA's Monash tune)

New developments:

second-order shower evolution and fully-differential NNLO QCD matrix element corrections
[Campbell, Höche, Li, CTP, Skands 2108.07133]

Status

Sector showers [Brooks, CTP, Skands 2003.00702]

Idea: combine antenna shower with deterministic jet-clustering algorithm [Lopez-Villarejo, Skands 1109.3608]

- let shower only generate emissions that would be clustered by a $(3 \mapsto 2)$ jet algorithm (\sim ARCLUS [Lönnblad Z.Phys.C 58 (1993)])

\Rightarrow softest gluon always regarded as the emitted one
\Rightarrow only one (most singular) splitting kernel contributes per phase space point

Resonance-final antenna showers [Brooks, Skands 1907.08880]

Unique coherent "resonance-final" antenna pattern with global recoil.

VINCIA RF

tg RF antenna:
Phase space \& recoils set by:
$t-g=b+W$
Collective recoil

VINCIA gives narrower b-jets than default PYTHIA (survives MPI+hadronisation). Highly important for precision top-mass studies!

QED multipole showers [Skands, Verheyen 2002.04939]

No large- N_{C} limit in QED \Rightarrow need to account for full multipole structure.

Adapted from R. Verheyen.

In VINCIA taken into account by sectorisation of phase space:

$$
\left|M_{n+1}\right|^{2} \approx a^{\mathrm{QED}}\left(\{p\}, p_{j}\right) \sum_{\{i, k\}} \Theta\left(p_{\perp, i j k}^{2}\right)\left|M_{n}\right|^{2}
$$

Positive (blue) and negative (orange) contributions included without negative weights.

Interleaved EW showers [Brooks, Skands, Verheyen 2108.10786]

All SM $1 \mapsto 2$ splittings included (helicity dependent!), fully interleaved with resonance decays and resonance showers.

Sequential

-Complete evolution of the hard system
-Perform resonance shower

Interleaved

-Evolution up to offshellness scale of the resonance
-Perform resonance shower

- Insert showered decay products and continue evolution

Matching and Merging

Highly efficient matching and merging (also in complicated topologies) via dedicated PowhegHooks and merging framework.

Powheg NLO+PS matching in VBF

[Höche, Mrenna, Payne, CTP, Skands 2106.10987]

CKKW-L merging in Drell-Yan plus $9 j$

[Brooks, CTP 2008.09468]

Work in Progress

Idea: "Powheg at NNLO"

$$
\langle O\rangle_{\mathrm{NNLO}+\mathrm{PS}}^{\mathrm{VINCIA}}=\int \mathrm{d} \Phi_{2} \mathrm{~B}\left(\Phi_{2}\right) \underset{\text { local } K \text {-factor }}{k_{\mathrm{NNLO}}\left(\Phi_{2}\right)} \underbrace{\mathcal{S}_{2}\left(t_{0}, O\right)}_{\text {shower operator }}
$$

Need:
(1) Born-local NNLO K-factors: $k_{\text {NNLO }}\left(\Phi_{2}\right)$
(2) NLO MECs in the first $2 \mapsto 3$ shower branching: $w_{2 \mapsto 3}^{\mathrm{NLO}}\left(\Phi_{3}\right)$
(3) LO MECs for second (iterated) $2 \mapsto 3$ shower branching: $w_{3 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{4}\right)$
(4) Direct $2 \mapsto 4$ branchings for unordered sector with LO MECs: $w_{2 \rightarrow 4}^{\mathrm{LO}}\left(\Phi_{4}\right)$

Born-local K-factor

(1) weight each Born-level event by local K-factor

$$
\begin{aligned}
k_{\mathrm{NNLO}}\left(\Phi_{2}\right) & =1+\frac{\mathrm{V}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{S}}^{\mathrm{NLO}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{VV}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{T}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{S}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)} \\
& +\int \mathrm{d} \Phi_{+1}\left[\frac{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{S}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{RV}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{T}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}\right] \\
& +\int \mathrm{d} \Phi_{+2}\left[\frac{\mathrm{RR}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{S}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}\right]
\end{aligned}
$$

Fixed-Order Coefficients:

Subtraction Terms (not tied to shower formalism):

Note: requires "Born-local" NNLO subtraction terms. Currently only for simplest cases.

Second-order MECs

Key aspect

up to matched order, include process-specific NLO corrections into shower evolution:
(2) correct first branching to exclusive ($<t^{\prime}$) NLO rate:

$$
\Delta_{2 \mapsto 3}^{\mathrm{NLO}}\left(t_{0}, t^{\prime}\right)=\exp \left\{-\int_{t^{\prime}}^{t_{0}} \mathrm{~d} \Phi_{+1} \mathrm{~A}_{2 \mapsto 3}\left(\Phi_{+1}\right) w_{2 \mapsto 3}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}\right)\right\}
$$

(3) correct second branching to LO ME:

$$
\Delta_{3 \mapsto 4}^{\mathrm{LO}}\left(t^{\prime}, t\right)=\exp \left\{-\int_{t}^{t^{\prime}} \mathrm{d} \Phi_{+1}^{\prime} \mathrm{A}_{3 \mapsto 4}\left(\Phi_{+1}^{\prime}\right) w_{3 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{3}, \Phi_{+1}^{\prime}\right)\right\}
$$

(4) add direct $2 \mapsto 4$ branching and correct it to LO ME:

$$
\Delta_{2 \mapsto 4}^{\mathrm{LO}}\left(t_{0}, t\right)=\exp \left\{-\int_{t}^{t_{0}} \mathrm{~d} \Phi_{+2}^{>} \mathrm{A}_{2 \mapsto 4}\left(\Phi_{+2}\right) w_{2 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{2}, \Phi_{+2}\right)\right\}
$$

\Rightarrow entirely based on MECs and sectorisation
\Rightarrow by construction, expansion of extended shower matches NNLO singularity structure But shower kernels do not define NNLO subtraction terms ${ }^{1}$ (!)

[^0]
Real-virtual corrections

Real-virtual correction factor ("POWHEG in the exponent")

$$
w_{2 \mapsto 3}^{\mathrm{NLO}}=w_{2 \mapsto 3}^{\mathrm{LO}}\left(1+w_{2 \mapsto 3}^{\mathrm{V}}\right)
$$

studied analytically in detail for $Z \rightarrow q \bar{q}$ in [Hartgring, Laenen, Skands 1303.4974]:

Now: generalisation \& (semi-)automation in VINCIA in form of NLO MECs

Interleaved single and double branchings

A priori, direct $2 \mapsto 4$ and iterated $2 \mapsto 3$ branchings overlap in ordered region. In sector showers, iterated $2 \mapsto 3$ branchings are always strictly ordered.

Divide double-emission phase space into strongly-ordered and unordered region:
[Li, Skands 1611.00013]

$$
\mathrm{d} \Phi_{+2}=\underbrace{\mathrm{d} \Phi_{+2}^{>}}_{\text {u.o. }}+\underbrace{\mathrm{d} \Phi_{+2}^{<}}_{\text {s.o. }}
$$

$\mathrm{d} \Phi_{+2}^{<}$: single-unresolved limits \Rightarrow iterated $2 \mapsto 3$ $\mathrm{d} \Phi_{+2}^{>}$: double-unresolved limits \Rightarrow direct $2 \mapsto 4$

Restriction on double-branching phase space enforced by additional veto:

$$
\mathrm{d} \Phi_{+2}^{>}=\sum_{j} \theta\left(p_{\perp,+2}^{2}-\hat{p}_{\perp,+1}^{2}\right) \Theta_{i j k}^{\mathrm{sct}} \mathrm{~d} \Phi_{+2}
$$

Real and double-real corrections

Direct $2 \mapsto 4$ shower component fills unordered region of phase space $p_{\perp, 4}^{2}>p_{\perp, 3}^{2}$.

Sectorisation enforces strict cutoff at $p_{\perp, 4}^{2}=p_{\perp, 3}^{2}$ in iterated $2 \mapsto 3$ shower. No recoil effects!

Application: VINCIANNLO in $H \rightarrow b \bar{b}$

By construction, partial width is accurate to NNLO.
NNLO accuracy at Born level also implies NLO correction in first emission and LO correction in second emission.

Second-order antenna functions [Braun-White, Glover, CTP 2302.12787]

Ideally, want to implement second-order corrections in shower beyond first (double-)emission (e.g. for NNLL).

Conceptually, second-order antenna-shower framework fully developed in [Hartgring, Laenen, Skands 1303.4974] and [Li, Skands 1611.00013].
In practice, existing second-order antenna functions in general not suitable for shower algorithms:

- no well-defined radiators
- spurious limits

New algorithm allows to build suitable real-emission antena functions directly from list of required limits $\left\{L_{1}, L_{2}, \ldots\right\}$, carefully removing overlap between different limits.

Extension to one-loop antennae underway (requires manipulation of explicit poles).

Final Remarks: logarithmic accuracy

Conclusions

Current status

Full-fledged sector-antenna shower for ISR and FSR, including resonance-final shower, multipole QED shower, and interleaved EW shower.
Efficient sector-based LO merging strategies \& POWHEG hooks.

Soon..

VINCIANNLO implementation of SM colour-singlet decays ($V / H \rightarrow q \bar{q}, H \rightarrow g g$)
Automation of iterated tree-level MECs. Using interfaces to MadGraph and COMIX. Final-final double branchings $(2 \mapsto 4)$

Next few years
Iterated NLO MECs for final-state radiators. Using interface to MCFM.
Incoming partons $(2 \rightarrow 4$, NLO MECs, NNLO + PS, ...)

Stay tuned: pythia-news@cern.ch

[^0]: ${ }^{1}$ This would be required in an "MC@NNLO" scheme, but difficult to realise in antenna showers.

