Soft QCD in MC Event Generators

(A selection of topics focusing on pp, with emphasis on Pythia)

1. Hadronization Uncertainties for Precision Studies
2. Multiple Parton Interactions \& PDFs
3. Colour Reconnections \& Heavy-Flavour Baryons
4. Strangeness, Ropes, and (Advanced) Close-Packing
5. Hadronization Uncertainties for Precision Studies

Hadronization

Map: Partons (defined at a low factorisation scale, after showering) \rightarrow Hadrons

$\tilde{E}^{\circ} \uparrow$ Fully Inclusive: Power Corrections (to IRC Safe Observables)
- Semi-Inclusive: Fragmentation Functions: One hadron species at a time
- Fully Exclusive: Dynamical Models in MC Event Generators

Important point: even for nominally IRC safe observables, peaks of distributions often involve low scales where HAD sensitivity is highest \Longrightarrow NP peak shifts.

Uncertainties

High-Precision Measurements \leftrightarrow Rigorous \& Exhaustive Uncertainties

- Expensive to construct \& perform all salient parm variations individually \rightarrow GEANT \ldots

Not just question of CPU; also environmental impact, cost, inefficient duplication of man-hours \& higher
risk of mistakes/inconsistencies (by non-authors) + risk that lessons learned aren't perpetuated

- Sophisticated: reweighting methods developed for Parton Showers

Based on reinterpreting the veto algorithm's accept and reject probabilities
[VINCIA 1102.2126; SHERPA 1605.04692; HERWIG 1605.08256; PYTHIA 1605.08352]
(Note: reweighting of course also done for PDFs and in Fixed-Order Calculations.)
Hadronization Uncertainties: More parameters and lots of subtleties
Interplay between perturbative (eg $\mathrm{N}_{\mathrm{jets}}$) and nonperturbative (eg $\mathrm{N}_{\text {hadrons }}$) observables
Parameter correlations; for a helping hand, see AutoTunes [Bellm \& Gellersen, 1908.10811]
Risk of purely data-driven methods (eg eigentunes) to overfit precise data points at expense of tails / asymptotics / less statistically dominant (but perhaps theoretically important) data

Tensions between different measurements

- Recent elaborate studies with PYTHIA 8, see eg: [Jueid et al., 1812.07424; 2202.11546; 2303.11363]

Another aspect of the problem

Pythia, Herwig, Sherpa all tuned to ~ same data > risk central tunes being "too " similar?
No guarantee that they span the experimental uncertainties (similar issue as of old with PDFs)
Borrowed slide from A Ghosh \leftrightarrow Machine Learning of/for Theory Models
EPJC:s10052.022.10012.w: Aishik Ghosh, Benjamin Nachman

Default

What you get with decorrelation

Personal Comment: I would kind of hope next year's generator would be closer to Nature, not further from it...

Model will learn to fool you !
ML methods don't often generalise the way you would hope

Example: The Strong Force Meets the Dark Sector

QCD uncertainties on Dark-Matter Annihilation Spectra

- Compare different generators? Problem: all tuned to ~ same data
- Instead, did parametric refittings of LEP data within PYTHIA's modelling

$\langle z\rangle$, bLund, $\sigma_{p_{T}}$: also useful for collider studies of hadronization uncertainties
+ universality tests: identifying and addressing tensions, overfitting \& universality/consistency

Other possible universality tests (eg in pp):

Different CM energies ... Different fiducial windows ... Different hard processes ...
Quarks vs Gluons ...

Simple sanity limit / overfit protection / tension resolution: add blanket 5\% baseline TH uncertainty (+ exclude superseded measurements)

Parameter	without 5%	with 5%
StringPT: Sigma	$0.3151_{-0.00010}^{+0.0010}$	$0.3227_{-0.0028}^{+0.0028}$
StringZ: aLund	$1.028_{-0.031}^{+0.031}$	$0.976_{-0.052}^{+0.054}$
StringZ: avgZLund	$0.5534_{-0.0010}^{+0.0010}$	$0.5496_{-0.0026}^{+0.0026}$
$\chi^{2} /$ ndf	$5169 / 963$	$778 / 963$

Example: The Strong Force Meets the Dark Sector

Weighted Average: good consistency across observables

$$
\text { 10-point variations }>\text { Fairly }
$$

convincing uncertainty bands?

Same done for antiprotons, positrons, antineutrinos Main Contact: adil.jueid@gmail.com

- Tables with uncertainties available on request. Also the spanning tune parameters of course.

New: Automated Hadronization Uncertainties

Problem:

- Given a colour-singlet system that (randomly) broke up into a specific set of hadrons:

- What is the relative probability that same system would have resulted, if the fragmentation parameters had been somewhat different?
- Would this particular final state become more likely $\left(w^{\prime}>1\right)$? Or less likely $\left(w^{\prime}<1\right)$
- Crucially: maintaining unitarity \Longrightarrow inclusive cross section remains unchanged!

Aug 25: Bierlich, Ilten, Menzo, Mrenna, Szewc, Wilkinson, Youssef, Zupan [Reweighting MC Predictions \& Automated Fragmentation Variations in Pythia 8, 2308.13459]
Method is general; demonstrated on variations of the 7 main parameters governing longitudinal and transverse fragmentation functions in PYTHIA 8
https://gitlab.com/uchep/mlhad-weights-validation

Examples

Transverse FF (Gaussian)

$$
\frac{1}{2 \pi \sigma_{p_{T}}^{2}} \exp \left(-\frac{\left(\Delta p_{x}\right)^{2}+\left(\Delta p_{y}\right)^{2}}{2 \sigma_{p_{T}}^{2}}\right)
$$

For each p_{T} (Box-Muller transform):

$$
w^{\prime}=\frac{\sigma^{2}}{\sigma^{\prime 2}} \exp \left(-\kappa\left(\frac{\sigma^{2}}{\sigma^{\prime 2}}-1\right)\right)
$$

$\kappa=\left(n_{1}^{2}+n_{2}^{2}\right) / 2$ and n_{i} are normally distributed random variates

Longitudinal FF (Lund Symmetric FF)

$$
\underset{\substack{\text { cone hadron } \\ \text { momentum fraction }}}{\mathrm{f}(z) \text { scaled light- }} \propto \frac{1}{z^{1+r_{Q} b m_{Q}^{2}}}\left(1-z, \exp \left(-\frac{b m_{\perp}^{2}}{z}\right)\right.
$$

Accept-Reject Algorithm

$$
\begin{aligned}
& w^{\prime}=w \prod_{i \in \text { accepted }} R_{i, \text { accept }}^{\prime}(z) \prod_{j \in \text { rejected }} R_{j, \text { reject }}^{\prime}(z), \\
& \text { with } R_{\text {accept }}^{\prime}(z)=\frac{P_{\text {accept }}^{\prime}(z)}{P_{\text {accept }}(z)} ; \quad R_{\text {reject }}^{\prime}(z)=\frac{P_{\text {reject }}^{\prime}(z)}{P_{\text {reject }}(z)}=\frac{1-P_{\text {accept }}^{\prime}(z)}{1-P_{\text {accept }}(z)}
\end{aligned}
$$

2. Multiple Parton Interactions \& PDFs

2) Multiple Parton Interactions — and PDFs

QCD dijet cross section (cumulative)

Lesson from bremsstrahlung in pQCD:
Divergences \rightarrow fixed-order breaks down
Perturbation theory still ok, with resummation (unitarity)
Unitarity: Divergent cross section for one emission reinterpreted as finite cross section for a divergent number of emissions
\rightarrow Resum dijets? Yes \rightarrow MPI!
Interpret to mean that every pp collision has more
than one $2 \rightarrow 2$ QCD scattering with $\hat{p}_{\perp} \lesssim 4 \mathrm{GeV}$

MPI probe low $\mathrm{P}_{\mathbf{T}}$ scales down to $Q \sim 1 \mathrm{GeV}$ And very low x scales, down to $x \sim 1 / s_{\text {hh }}$

Earliest MC model ("old" PYTHIA 6 model) Sjöstrand, van Zijl PRD36 (1987) 2019

The issue with NLO gluons at low x

Low-x gluon

Key constraint: DIS F_{2}
Low $x: \mathrm{d} F_{2} / \mathrm{d} \ln \left(Q^{2}\right)$ driven by $g \rightarrow q \bar{q}$
LO $\mathrm{P}_{\mathrm{q} / \mathrm{g}}(\mathrm{z}) \sim$ flat $\Longrightarrow x$ of measured quark closely correlated with x of mother gluon.

NLO $P_{\mathrm{g} / \mathrm{g}}(\mathrm{z}) \propto 1 / \mathrm{z}$ for small $\mathrm{z} \longrightarrow$ Integral over z produces an approximate $\ln (1 / x)$ factor.

- Effectively, the NLO gluon is probed more "non-locally" in x.
$\mathrm{d} \ln F_{2} / \mathrm{d} Q^{2}$ at small x becomes too big unless positive contribution from medium-to-high-x gluons (derived from $\mathrm{d} \ln F_{2} / \mathrm{d} Q^{2}$ in that region, and from other measurements) is combined with a negative contribution from low-x gluons.

Mathematically (toy NLO Calculation with just one x):

$$
\frac{\mathrm{ME}_{\mathrm{NLO}}}{\mathrm{ME}_{\mathrm{LO}}}=1+\alpha_{\mathrm{s}}\left(A_{1} \ln (1 / x)+A_{0}\right)
$$

$\ln (1 / x)$ largely compensated in def of NLO PDF:

$$
\frac{\mathrm{PDF}_{\mathrm{NLO}}}{\mathrm{PDF}_{\mathrm{LO}}}=1+\alpha_{\mathrm{S}}\left(B_{1} \ln (1 / x)+B_{0}\right)
$$

>Product well-behaved at NLO if we choose $B_{1} \approx A_{1}$ Cross term at $\mathcal{O}\left(\alpha_{s}^{2}\right)$ is beyond NLO accuracy

For large x and small $\alpha_{s}\left(Q^{2}\right)$, e.g. $\alpha_{s} A_{1} \ln (1 / x) \sim 0.2$:

$$
\frac{\mathrm{ME}_{\mathrm{NLO}} \mathrm{PDF}_{\mathrm{NLO}}}{\mathrm{ME}_{\mathrm{LO}} \mathrm{PDF}_{\mathrm{LO}}}=(1+0.2)(1-0.2)=0.96 \quad \text { log terms cancel }
$$

But if x and Q^{2} are small, say $\alpha_{s} A_{1} \ln (1 / x) \sim 2$:

$$
\frac{\mathrm{ME}_{\mathrm{NLO}} \mathrm{PDF}_{\mathrm{NLO}}}{\mathrm{ME}_{\mathrm{LO}} \mathrm{PDF}_{\mathrm{LO}}}=(1+2)(1-2)=-3 \quad \begin{aligned}
& \text { The PDF becomes negative }
\end{aligned}
$$

Not so important for high- p_{T} processes because 1) DGLAP evolution fills up low-x region, 2) kinematics restricted to higher x , 3) smaller α_{s}

Some Desirable Properties for PDFs for Event Generators

General-Purpose MC Generators are used to address very diverse physics phenomena and connect (very) high and (very) low scales $>$ Big dynamical range!

1. Stable (\& positive) evolution to rather low Q^{2} scales, e.g. $Q_{0} \lesssim 1 \mathrm{GeV}$ ISR shower evolution and MPI go all the way down to the MC IR cutoffs $\sim 1 \mathrm{GeV}$
2. Extrapolates sensibly to very low $x \sim 10^{-8}$ (at LHC), especially at low $Q \sim Q_{0}$.
"Sensible" ~ positive and smooth, without (spurious) structure
Constraint for perturbative MPI: $\hat{s} \geq(1 \mathrm{GeV})^{2} \Longrightarrow x_{\text {LHC }} \gtrsim 10^{-8}\left(x_{\mathrm{FCC}} \geq 10^{-10}\right)$
Main point: MPI can probe a large range of x, beyond the usual $\sim 10^{-4}$
(Extreme limits are mainly relevant for ultra-forward / beam-remnant fragmentation)
3. Photons included as partons

Bread and butter for part of the user community
4. LO or equivalent in some form (possibly with $\alpha_{s}^{\text {eff }}$, relaxed momentum sum rule, ...) Since MPI Matrix Elements are LO; ISR shower kernels also LO (so far)
5. Happy to have NnLO ones in a similar family.
E.g., for use with higher-order MEs for the hard process.

Useful (but possible?) for these to satisfy the other properties too?

3. Colour Reconnections \& Heavy-Flavour Baryons

3) Colour (Re)connections

Hadronization

- Map: Partons (defined at a low factorisation scale, after showering) \rightarrow Hadrons
- Between which partons do the confining potentials form?

Starting point for MC generators = Leading Colour limit $N_{C} \rightarrow \infty$

\Longrightarrow Probability for any given colour charge to accidentally be same as any other $\rightarrow 0$.
\Longrightarrow Each colour appears only once \& is matched by a unique anticolour.

In $e^{+} e^{-}$collisions (LEP):

- Corrections to the Leading-Colour picture suppressed by $1 / N_{C}^{2} \sim 10 \%$
- Also: coherence \Longrightarrow not much overlap in phase space (except in WW $\rightarrow 4 \mathrm{q}$)

Colour Connections: Between which partons do confining potentials form?

High-energy pp collisions with QCD bremsstrahlung at multi-parton interactions

- Final states with very many coloured partons i
- With significant overlaps in phase space
- Who gets confined with whom?
- If each has a colour ambiguity ~ 10%, CR becomes more likely than not

$$
\operatorname{Prob}(\mathrm{noCR}) \propto\left(1-\frac{1}{N_{C}^{2}}\right)_{:=0}^{n_{\mathrm{MPI}}}
$$

Note: in this context, the word "colour reconnections" simply refers to an ambiguity beyond Leading N_{C}, which is known to exist.

But the term "CR" can also be used more broadly to incorporate further physics concepts.

Detailed physics not yet fully known.

How many MPI are we talking about?

How many parton-parton systems are there in pp collisions? DPS? 3PS? ...?
Multi-Parton Interactions (MPI)

\Longrightarrow can have very many parton systems within a single pp collision (esp. in highmultiplicity events)

All within ~ transverse size of a proton (= right on top of each other)

Unique feature of SU(3): Y-Shaped 3-String "Junctions" > Baryons

"Colour reconnection" modelling based on stochastic sampling of SU(3) group

 probabilities: allows for random (re)connectionsFor example:

Λ / K_{S}^{0} versus rapidity at $\sqrt{s}=7 \mathrm{TeV}$
Christiansen \& PS 2015
24
2
\vdots
\vdots
\vdots
\vdots
2

ALICE 2021: also in charm

4. Strangeness, Ropes, and (Advanced) Close-Packing

4) Strangeness, Ropes, and Close-Packing

Clear observations of strangeness enhancements in high-multiplicity pp collisions (relative to LEP and low-multiplicity Pp) [e.g., ALICE Nature Phys. 13, 535 (2017)]

- Much activity to understand dynamics of effective breakdown of strangeness universality

In string context, MPI + Colour Ropes [e.g., Bierlich et al. 1412.6259] have been proposed:

- Casimir scaling of effective string tension \Longrightarrow less strangeness suppression in string breaks

Simplified alternative: Close-Packing [Fischer, Sjöstrand 1610.09818] string tension scales with effective background $\propto n_{\text {MPI }}$ (global) or $n_{\text {strings }}$ (local)

- Local version updated with Monash student J. Altmann to account for directional colour flows (p and q), junction topologies, and effective diquark suppression in octet-type fields ("Altmann mechanism"):
"Popcorn picture" in which diquark formation is viewed as a fluctuation of first one colour followed by another of a different colour

[^0]
New: Strange Junctions

What do we really know about the field strength near a OCD junction?

- Probably related to baryon spectroscopy / lattice, but unaware of any specific answers

Effective energy density per unit length could be different from vacuum case near a junction?
Enhanced string tension on the string breaks closest to junction?
\rightarrow Model of "strange junctions" (with Monash PhD student Javira Altmann)
Mechanism for strangeness enhancement specifically for junction baryons

OCD CR + Advanced Close-Packing: First Results

—— Monash (no OCD CR, no close-packing) ~ LEP
—— OCD CR (mode 2); no close-packing
—— OCD CR + ACP: p / π tune
— OCD CR + ACP: Λ / K tune

	p / π	Λ / K	
StringPT:tension	$=0.05$	0.11	
StringPT:qqFac	$=0.7$	0.23	Close-packing
StringFlav:strangeJuncFactor	$=0.65$	0.55	Altmann Mechanism
Junction Strangenesss			

> Being finalised now, with publication on the way.
J. Altmann, PS
5. If there is time ...

Cosmic-Ray Air Showers

Single incident particle $\boldsymbol{\Rightarrow}$ billions of final-state particles (forget about GEANT). Recently started a collaboration with CORSIKA 8 fast/optimised air-shower tracker

New: PythiaCR [Based on Sjöstrand + Utheim, 2005.05658 \& 2108.03481]

- Provide hadron-air cross sections \oplus perform collisions \oplus simulate hadron decays (Air $\sim{ }^{14} \mathrm{~N}+{ }^{16} \mathrm{O}$; currently also ${ }^{40} \mathrm{Ar}$, ${ }^{208 \mathrm{~Pb}}$; few hours of manual labour to add more)
- Cosmic-ray "beams" are heterogenous and not mono-energetic:

Achieved by initialising multiple beams in energy grids + rapid beam switching

- CR (re-)interactions "fixed-target"; can probe low CM energies (by HEP standards)

Standard (collider) Pythia only applies for $\sqrt{s}>10 \mathrm{GeV}$
New extensive low-energy (re)interaction models
= Arbitrary hadron-hadron collisions at low E, and arbitrary hadron-p/n at any energy) Extend to hadron-nucleus using nuclear-geometry part of ANGANTYR

So far limited comparisons with data - interested in feedback

- A positive technical note: native C++ simplifies CORSIKA 8 - PYTHIA 8 interfacing

See also M. Reininghaus et al. Pythia 8 as hadronic interaction model in air shower simulations, 2303.02792

Last: mcplots.cern.ch — New and Updated coming soon!

mcplots.cern.ch started in 2010, as browsable repository of MC validations (via Rivet)

- Running continuously on ~ 1000 cores donated by BOINC LHC@home volunteers (+ Grid backfill)

园 MCPLOTS

\rightarrow Home
\rightarrow Plots Repository
\rightarrow Plots Repository
\rightarrow Generator Validation

\rightarrow About

\rightarrow About
\rightarrow Update History
\rightarrow LHC@home / Test4Theory [T
\rightarrow Reference Article [T

\rightarrow Jet Shapes
Z (Drell-Yan)
\rightarrow Jet Multiplicities
$\rightarrow 1 / \sigma d \sigma(Z) / d \varphi_{\eta}^{*}$
$\rightarrow \mathrm{d} \mathrm{\sigma}(\mathrm{Z}) / \mathrm{dp}$ TZ
\rightarrow 1/бdб(Z)/dpTZ

w

\rightarrow Charge asymmetry vs n
\rightarrow Charge asymmetry vs η
\rightarrow Charge asymmetry vs N_{j} \rightarrow Charge asymmetry vs N_{je} $\rightarrow \mathrm{d} \mathrm{\sigma}(\mathrm{jet}) / \mathrm{dp} T$
\rightarrow Jet Multiplicities

Soft QCD (inelastic) : <pT> vs Nch

Generator Group: General-Purpose MCs Soft-Inclusive MCs Matched/Merged MCs Herwig Pythia 8 Pythia 6 Sherpa Custom Subgroup: Main Herwig vs Pythia Pythia 6 vs 8 All C++ Generators

pp @ 7000 GeV

The interface was technically advanced but visually perhaps a bit dated, and somewhat cluttered "Old School"

mcplots.cern.ch — New and Updated coming soon!

Modern clean interface developed through 2023 (+ many improvements under the hood)

- Mainly driven by Natalia Korneeva, now an adjoint at Monash U (with support from LPCC)

MCPLOTS

First online repository of Monte Carlo plots compared to experimental data
More than 100 Rivet analyses (simple to add new ones)

114
generators

782116
plots ots

Tools to compare different generators / tunes, or different versions of same generator

Extra Slides

An Achilles' Heel? Protons!

So far, physics models have focused heavily on strangeness

- The original ALICE paper from 2017 also included the proton/pion ratio
- In many model setups, enhancement of strangeness is accompanied by more heavier states in general \Longrightarrow non-strange baryons also enhanced
- Also, QCD CR model acts in colour space; junction structures are flavour-blind

Data shows that the p / π ratio at LHC is a bit smaller than at LEP!

$$
\text { With ~ no evolution with } \mathrm{N}_{\mathrm{ch}}
$$

Protons are the most abundant baryons! EPOS captures this behaviour (what about @ LEP?)
From a CR perspective, baryon enhancement appears very correlated with strangeness ...

[^0]: $R \bar{R}$ (or $\bar{R} R$) fluctuation increases tension from C_{8} to C_{6}

