Pythia News \& Modelling Uncertainties

Peter Skands — U of Oxford \& Monash U.

the university of

 WARWICK

Part 1: Perturbative Physics Modelling

1. Perturbative Uncertainties
2. Perturbative Tuning (?)
3. Beating the Factorial: Sectorized CKKW-L Merging in VINCIA

Part 2: Nonperturbative Physics Modelling

4. Automated Hadronization Uncertainties (coming in PYTHIA 8.311)
5. One-Generator Uncertainties: Simple Example (from Dark-Matter Studies)
6. Baryons and Strangeness. Particle Composition \longleftrightarrow JES
7. Perturbative Uncertainties in PYTHIA

Perturbative Uncertainties

First guess: renormalisation-scale variations,
$\mu_{R}^{2} \rightarrow k_{\mu} \mu_{R}^{2}$, with constant $k_{\mu} \in[0.5,2]$ or $[0.25,4], \ldots$

+ e.g., do for ISR and FSR separately $\rightarrow 7$-point variations $\longrightarrow \stackrel{\approx}{\approx}$
Induces "nuisance" terms beyond calculated orders
Running of $\alpha_{s}\left(k \mu^{2}\right)=\alpha_{s}\left(\mu^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(\mu^{2}\right) \ln (k)} \quad$ with $b_{0}=\frac{11 N_{C}-4 T_{R} n_{f}}{12 \pi} \sim 0.6 \quad \mu_{R}^{\mathrm{FSR}}$
\Longrightarrow ME proportional to $\alpha_{s}^{n}\left(\mu^{2}\right)(1 \pm \underbrace{b_{0} \alpha_{s}\left(\mu^{2}\right) \ln k^{n}}_{\text {variation }}+\ldots)$
I think many people suspect this is unsatisfactory and unreliable Problem: little guidance on what else to do ...

What are the issues?

Issue \#1: Multiscale Problems (e.g., a couple of bosons + a couple of jets)
Not well captured by any variation k_{μ} around any single scale More of an issue for hard-ME calculations than for showers (which are intrinsically multiscale)
Best single-scale approximation = geometric mean of all relevant QCD scales
My recommendation: vary which scales enter geometric mean
Issue \#2: Terms that are not proportional to the lower orders
Renormalization-scale variations always proportional to what you already:

$$
\mu_{R} \text { variations } \Longrightarrow \mathrm{d} \sigma \rightarrow\left(1 \pm \Delta \alpha_{s}\right) \mathrm{d} \sigma
$$

No new kinematic dependence
But full higher-order matrix elements will also contain genuinely new terms at each order, not proportional to previous orders:

$$
\text { More general } \Longrightarrow \mathrm{d} \sigma \rightarrow \mathrm{~d} \sigma \pm \Delta \mathrm{d} \sigma
$$

Parton Showers: Theory

Most bremsstrahlung is

driven by divergent propagators \rightarrow simple structure

Mathematically, gauge amplitudes

 factorize in singular limits

$$
\begin{gathered}
\underset{\rightarrow \text { collinear: }}{\text { Partons ab }}\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a| | b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2} \\
P(z)=\text { DGLAP splitting kernels", with } z=E_{a} /\left(E_{a}+E_{b}\right)
\end{gathered}
$$

$$
\underset{\rightarrow \text { soft: }}{\text { Gluon } \mathrm{j}}\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

$$
\text { Coherence } \rightarrow \text { Parton j really emitted by (} \mathrm{i}, \mathrm{k} \text {) "dipole" or "antenna" (eikonal factors) }
$$

These are the building blocks of parton showers (DGLAP, dipole, antenna, ...) (+ running coupling, unitarity, and explicit energy-momentum conservation.)

VINCIA \& PYTHIA 8: Non-Singular Variations

OK, so we know the (leading) pole structures of QCD amplitudes; parton-shower approximations are anchored there:

$$
\text { Formally: }\left|M_{n+1}\right|^{2} \sim \sum_{\text {radiators }} a_{\text {sing }}\left|M_{n}\right|^{2} \quad+\text { iterations/nestings } \rightarrow\left|M_{n+m}\right|^{2}
$$

$a_{\text {sing }}=1 / Q^{2}$ poles from singular propagators, with spin-dependent numerators
Renormalization-scale variations only produce terms $a_{\text {sing }} \rightarrow\left(1+\Delta \alpha_{s}\right) a_{\text {sing }}$
But genuine matrix elements also have "non-singular terms"
Our solution: Non-singular variations

$$
a_{\text {sing }} \rightarrow a_{\text {sing }}+\Delta a_{\text {non-sing }}
$$

PYTHIA (2016): [Mrenna, PS PRD94 (2016) 7]

Can also indicate whether higher matching/merging is needed or not

Non-Singular Variations: Example

Example from Mrenna \& PS, "Automated Parton-Shower Variations in Pythia 8", 1605.08352
Can vary renormalisation-scale and non-singular terms independently

Note: ME corrections were switched off for illustration here. Would reduce red band, but not blue.

Non-Singular Variations: Effect of Matching to Matrix Elements

Example from Mrenna \& PS, "Automated Parton-Shower Variations in Pythia 8", 1605.08352
Can vary renormalisation-scale and non-singular terms independently

3. Perturbative Tuning (?)

What are we tuning? Components of a Modern Monte Carlo Event Generator:

Parton Level

Hard Interaction- Resonance DecaysMECs, Matching \& MergingFSRISR*QEDWeak ShowersHard OniumMultiparton InteractionsBeam Remnants*
(*: incoming lines are crossed)

Figure from arXiv:2203.11601

Hadron Level

Beam Remnants* \mathbb{D} Strings\mathbb{D} Clusters
Colour Reconnections

- String Interactions

Bose-Einstein \& Fermi-Dirac
\square Primary Hadrons

- Secondary Hadrons
- Hadronic Reinteractions

QED in Hadron Decays
(*: incoming lines are crossed)

Tuning at Parton Level (?)

The Elephant in the Auditorium:
Purist: you should not "tune" perturbation theory!
Uncalculated orders / coefficients should be set to zero.
Most obvious stance for a theorist to take.
Goal: a theory calculation that delivers a clean simple-to-understand prediction, at a stated accuracy.
It may agree or disagree with data. That's ok, consistent with the stated accuracy.
It may disagree a lot with data. Not the theorist's problem.
(ATLAS and CMS may end up with a problem.)

But ... Parton Showers always generate subleading structures ...

Hard to control and generally not possible to set cleanly to zero.

Pythia Philosophy (1)

Vice to Virtue: nothing special about zero as guess for higher orders.
Goal: deliver a description that faithfully represents as much data as possible.
Challenge: avoid doing violence to the underlying physics model (\rightarrow GIGO).

1) Allow explicit/controlled coefficients to deviate from exact values Theoretically consistent if deviation \lesssim uncalculated corrections.

PYTHIA example: use effective values for $\alpha_{s}\left(M_{Z}\right)$, consistent with other LO determinations of it.
E.g., : LO PDFs $\rightarrow \alpha_{s}\left(M_{Z}\right) \sim 0.14$; LO event shapes at LEP also give $\alpha_{s}\left(M_{Z}\right) \sim 0.14$.

Slightly extreme: our 1-loop α_{s} "magic trick" for NLO-level agreement at LEP Caveat: no guarantee of universality!

Pythia Philosophy (2)

2) Control for non-universalities

Consider several complementary observables, processes, and contexts
Possibly weighted by how much you care about each
E.g., for the effective FSR α_{s} value in Pythia

At LEP, we have 3 -jet LO MECs and use 3 - and 4 -jet event shapes + ditto jet rates as main constraints (universality across jet multiplicities)
And then we cross check with jet shape profiles \& jet substructure at the LHC.
Always a risk that this can fail. E.g., tensions between different processes at LHC (eg top); experiments retune α_{s} and associated worries.
One thorny example: b-quark fragmentation in the top decay jet.
Hard to be consistent in context of matching and merging \Longrightarrow needs attention \& work!

Matrix-Element Merging — The Complexity Bottleneck

For CKKW-L style merging: (ncl umeps, NL3, unloops,...)
Need to take all contributing shower histories into account.
In conventional parton showers (Pythia, Herwig, Sherpa, ...)
Each phase-space point receives contributions from many possible branching "histories" (aka "clusterings")
\# of histories grows ~ \# of Feynman Diagrams, faster than factorial
Number of Histories for n Branchings

Staring foom a single qq̄ pair	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$
CS Dipole	2	8	48	384	3840	46080	645120

Bottleneck for merging at high multiplicities (+ high code complexity)

Sector Showers (without maths)

VINCIA's shower is unique in being a "Sector Shower"

Partition N-gluon Phase Space into N "sectors" (using step functions).
Each sector corresponds to one specific gluon being the "softest" in the event - the one you would cluster if you were running a jet algorithm (ARCLUS)

Inside each sector, only a single kernel is allowed to contribute (the most singular one)!
Sector Kernel $=$ the eikonal for the soft gluon and its collinear DGLAP limits for $z>0.5$.
\rightarrow Unique properties: shower operator becomes bijective and is a true Markov chain

The crucial aspect:

Only a single history contributes to each phase-space point !
\Longrightarrow Factorial growth of number of histories reduced to constant!
(And the number of sectors only grows linearly with the number of gluons)

($g \rightarrow q \bar{q} \rightarrow$ leftover factorial in number of same-flavour quarks; not a big problem)

Sectorized CKKW-L Merging publicly available from Pythia 8.306

Brooks \& Preuss, "Efficient multi-jet merging with the VINCIA sector shower", arXiv:2008.09468

Extensions now pursued:

Sectorized matching at NNLO (proof of concepts in arXiv:2108.07133 \& arXiv:2310.18671) Sectorized iterated tree-level ME corrections (demonstrated in PS \& Villarejo arXiv:1109.3608) Sectorized multi-leg merging at NLO (active research grants, with C. Preuss, Wuppertal)
4. Automated Hadronization Uncertainties

Confinement in PYTHIA: The Lund String Model

Simplified (leading- N_{C} "colour flow" \rightarrow determine between which partons to set up confining potentials

Map from Partons to Strings:

Quarks \Rightarrow string endpoints; gluons \Rightarrow transverse "kinks"
System then evolves as a string world sheet

+ String breaks via spontaneous $q \bar{q}$ pair creation ("Schwinger mechanism") \rightarrow hadrons

The String Fragmentation Function

Consider a string break \approx, producing a meson M , and a leftover string piece

The meson M takes a fraction z of the quark momentum,
Probability distribution in $z \in[0,1]$ parametrised by Fragmentation Function, $f\left(z, Q_{\mathrm{HAD}}^{2}\right)$

Automated Hadronization Uncertainties

Problem:

Given a colour-singlet system that (randomly) broke up into a specific set of hadrons:

What is the relative probability that same system would have resulted, if the fragmentation parameters had been different?

Would this particular final state become more likely ($w^{\prime}>1$)? Or less likely ($w^{\prime}<1$)
Crucially: maintaining unitarity \Longrightarrow inclusive cross section remains unchanged!
August 2023: Bierlich, Ilten, Menzo, Mrenna, Szewc, Wilkinson, Youssef, Zupan
[Reweighting MC Predictions \& Automated Fragmentation Variations in Pythia 8, 2308.13459]
Method is general; demonstrated on variations of the 7 main parameters governing longitudinal and transverse fragmentation functions in PYtHIA 8 https://gitlab.com/uchep/mlhad-weights-validation

Demonstration

Example: Longitudinal Fragmentation Function (Lund Symmetric FF)

$f(z) \sim$ scaled light-cone hadron momentum fraction

$$
\propto \frac{1}{z^{1+r_{Q} b m_{Q}^{2}}}(1-z) \exp \left(-\frac{b m_{\perp}^{2}}{z}\right)
$$

Reweighting Methodology:

Accept-Reject Algorithm (analogous to shower variations):

$$
w^{\prime}=w \prod_{i \in \text { accepted }} R_{i, \text { accept }}^{\prime}(z) \prod_{j \in \text { rejected }} R_{j, \text { reject }}^{\prime}(z)
$$

with
$R_{\mathrm{accept}}^{\prime}(z)=\frac{P_{\mathrm{accept}}^{\prime}(z)}{P_{\text {accept }}(z)} \quad R_{\mathrm{reject}}^{\prime}(z)=\frac{P_{\text {reject }}^{\prime}(z)}{P_{\text {reject }}(z)}=\frac{1-P_{\mathrm{accept}}^{\prime}(z)}{1-P_{\mathrm{accept}}(z)}$

5. One-Generator Hadronization Uncertainties

(Simple Example from Dark-Matter Studies)

Tuning

Tuning: PROFESSOR — a powerful tool for (semi)automated tuning

Inspired by idea pioneered by DELPHI (Hamacher et al., 1995):
Bin-wise interpolation of MC generator response and χ^{2} minimization $2^{\text {nd }}$-order polynomials account for parameter correlations.

Modern Python Package with much more functionality, tutorials, etc.
https://professor.hepforge.org/

(1) Random sampling: N parameter points in n-dimensional space
(2) Run generator and fill histograms
(3) For each bin: use N points to fit interpolation (2 $2^{\text {nd }}$ or $3^{\text {rd }}$ order polynomial)
(1) Construct overall (now trivial) $\chi^{2} \approx \sum_{\text {bins }} \frac{(\text { interpolation-data })^{2}}{\text { error }^{2}}$
(0) and Numerically minimize pyMinuit, SciPy

PROFESSOR — Some Caveats

Fitting an imperfect theory model - with unknown uncertainties

Overfitting: very precisely measured data points can generate large χ^{2} values Even if MC gets within what one would naively consider "reasonable" agreement Fit reacts by sacrificing agreement elsewhere (typically in tails) to improve χ^{2} in peaks. PROFESSOR now has facility to include a "sanity limit" (e.g., 5\%) "theory uncertainty" > Fit not rewarded (much) for improving agreement beyond that point. More freedom in tails. Also tends to produce $\chi_{5 \%}^{2}$ values \sim unity \rightarrow better uncertainty bands?

Incompatibilities: MC unable to agree with (some part of) a given measurement

Fit reacts by trying to reduce huge differences in bins it shouldn't have been asked to fit in the first place, at cost of everything else.
Choose measurements carefully ~ within domain of applicability of physics model (+ PROFESSOR now has facility to not penalise χ^{2} beyond some max deviation)

Practical Example: Uncertainties on Dark-Matter Annihilation Spectra

Compare different generators?

E.g., HERWIG - PYTHIA

Problem: tuned to ~ same data
Difference not guaranteed to span genuine uncertainties

Instead, did parametric refittings of LEP data within PYTHIA's modelling

Simple sanity limit / overfit protection / tension resolution: Added blanket 5\% baseline uncertainty
(+ excluded superseded measurements)

+ Universality Tests: \qquad

6. Such Stuff as Jets are Made Of

Particle Composition in PYTHIA — Baryons \& Strangeness

Confinement - in PP Collisions

High-energy pp collisions - with ISR and Multi-Parton Interactions
Final states with very many coloured partons
With significant overlaps in phase space Who gets confined with whom?

Each has a colour ambiguity $\sim 1 / N_{C}^{2} \sim 10 \%$ E.g.: random triplet charge has $1 / 9$ chance to be in singlet state with random antitriplet:

$$
\begin{aligned}
& 3 \otimes \overline{3}=8 \oplus 1 \\
& 3 \otimes 3=6 \oplus \overline{3} ; 3 \otimes 8=15 \oplus 6 \oplus 3 \\
& 8 \otimes 8=27 \oplus 10 \oplus \overline{10} \oplus 8_{S} \oplus 8_{A} \oplus 1
\end{aligned}
$$

Many charges \rightarrow Colour Reconnections* (CR) more likely than not - "Colour Promiscuity!" [J. Huston]

QCD Colour Reconnections \longleftrightarrow String Junctions

Stochastically restores colour-space ambiguities according to SU(3) algebra
$>$ Allows for reconnections to minimise string lengths

Dipole-type reconnection

What about the rec-green-blue colour singlet state?

(Types of String Topologies)

Open Strings

$q \bar{q}$ strings (with gluon kinks)

$$
\begin{gathered}
\text { E.g., } Z \rightarrow q \bar{q}+\text { shower } \\
H \rightarrow b \bar{b}+\text { shower }
\end{gathered}
$$

SU(3) String Junction

Open strings with $N_{C}=3$ endpoints
E.g., Baryon-Number violating neutralino decay $\tilde{\chi}^{0} \rightarrow q q q+$ shower

What do String Junctions do?

Assume Junction Strings have same properties as ordinary ones (u:d:s, Schwinger pT, etc)
> No new string-fragmentation parameters

Confront with Measurements

LHC experiments report very large (factor-10) enhancements in heavy-flavour baryon-to-meson ratios at low p_{T} !

[J. Altmann \& PS, in progress]

Very exciting!

We also know ratios of strange hadrons to pions strongly increase with event activity

TOPOLOGICAL PHOTONICS
Optical Weyl points and Fermi arcs
Opical Weyl points and Fermi arcs

\rightarrow Non-Linear String Dynamics?

MPI \Longrightarrow lots of coloured partons scattered into the final states

Count \# of flux lines crossing $y=0$ in pp collisions (according to PYTHIA):

Confining fields may be reaching much higher effective representations than simple
quark-antiquark (3) ones.

Two approaches in PYTHIA:

1) Colour Ropes (Lund)
2) Close-Packing (Monash)

Particle Composition: Impact on Jet Energy Scale

ATLAS PUB Note

ATL-PHYS-PUB-2022-021
29th April 2022

Dependence of the Jet Energy Scale on the Particle Content of Hadronic Jets in the ATLAS Detector Simulation

The dependence of the ATLAS jet energy measurement on the modelling in Monte Carlo simulations of the particle types and spectra within jets is investigated. It is found that the hadronic jet response, i.e. the ratio of the reconstructed jet energy to the true jet energy, varies by $\sim \mathbf{1 - 2 \%}$ depending on the hadronisation model used in the simulation. This effect is mainly due to differences in the average energy carried by kaons and baryons in the jet. Model differences observed for jets initiated by quarks or gluons produced in the hard scattering process are dominated by the differences in these hadron energy fractions indicating that measurements of the hadron content of jets and improved tuning of hadronization models can result in an improvement in the precision of the knowledge of the ATLAS jet energy scale.

Variation largest for gluon jets

For $E_{T}=[30,100,200] \mathrm{GeV}$
Max JES variation = [3\%, 2\%, 1.2\%]
Fraction of jet E_{T} carried by baryons (and kaons) varies significantly
Reweighting to force similar baryon and kaon fractions
Max variation \rightarrow [1.2\%, 0.8\%, 0.5\%]
Significant potential for improved Jet Energy Scale uncertainties!

Motivates Careful Models \& Careful Constraints

Interplay with advanced UE models
In-situ constraints from LHC data
Revisit comparisons to LEP data

Summary

MC generators connect theory with experiment

Plan for NNLO+NNLL accurate MCs
\rightarrow era of percent-level perturbative accuracy

+ much new work on hadronization \& CR
Driven by new measurements at LHC

Extra Slides

String Breaking

In "unquenched" OCD

$g \rightarrow q \bar{q} \Longrightarrow$ The strings will "break"
Non-perturbative so can't use $P_{g \rightarrow q \bar{q}}(z)$
Model: Schwinger mechanism

\div Schwinger Effect

\Longrightarrow Gaussian suppression of high $m_{\perp}=\sqrt{m_{q}^{2}+p_{\perp}^{2}}$

Assume probability of string break constant per unit world-sheet area

Practical Example: Uncertainties on Dark-Matter Annihilation Spectra

Weighted Average: good consistency across observables 10-point variations $>$ Fairly convincing uncertainty bands?

Examples with Pythia 8

[Reweighting MC Predictions \& Automated Fragmentation Variations in Pythia 8, 2308.13459]

Transverse Fragmentation Function (Gaussian)

Note on Different alpha(S) Choices

Correlated or Uncorrelated?

What I would do: 7-point variation (resources permitting \rightarrow use the automated bands?)

Increasing only ISR

Nu* More H_{T} and $\mathrm{N}_{\mathrm{jets}}$; similar core jet shapes

Scale Variations: How Big?

Scale variations induce 'artificial' terms beyond truncated order in QFT ~ Allow the calculation to float by ($1+\mathrm{O}\left(\mathrm{a}_{\mathrm{s}}\right)$).

$$
\frac{\alpha_{s}\left(k_{1}^{2} \mu^{2}\right)}{\alpha_{s}\left(k_{2}^{2} \mu^{2}\right)} \sim 1-b_{0} \xrightarrow{\ln \left(k_{1}^{2} / k_{2}^{2}\right)} \alpha_{s}\left(\mu^{2}\right) \longleftarrow \begin{aligned}
& \text { Proportionality to } \mathrm{a}_{s}(\mu) \rightarrow \text { can get a (misleadingly?) small band if you choose } \\
& \text { central } \mu \text { scale very large. } \\
& \text { E.g., some calculations use } \mu \sim H_{\tau} \sim \text { largest scale in event ?! } \\
& \text { Worth keepeng in mind when considering (uncertainty on) central } \mu \text { choice of order } 1
\end{aligned}
$$

$b_{0} \sim 0.65 \pm 0.07$
Expansion around μ only
sensible if this stays s 1

Mainstream view:

Regard scale dependence as unphysical / leftover artefact of our mathematical procedure to perform the calculations.

Dependence on it has to vanish in the 'ultimate solution' to QFT
\rightarrow Terms beyond calculated orders must sum up to at least kill μ dependence
Such variations are thus regarded as a useful indication of the size of uncalculated terms. (Strictly speaking, only a lower bound!)

Typical choice (in fixed-order calculations): $k \sim[0.5,1,2]$

Scale Variations: How big?

What do parton showers do?

In principle, LO shower kernels proportional to a_{s}
Naively: do the analogous factor-2 variations of μ_{Ps}.

There are at least 3 reasons this could be too conservative

1. For soft gluon emissions, we know what the NLO term is
\rightarrow even if you do not use explicit NLO kernels, you are effectively NLO (in the soft gluon limit) if you are coherent and use $\mu_{\mathrm{PS}}=\left(k_{\mathrm{CMW}} \mathrm{P}_{\mathrm{T}}\right)$, with 2-loop running and $\mathrm{k}_{\mathrm{CMW}} \sim 0.65$ (somewhat n_{f}-dependent). [Though there are many ways to skin that cat; see next slides.]
Ignoring this, a brute-force scale variation destroys the NLO-level agreement.
2. Although hard to quantify, showers typically achieve better-than-LL accuracy by accounting for further physical effects like (E, p) conservation
3. We see empirically that (well-tuned) showers tend to stay inside the envelope spanned by factor-2 variations in comparison to data

Scale variations: How Big?

Poor man's recipe: Use $\sqrt{2}$ instead?
Sure ... but still somewhat arbitrary
Instead: add compensation term to preserve softgluon limit at $O\left(a_{s}{ }^{2}\right)$

Still allowing full factor-2 outside that limit.
Pythia includes such a compensation term, at least in context of automated uncertainty bands
Since aggressive definitions can lead to overcompensation / extremely optimistic predictions \rightarrow very small uncertainty bands, we chose a rather conservative definition for PYTHIA \rightarrow larger bands.

$$
\begin{aligned}
& P^{\prime}(t, z)=\frac{\alpha_{s}\left(k p_{\perp}\right)}{2 \pi}\left(1+(1-\zeta) \frac{\alpha_{s}\left(\mu_{\max }\right)}{2 \pi} \beta_{0} \ln k\right) \frac{P(z)}{t} \\
& \zeta=\left\{\begin{array}{cl}
\text { Kills the compensation outside the soft limit } & \text { for splittings with a } 1 / z \text { singularity } \\
z & \text { for splittings with a } 1 /(1-z) \text { singularity } \\
1-z & \text { for splittings with a } 1 /(z(1-z)) \text { singularity } \\
\min (z, 1-z) & \text { somation size of }
\end{array}\right.
\end{aligned}
$$

ee \rightarrow hadrons
1-Thrust (udsc)

Λ_{b} asymmetry

$$
A=\frac{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)-\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)+\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}
$$

Without junction CR , an important source of low-p Λ_{b} production is when $a b$ quark combines with the proton beam remnant.
Not possible for $\bar{\Lambda}_{b}$ (no \bar{p} remnant at LHC)
QCD CR adds large amount of low-pt junction Λ_{b} and $\bar{\Lambda}_{b}$, in equal amounts. Dilutes asymmetry!

(Illustration of the "Magic Trick")

Proof-of-Concept NNLO LEP tune (NNLO z Decay, ie with NLO 3-jet corrections - using VINCIA)
NNLO tune (3-jet NLO) with $\alpha_{\mathrm{s}}(\mathrm{Mz})=0.1222_{\text {arlop anming, cmm }}$
NLO tune \sim Monash (3-jet LO) with $\alpha_{s}\left(\mathrm{M}_{\mathrm{z}}\right)=0.139$ \square
\} Comparable values for Λ_{QCD}

Controlling for Process Dependence!

Note: these distributions rely on Pythia's "Power Showers"

These points are quite sensitive to MECs / Matching / Merging.

\rightarrow we should ensure we do MECs / matching / merging if we want to use them (or something equivalent to that.)

A Brief History of MPI in PYTHIA

$\sigma_{\text {parton-parton }}\left(\hat{p}_{\perp}\right)$
 σ hadron-hadron

\Longrightarrow several parton-parton interactions per hadron-hadron interaction: MPI

Sjöstrand \& van Zijl, 1985:

Cast as Sudakov-style evolution equation, analogous to the $\sigma_{\mathrm{X}+\mathrm{jet}}\left(p_{\perp}\right) / \sigma_{\mathrm{X}}$ one of showers

Figure from Sjöstrand \& PS, 2005

Interplay between MPI and PDF set

Some PDFs that were available at the time of the Monash tune

$$
\mathrm{xg}\left(\mathrm{x}, \mathrm{Q}^{2}=2 \mathrm{GeV}^{2}\right)
$$

Need sensible behaviour down to very low \boldsymbol{X}, and very low $Q \sim$ ISR/MPI cutoff $\sim 1 \mathrm{GeV}$

[^0]
The issue with NLO gluons at low x

Low-x gluon

Key constraint: DIS F_{2}
Low $x: \mathrm{d} F_{2} / \mathrm{d} \ln \left(Q^{2}\right)$ driven by $g \rightarrow q \bar{q}$
LO $\mathrm{P}_{\mathrm{q} / \mathrm{g}}(\mathrm{z}) \sim$ flat $\Longrightarrow x$ of measured
quark closely correlated with x of mother gluon.

NLO Integral over $\mathrm{P}_{\mathrm{q} / \mathrm{g}}(\mathrm{z}) \propto 1 / z$ for small
$z \Longrightarrow$ approximate $\ln (1 / x)$ factor.
> Effectively, the NLO gluon is probed more "non-locally" in x.
$\mathrm{d} \ln F_{2} / \mathrm{d} Q^{2}$ at small x becomes too big unless positive contribution from medium-to-high-x gluons (derived from $\mathrm{d} \ln F_{2} / \mathrm{d} Q^{2}$ in that region, and from other measurements) is combined with a negative contribution from low-x gluons.

Mathematically (toy NLO Calculation with just one \mathcal{X}):

$$
\frac{\mathrm{ME}_{\mathrm{NLO}}}{\mathrm{ME}_{\mathrm{LO}}}=1+\alpha_{\mathrm{s}}\left(A_{1} \ln (1 / x)+A_{0}\right)
$$

$\ln (1 / x)$ largely compensated in def of NLO PDF:

$$
\frac{\mathrm{PDF}_{\mathrm{NLO}}}{\mathrm{PDF}_{\mathrm{LO}}}=1+\alpha_{\mathrm{s}}\left(B_{1} \ln (1 / x)+B_{0}\right)
$$

> Product well-behaved at NLO if we choose $B_{1} \approx A_{1}$ Cross term at $\mathcal{O}\left(\alpha_{s}^{2}\right)$ is beyond NLO accuracy ...

For large x and small $\alpha_{s}\left(Q^{2}\right)$, e.g. $\alpha_{s} A_{1} \ln (1 / x) \sim 0.2$:

$$
\frac{\mathrm{ME}_{\mathrm{NLO}} \mathrm{PDF}_{\mathrm{NLO}}}{\mathrm{ME}_{\mathrm{LO}} \mathrm{PDF}_{\mathrm{LO}}}=(1+0.2)(1-0.2)=0.96 \quad \text { log terms cancel }
$$

But if x and Q^{2} are small, say $\alpha_{s} A_{1} \ln (1 / x) \sim 2$:

$$
\frac{\mathrm{ME}_{\mathrm{NLO}} \mathrm{PDF}_{\mathrm{NLO}}}{\mathrm{ME}_{\mathrm{LO}} \mathrm{PDF}_{\mathrm{LO}}}=(1+2)(1-2)=-3 \quad \begin{aligned}
& \text { The PDF becomes negative }
\end{aligned}
$$

Some Desirable Properties for PDFs for Event Generators

General-Purpose MC Generators are used to address very diverse physics phenomena and connect (very) high and (very) low scales $>$ Big dynamical range!

1. Stable (\& positive) evolution to rather low Q^{2} scales, e.g. $Q_{0} \lesssim 1 \mathrm{GeV}$

ISR shower evolution and MPI go all the way down to the MC IR cutoffs $\sim 1 \mathrm{GeV}$
2. Extrapolates sensibly to very low $x \sim 10^{-8}$ (at LHC), especially at low $Q \sim Q_{0}$.
"Sensible" ~ positive and smooth, without (spurious) structure
Constraint for perturbative MPI: $\hat{S} \geq(1 \mathrm{GeV})^{2} \Longrightarrow x_{\mathrm{LHC}} \gtrsim 10^{-8}\left(x_{\mathrm{FCC}} \geq 10^{-10}\right)$
Main point: MPI can probe a large range of x, beyond the usual $\sim 10^{-4}$
(Extreme limits are mainly relevant for ultra-forward / beam-remnant fragmentation)
3. Photons included as partons

Bread and butter for part of the user community
4. LO or equivalent in some form (possibly with $\alpha_{s}^{\text {eff }}$, relaxed momentum sum rule, ...)

Since MPI Matrix Elements are LO; ISR shower kernels also LO (so far)
5. Happy to have NnLO ones in a similar family.
E.g., for use with higher-order MEs for the hard process.

Useful (but possible?) for these to satisfy the other properties too?

Idea: each string exists in an effective background produced by the others

Close-packing

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks
Strange Junctions

String breaks
vs.
Results in strangeness enhancement focused in baryon sector

String tension could be different from the vacuum case compared to near a junction

[^0]: Negative PDFs not an option. Shower and MPI kernels are LO.

