Peter Skands

RS Wolfson Visiting Fellow U of Oxford / Monash U.

elelele

etogeeeeeeeeeeeeeeeeeee

releveller eller eller

1: Parton-Level MC Models

VINCIA Resonance Decays [Brooks, PS, Verheyen, '19, '22]

New treatments of unstable particles: **Resonance-Final (RF) Showers** (initial-final coherence) and **Interleaved Resonance Decays** (decays as ~ shower branchings)

Hard Interaction

allon

- Resonance Decays
- MECs, Matching & Merging

 ${
m d}\hat{\sigma}_0$

- **FSR**
- (*: incoming lines are crossed) ISR*

alle alle

QED

Weak Showers

VINCIA QED (& Weak) Showers [Brooks, PS, Verheyen, '20, '22]

Unique **QED** multipole antenna shower [Verheyen & PS, '20] (all soft & collinear limits whereas YFS captures only soft)

Now considering applications to **QED** in **B** decays [with LHCb / Warwick]

THE UNIVERSITY OF WARWICK

Main Project: VINCIA sector showers [with C. Preuss]

One shower history instead of a factorial number [Villarejo & PS, '11]

This can be exploited to formulate comparatively simple and fullydifferential ME+PS matching/merging strategies at LO, NLO, NNLO, ...

+highly efficient: may even be *faster than pure fixed order?*

+ can be **interleaved** with QCD and/or resonance decays

Australian Government

Australian Research Council

2: Hadron-Level MC Models

Empirically known since ~ 80^s to be important for Min-Bias/Underlying-Event description (e.g., $\langle p_{\perp} \rangle (n_{\rm ch})$). Many models over the years.

Stochastic sampling of SU(3) correlations at end of shower [Christiansen & PS, '15]

Multiparton Interactions Beam Remnants*

Charm hadronization in pp (1):

0.7 of charm quarks 0.6 0.5 Fraction 0. .0 0.3

0.2

D mesc

000

Colour Reconnections

String Junctions [with J. Altmann]

More charm quarks in baryons in paothan in prother in the sonaher of the sonaher

arXiv:2011.06079 arXiv:2106.08278 Charm quarks hadronize into baryons 40%

~ 4 times more than in e^+e^-

H_{c}	$f(\mathbf{c} \rightarrow \mathbf{H}_{\mathbf{c}})[\%]$
\mathbf{D}^0	$39.1 \pm 1.7(\text{stat})^{+2.5}_{-3.7}(\text{syst})$
\mathbf{D}^+	$17.3 \pm 1.8(\text{stat})^{+1.7}_{-2.1}(\text{syst})$
D^+_s	$7.3 \pm 1.0(\text{stat})^{+1.9}_{-1.1}(\text{syst})$
Λ^+_{\circ}	$20.4 \pm 1.3(\text{stat})^{+1.6}(\text{syst})$