

Status of the <u>MCPlots</u> Project

Monash-Warwick Particle Physics Meeting

March 2023

From Data Analysis IND Validation of (current & future) MC Event Generators

Data Preservation (for HEP): HEPData

(HEPData is funded by the UK <u>STFC</u> and is based at the <u>IPPP</u> at Durham U.)

htt	ps://www. hepdata.net /reco	ord/ins865584	4		(∃ ☆	⊠ ± £
QSe	earch HEPData S	earch		1 Abou	<u>t</u> 🗘 Submi	ssion Help 🛛 🗋 File	e Formats 🛛 🕩 Sig
			Last update	d on 2010-08	-24 00:00 [.lıl	Accessed 2202 tir	nes 🤧 Cite
	🕹 Download All 🗸	La Download All →			InclPro	431	► P
	🖍 View Analyses 🗸						
	Ƴ Filter 3 data tabl€						
	Table 1Data from T 610.17182/hepdata.55676.v1/tThe measured cross sections as a function of transverse momentum for prompt K0S production in three rapidity regions. The firstTable 2Data from F 510.17182/hepdata.55676.v1/tThe double differential prompt K0S production cross section in three rapidity bands.	RE	P P> K0S >	(Visualize	
		SQRT(S)	900.0 GeV 800-				
		YRAP(P=3)	2.5-3.0	3.0-3.5	3.5-4.0	700 —	
		PT(P=3) [GEV]	SIG [MUB]			600 — 500 —	╋ <mark>╸</mark> ╋╴ ┥╺┿╴╷
		0.0 - 0.2	294.0 ±80.0 stat ±38.0 sys_1 ±90.0 sys_2	316.0 ±43.0 stat ±44.0 sys_1 ±72.0 sys_2	196.0 ±39.0 stat ±39.0 sys_1 ±38.0 sys_2	400 - 300 - 200 - 100 -	
		0.2 - 0.4	649.0 ±133.0 stat ±136.0	562.0 ±42.0 stat ±22.0	571.0 ±42.0 stat ±25.0	l l 0.0 0.2	I I I 0.4 0.6 0.8 PT(P=3) [GEV]

Analysis Preservation (for HEP): Rivet

(Rivet is developed by the CEDAR project, also based in the UK)

2

Measurement archived in HEPData + analysis code archived in Rivet:

Easy to run any (salient) MC generator \rightarrow make comparison plots Rivet itself contains some nice functionality to assist with this

Still involves non-trivial effort and time:

(Installing Rivet + relevant event generators + learning how to use them.) Setting up (and verifying) run cards for the processes in question Defining phase-space windows for efficient (but still full-coverage) event generation Generating sufficient events (sometimes many millions)

Possible 🔽

But not quick!

No "instant feedback" (eg within a single talk or physics discussion)

When showing plots from the original paper:

"Yes but this has been corrected in version X of that generator" "But this other tune or MC that you didn't compare to does better" "Does the model shown there also describe correctly this **other** important observable?"

• • •

Instant answers would be convenient for faster & better informed discussions!

2010: Cool idea from LHC@home volunteer-cloud developers

- Embed physics applications in a Virtual Machine (CernVM)
- Controlled standard environment for physics application, independent of host OS

They approached CERN Theory Group: could we propose a test application?

PYTHIA: simple to build (no external libs), small footprint, ... In-principle interested in massive validations; had no own/dedicated theory cluster Representative of typical scientific-software "problem": No native Windows support, nor much interest (or manpower) to develop that We are a small group of physicists; our main (only) goal = physics research

Virtualisation factorised the problem

Physics application just saw a (configurable) standard Linux environment (now CentOS)

Became the Test4Theory project, the world's first virtual volunteer cloud

Volunteers can join at <u>lhc@home/Test4Theory</u> — Let idle machines run T4T jobs

LHC@home/Test4Theory MCPlots

LHC@Home/Test4Theory

- Continuously runs lots of event generators, versions, and tunes, through **Rivet**
- Normally in batches of 100k events
- Results are accumulated and stored in a database.
- (Automated ~ zero manpower)

Accessed by a web server: mcplots.cern.ch

- Home
- **Plots Repository**

Soft QCD (inelastic) : Identified Par Generator Group: General-Purpose MCs Soft-Inclusive MCs Matched/M Min-Bias Tunes UE Tunes EPOS vs Pythia Pythia 8 Subgroup: **Generator Validation** → Tuning Validation pp @ 900 GeV → About → Update History LHCb 2.5 < y < 3.0 → LHC@home / Test4Theory 🗹 Reference Article ☑ 900 GeV pp Soft QCD 900 GeV pp [mu b] ơ(pprightarrowK⁰ X) [mu b] pT(K') (2.5 < y < 3.0) Analysis filter: σ(pprightarrowK⁰ X) → Generator Versions →Beam: pp/ppbar ee →Analysis: LHCB 2010 S8758301 Soft QCD (inelastic) → Identified Particles : pT \rightarrow K0S Epos (LH 0.5 0.5 0.5 1.5 p_{_} [GeV] 0.5

Plots generated (& cached) on-demand.

Hundreds of thousands of plots accessible in a few clicks

~ The "Library of Congress" for MC validation [S. Mrenna]

Published in A. Karneyeu et al., *Eur.Phys.J.C* 74 (2014) 2714

(Dedicated views to check for changes between versions and/or tunes)

"Average" X²; plans to change to median to be less affected by outliers Can be done for each tune of each generator, and/or for each version Main quantities are clickable, for further levels of detail \rightarrow comparison plots

✓ 8.301
✓ 8.244
Ø.243
Ø.240
Ø.235
Ø.230
Ø.226
Ø.212
Ø.210
Ø.209
Ø.205
Ø.201
Ø.201</ Versions: Display

Process Summary

(click on numbers to see individual observables)

	min	best	min	best	min	best	min
<پ2> incl. 5% "theory uncertainty" on all points	8.301	<Δ>	8.244	<∆>	8.186	<∆>	8.135
	max	worst	max	worst	max	worst	max
	0	-0.17	0.0000026	-6.6	0.00078	-1.7	0.000045
ee $\rightarrow \gamma^*/Z$ (hadronic)	2.2	0	2.2	0	2.2	-0.60	2.8
	220	+0.26	220	+3.4	220	+2.1	220
	2.6	-3.3	2.6	+2.4	0.20	-36	0.95
pp/ppbar $\rightarrow b\overline{b}$	28	0	28	+8.0	20	-6.0	26
	170	+0.51	170	+43	130	-0.75	160

LHC@home Current Status

SixTrack: beam dynamics simulations for LHC **Test4Theory:** MC event-generator validation. Computational back end for <u>mcplots.cern.ch</u>

Fully integrated with and supported by CERN IT infrastructure Periodical checkpoint meetings which I attend (chair: N. Høimyr, CERN IT)

Provides total computing power equivalent to ~500 kCHF / year

I only see the ones connected to Test4Theory: few hundred to few thousand cores

> Over 5 *trillion* events in its lifetime

Atlas@home has simulated 1.2 billion events ~ 4% of all ATLAS simulation About half of that is backfill from otherwise idle ATLAS grid nodes

Quite a substantial contribution for a single entity!

+ Atlas@home, CMS@home, Beauty

2022: 6 months of development funded by LHC Physics Centre at CERN

- Main collaborator: Natalia Korneeva
- Extensive sets of 13-TeV analyses added, plus many historical ones
- Better automation (e.g., extracting more info from Rivet, more systematic approach to settings generator phase-space cuts)

Less effort to maintain and update

+ POWHEG-Box added for hard processes (via LCG LHCb installation!) No process for Dijets? See /cvmfs/sft.cern.ch/lcg/releases/LCG_96/ MCGenerators/powheg-box-v2/r3043.lhcb/x86_64-centos7-gcc8-opt/bin/

2023: write a paper + update visual layout

Current ~ nineties-look > more modern "cleaner" web design proposed by NK

Question: no dedicated validation of B decays - How does EVTGEN do it?

Interest in MWA generally in PYTHIA+EVTGEN validation? Rivet analyses + PYTHIA+EVTGEN ➤ MCPlots for B decays?

