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LHC Collisions — Theory vs Real Life
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๏Theory Goal: Use LHC measurements to test hypotheses about Nature.  
•

•But have no exact solutions to QFT for the SM or Beyond 
•How to make predictions to form (reliable) conclusions?



Colliding Protons
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๏Problem #1: we are colliding — and observing — hadrons 
•Strongly bound states of quarks and gluons (non-perturbative QCD) 

๏How do we connect this…
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THEORY EXPERIMENT

๏… with this?

Elementary Fields & Symmetries 
“Fundamental” parameters. 

Asymptotic freedom, perturbative QFT

“Emergent” degrees of freedom 
Jets of hadrons
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What else is there? Structure beyond (fixed-order) perturbative 
expansions (in Quantum Chromodynamics):

Fractal scaling, of jets within jets within jets … (can actually be guessed) 
Confinement, of coloured partons within hadrons ($1M for proof)

G. H. Lewes (1875): "the emergent is unlike its components insofar 
as … it cannot be reduced to their sum or their difference." 

Image Credits: YeimayaImage Credits: mrwallpaper.com

In Quantum Field Theory:
“Components” = Elementary interactions — encoded in the Lagrangian
Perturbative expansions ~ elementary interactions to nth power

What do I mean by “Emergent” degrees of freedom?
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What else is there? Structure beyond (fixed-order) perturbative expansions:
Fractal scaling, of jets within jets within jets … 
Confinement (in QCD), of coloured partons within hadrons

JETS (& RGEs)
STRINGS

http://mrwallpaper.com


๏Textbook “quark-model” proton: 
•Three quarks 
•➤ Quark-model flavour  spin wave functions  

๏Real-life hadrons 
•Are composite & strongly bound, with time-dependent structure 

๏For wavelengths ~ confinement scale: 
•quark & gluon plane waves are 
not going to be good 
approximations 
•  forget about the 
interaction picture and 
perturbation theory

⊗

⟹

Consider a hadron; why is it complicated?
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Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

Figure by T. Sjöstrand



๏Asymptotic Freedom in QCD (Gross, Politzer, Wilczek — Nobel 2004) 
•Over short distances, quarks and gluons do behave like almost free particles 
•Then it’s OK to start from free-field solutions (plane waves) and treat interactions 
as perturbations  The interaction picture and perturbation theory are saved! 
•

⟹

What about shorter wavelengths?
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Parton Distribution Functions
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Asymptotic freedom

Strongly Coupled

35 9. Quantum Chromodynamics

more than three jets in the final state. A selection of results from inclusive jet [429, 443, 600–605],
dijet [451], and multi-jet measurements [385, 387, 388, 429, 606–610] is presented in Fig. 9.3, where
the uncertainty in most cases is dominated by the impact of missing higher orders estimated through
scale variations. From the CMS Collaboration we quote for the inclusive jet production at

Ô
s = 7

and 8 TeV, and for dijet production at TeV the values that have been derived in a simultaneous
fit with the PDFs and marked with “*” in the figure. The last point of the inclusive jet sub-field
from Ref. [605] is derived from a simultaneous fit to six datasets from di�erent experiments and
partially includes data used already for the other data points, e.g. the CMS result at 7 TeV.

The multi-jet –s determinations are based on 3-jet cross sections (m3j), 3- to 2-jet cross-section
ratios (R32), dijet angular decorrelations (RdR, RdPhi), and transverse energy-energy-correlations
and their asymmetry (TEEC, ATEEC). The H1 result is extracted from a fit to inclusive 1-, 2-,
and 3-jet cross sections (nj) simultaneously.

All NLO results are within their large uncertainties in agreement with the world average and
the associated analyses provide valuable new values for the scale dependence of –s at energy scales
now extending up to almost 2.0 TeV as shown in Fig. 9.4.

αs(MZ2) = 0.1179 ± 0.0009

August 2021
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Figure 9.4: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

1st June, 2022
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probability densities for each type of plane wave:  
Parton Distribution Functions (PDFs)

Source: PDG



d�̂0Incoming 
proton A

Incoming 
proton B

Example:  
With characteristic scattering 
wavelength 

pp → tt̄

Q−1 ∼ m−1
t ≪ rproton

Mathematically, the cross section factorises
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๏Hadron-level cross sections can be computed as (sums over): 
•Perturbative Parton-level cross sections  Parton Distribution Functions 
•Thus, we can compute, e.g., the total top-quark-pair cross section we expect at LHC:

⊗

Probability densities for finding gluons inside protons A and B 
(carrying fractions xa and xb of the respective proton energies) 

These (& equivalent quark ones) were measured at previous colliders 
(esp. HERA); increasingly now also at LHC itself.

g(xa, Q2) g(xb, Q2)

Hadronic 
degrees of 
freedom

Partonic 
degrees of 
freedom

“Standard” matrix 
element for  

(perturbatively calculable)
gg → tt̄

๏(Collins, Soper, ’87)



d�̂0

Great! Now can we compare to measurements?
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๏ Theorist: 
๏ This is a  eventtt̄

๏ Experimentalist: 
๏ Is this a  event?tt̄

With factorisation, we recover the use of perturbation theory (for high-scale processes*) 
But we also lose a lot of detail (and still cannot address low scales)

*for so-called Infrared and Collinear Safe Observables

Incoming 
Proton Incoming Gluon

Outgoing 

 pairtt̄top
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Accuracy & Detail 1: Radiative Corrections
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๏The scattered partons carry QCD and/or electric charges 
•Will give off bremsstrahlung radiation, at wavelengths > 1/Q. 
•Probabilities can be computed order by order in perturbation theory

d�̂0d�̂0d�̂0

Hard Interaction

Matrix Elements

Final-State Radiation

Initial-State Radiation

QED Radiation

Incoming 
Proton Incoming Gluon

Outgoing 

 pairtt̄
Beware: scale hierarchies 

In a  + jets event like this one, 
there are a lot of different scales 

The top mass and pT values 
Jet pT scales 

Substructure scales? 
Top (and W) decay scales 

…

tt̄



The problem with fixed-order perturbation theory
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๏The relative accuracy of fixed-order pQCD is reduced for processes/
observables that involve scale hierarchies  

๏Schematic example 
•NNLO calculation of the rate of events passing a jet veto 

๏  
•  
•Total loss of predictivity if the veto scale  is so small that .  

๏ Reduced precision even for higher veto scales. Logs counteract naive suppression. 

๏Fixed-Order calculations most accurate for single-single scale problems 
•Effective accuracy reduced for processes/observables with scale hierarchies

NNLO Matrix-Element Corrections in VINCIA Peter Skands

1. Introduction

The presence of infrared (IR) poles in amplitudes with partons that can become soft and/or
collinear complicates making precise predictions in theories with massless gauge bosons (such as
QED and QCD). Although the resulting IR singularities can be treated consistently and cancel order
by order in the relevant gauge coupling(s), they leave a legacy in physical observables in the form of
logarithms of scale ratios. If significant scale hierarchies are present in the process or observables
at hand, these logarithms counteract the naive coupling-power suppression of higher-order terms.
This reduces the effective accuracy of fixed-order calculations for multi-scale problems.

This is a concern for ongoing experimental and phenomenological studies, e.g. at the LHC,
where ever-more complex final states are being targeted — and accurately measured — with
multiple resolved objects each of which defines an intrinsic scale, and/or for observables sensitive
to substructure. It also applies to differential observables that cover a wide range of scales over their
domain(s), which are often well described by fixed-order perturbation theory in hard tails while
log-enhanced terms affect the bulk/peak of the differential distributions.

To give a schematic example, an NNLO QCD calculation of a cross section with a jet veto
would include the following terms:
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whereUB is the QCD coupling constant, �8 denote non-log terms at each order and !
< in this example

represents terms proportional to powers of logs of the jet-veto scale to a scale characteristic of the
Born-level hard process. If the scales are such that U!2

⇠ 1 then all terms U
=
B !

2= would be of
order unity, invalidating any fixed-order truncation of the series. For less extreme hierarchies, the
consequence is a reduction of the effective relative accuracy of the truncation.

At face value, fixed-order calculations are therefore always most accurate for single-scale
problems, while their effective accuracy for processes/observables with scale hierarchies is reduced.

The applicability of perturbation theory can be extended to multi-scale problems by resumming
the log-enhanced terms to all orders, now using a logarithmic order counting in which a rate like
that in eq. (1) is (re)expressed, here shown schematically up to NNLO+N4DL accuracy:
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where the “double-log” (DL) counting in the exponent here is intended to emphasise that we focus
on towers of logs that dominate in kinematical regions in which UB!

2
⇠ 1 (as distinct from the

widely used N=LL counting which is based on UB! ⇠ 1). The fixed-order cofficient �1 is needed
both for NLO matching and also for NNDL accuracy, and the coefficient �2 is required for matching
to NNLO and for N4DL accuracy. In shower parlance, exponentials such as the one in eq. (2) are
called Sudakov factors; we call them that below.

2

L ∝ ln(p⊥veto2 / Q2
hard)

p⊥veto αsL2 ∼ 1



Practical Example
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๏Naively, QCD radiation suppressed by αs≈0.1 
•➙ Truncate at fixed order = LO, NLO, … 

๏   But beware the jet-within-a-jet-within-a-jet …

Example: SUSY pair production at LHC14, with MSUSY ≈ 600 GeV 

 100 GeV can be “soft” at the LHC⟹

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for X + jets much larger than 
naive factor-αs estimate

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for 50 GeV jets ≈ larger than 
total cross section  
→ what is going on?

All the scales are high,  GeV, so perturbation theory should be OKQ ≫ 1



Perturbation theory for Multiscale Problems
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๏Fixed Order: 

๏  
๏Extend perturbation theory by resumming logs to all orders 

๏  
•(Here using a slightly unconventional exponentiated “double-log” counting based 
on  instead of  

NNLO Matrix-Element Corrections in VINCIA Peter Skands
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where the “double-log” (DL) counting in the exponent here is intended to emphasise that we focus
on towers of logs that dominate in kinematical regions in which UB!

2
⇠ 1 (as distinct from the

widely used N=LL counting which is based on UB! ⇠ 1). The fixed-order cofficient �1 is needed
both for NLO matching and also for NNDL accuracy, and the coefficient �2 is required for matching
to NNLO and for N4DL accuracy. In shower parlance, exponentials such as the one in eq. (2) are
called Sudakov factors; we call them that below.

2

NNLO Matrix-Element Corrections in VINCIA Peter Skands

1. Introduction

The presence of infrared (IR) poles in amplitudes with partons that can become soft and/or
collinear complicates making precise predictions in theories with massless gauge bosons (such as
QED and QCD). Although the resulting IR singularities can be treated consistently and cancel order
by order in the relevant gauge coupling(s), they leave a legacy in physical observables in the form of
logarithms of scale ratios. If significant scale hierarchies are present in the process or observables
at hand, these logarithms counteract the naive coupling-power suppression of higher-order terms.
This reduces the effective accuracy of fixed-order calculations for multi-scale problems.

This is a concern for ongoing experimental and phenomenological studies, e.g. at the LHC,
where ever-more complex final states are being targeted — and accurately measured — with
multiple resolved objects each of which defines an intrinsic scale, and/or for observables sensitive
to substructure. It also applies to differential observables that cover a wide range of scales over their
domain(s), which are often well described by fixed-order perturbation theory in hard tails while
log-enhanced terms affect the bulk/peak of the differential distributions.

To give a schematic example, an NNLO QCD calculation of a cross section with a jet veto
would include the following terms:

LOz}|{
�0 +

NLOz              }|              {
UB (!

2
+ ! + �1) +

NNLOz                             }|                             {
U

2
B (!

4
+ !

3
+ !

2
+ ! + �2) , (1)

whereUB is the QCD coupling constant, �8 denote non-log terms at each order and !
< in this example

represents terms proportional to powers of logs of the jet-veto scale to a scale characteristic of the
Born-level hard process. If the scales are such that U!2

⇠ 1 then all terms U
=
B !

2= would be of
order unity, invalidating any fixed-order truncation of the series. For less extreme hierarchies, the
consequence is a reduction of the effective relative accuracy of the truncation.

At face value, fixed-order calculations are therefore always most accurate for single-scale
problems, while their effective accuracy for processes/observables with scale hierarchies is reduced.

The applicability of perturbation theory can be extended to multi-scale problems by resumming
the log-enhanced terms to all orders, now using a logarithmic order counting in which a rate like
that in eq. (1) is (re)expressed, here shown schematically up to NNLO+N4DL accuracy:

©≠≠≠
´

LOz}|{
�0 +

NLOz}|{
UB�1 +

NNLOz}|{
U

2
B�2

™ÆÆÆ
¨

⇥ exp

 DLz }| {
�UB!

2

NDLz           }|           {
�UB! � U

2
B!

3

NNDLz             }|             {
�U

2
B!

2
� U

3
B!

4 (2)

�U
2
B! � U

3
B!

3
� U

4
B!

5|                       {z                       }
N3DL

�U
3
B!

2
� U

4
B!

4
� U

5
B!

6|                         {z                         }
N4DL

!
,

where the “double-log” (DL) counting in the exponent here is intended to emphasise that we focus
on towers of logs that dominate in kinematical regions in which UB!

2
⇠ 1 (as distinct from the

widely used N=LL counting which is based on UB! ⇠ 1). The fixed-order cofficient �1 is needed
both for NLO matching and also for NNDL accuracy, and the coefficient �2 is required for matching
to NNLO and for N4DL accuracy. In shower parlance, exponentials such as the one in eq. (2) are
called Sudakov factors; we call them that below.

2

αsL2 ∼ 1 αsL ∼ 1



What does this look like?
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๏Schematic Example: starting scale = 100 GeV
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LL

NLL

NNLL

N3LL

Conventional  
(“Caesar-style”) log counting 

Based on αsL ∼ 1

Exponentiated 
“double-log” counting  

Based on αsL2 ∼ 1

DL

NDL

NNDL

N3DL

“Sudakov Region” “Peak Region”
← Different Log Countings →

GeV GeV

1

αs

α2
s

α3
s



hard process

Universality of Bremsstrahlung Logs
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Most bremsstrahlung is driven by 
divergent propagators → simple universal 
structure, independent of process details  

Amplitudes factorise in singular limits 

a

b

/ 1

2(pa · pb)

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

In collinear limits, we get so-called DGLAP splitting kernels:

i

j

k

In soft limits (Eg/Q➞0), we get dipole factors (same as classical):

|MF+1(. . . , i, j, k. . . )|2
jg!0! g2sC

(pi · pk)
(pi · pj)(pj · pk)

|MF (. . . , i, k, . . . )|2

These limits are not independent; they overlap in phase space. 
How to treat the two consistently has given rise to many individual approaches: 
Angular ordering, angular vetos, dipoles, global antennae, sector antennae, …



After 40 years of development, how far have we got?
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๏In fixed-order perturbative QCD (pQCD): 
•LO → NLO → NNLO → N3LO 

•Translates to accuracies of order a few per cent or better 

๏For all-orders showers, it makes no sense to count “orders” 
•Instead, we count “logarithms” (arising from  propagators on 
previous slide integrated over phase spaces ) 

๏Until very recently: (NB: several ways to count logs, here using conventional  counting) 
•Angular ordering (80s): (N)LL    
•Modern dipole/antenna showers: (N)LL 
•Colour flow also still “leading colour”  

๏ (with small refinements)

1/Q2

∝ dQ2

αsL ∼ 1

State of the art for complex processes
State of the art for simple processes

Last remaining “leading” 
frontiers in pQCD

•Many new efforts over the past decade! 
•(Notably, PanScales, here in Oxford)



Why is that hard?
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Simplified analogy:

LO NLO

N2LO N3LO

Parton Shower

Using a “Koch snowflake” as a stand-in for perturbation theory

Fixed Order



Some Complications
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๏Showers are quantum stochastic 
processes, not deterministic rules 
๏Several branching types: 

•  
•On multiparton phase spaces  
•(+ overlaps/double-counting/dead zones)  

๏Colour and spin structure 
•+ Interference effects 

๏Universality  
•Start from any hard process ~ starting shape 

๏Scaling violation (QCD is not conformal) 
๏Exact Conservation Laws

q → qg, g → gg, …

Parton Shower

๏Unitarity: need perfect cancellations between (singular) real and virtual corrections.



๏Matching, Merging, and Matrix-Element Corrections 
•Essentially: use exact rule for first few orders; then let shower 
approximation take over 

๏ LO matrix-element corrections (➤ Sjöstrand et al., 80s)  
๏ LO merged calculations (➤ CKKW, Lönnblad, ‘00s + more recent) 
๏ NLO matched calculations (➤ MC@NLO, POWHEG ‘00s)   

๏State of the art (for LHC phenomenology right now): 
•Merging several NLO + PS matched calculations (➤ UNLOPS, FxFx, …) 

๏Intense activity; here just using “my” projects as representative examples: 
•NNLO + PS matching (Proof of concept ➤ Campbell, Hoeche, Li, Preuss, PS, ‘21) 
•Iterated LO matrix-element corrections (➤ soon…) 
•Iterated NLO matrix-element corrections (➤ in a while 🐊) 

•Limiting factors are complexity growth & shower accuracy

Well Established for First Few Orders

18

⊗



Complexity Growth: a bottleneck for matching and merging
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๏In conventional (“global”) showers, each phase-space point receives 
contributions from many possible branching “histories” (=“clusterings”) 

•~ sum over (singular) diagrams  full singularity structure ✅ 

๏For CKKW-L style merging:  (incl UMEPS, NL3, UNLOPS, …) 

•Need to take all contributing shower histories into account.  
•Bottleneck at high multiplicities (+ high code complexity)

⟹

9/19

Merging with sector showers [Brooks, CTP 2008.09468]

Tree-level merging with sector showers straight-forward:
start from CKKW-L and modify history construction (could be extended to NLO)

basic CKKW-L idea [Lönnblad hep-ph/0112284], [Lönnblad, Prestel 1109.4829]
I construct all possible shower histories, choose most likely

I let (truncated) trial showers generate Sudakov factors
I re-weight event by Sudakov factors

�(t0, tÕ)

�(t0, t)

cluster

cluster

t

tÕ

number of histories scales factorially with number of legs

sector showers have a single (!) history for gluon emissions at LC

Since Pythia 8.304: sector merging available with Vincia

Fewer partial-fractionings, but still factorial growth

(Starting from a single  pair)qq̄



Sector Showers
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๏New in PYTHIA (8.3): Sectorized Antenna Showers in Vincia 
•PartonShowers:Model = 2 

๏Sector antennae: no partial-fractioning of any singularities.  
•Divide the n-gluon phase space up into n non-overlapping 
sectors, inside each of which only the most singular (~”
classical”) kernel is allowed to contribute.  

๏Lorentz-invariant def of “most classical” gluon based on “ARIADNE pT”:  

•

      with       (+ generalisations for heavy-quark emitters) 

๏Achieves (N)LL with a single history. 
•Factorial  constant scaling in number of gluons. 

๏ Generalisation to   factorial in # of same-flavour quark pairs.

p2
⊥j =

sijsjk

sijk
sij ≡ 2(pi ⋅ pj)

→
g → qq̄ ⟹

VINCIA

Kosower, hep-ph/9710213 
hep-ph/0311272 (+ Larkoski & 
Peskin 0908.2450, 1106.2182)

Brooks, Preuss & PS 2003.00702 (+ Lopez-Villarejo & PS 1109.3608)

Gustafson & Pettersson, NPB 306 (1988) 746

https://arxiv.org/abs/hep-ph/9710213
https://arxiv.org/abs/hep-ph/0311272
https://arxiv.org/abs/0908.2450
https://arxiv.org/abs/1106.2182
https://arxiv.org/abs/1109.3608


New: Sectorized CKKW-L Merging in Pythia 8.306
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๏Ready for serious applications  
•Work ongoing to optimise baseline algorithm. 
•Discovery Project (22): NNLO matching,  sector antennae, NLO interfaces, …  
•Vincia tutorial: http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf
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Figure 14: PYTHIA and VINCIA CPU time scaling in history construction (left) and parton-level event generation (right) for
pp ! W� + jets merging at

p
s = 14 TeV.

strategies to deal with competing sectors, cf. e.g. [68, 69, 70], which can improve the performance relative to
the results shown here. Such optimisation studies are currently ongoing.

Figure 15: PYTHIA and VINCIA CPU time scaling in history construction (left) and parton-level event generation (right) for
pp ! Z + jets merging at

p
s = 14 TeV.

4.2. Memory Usage

As the even more prohibiting bottleneck of conventional CKKW-L merging schemes at high multiplicities,
we study the memory usage. We use Valgrind’s Massif tool to monitor the heap usage of the default PYTHIA

CKKW-L merging and our VINCIA sector shower merging implementations. In particular, this means that
neither the stack nor the memory at the page level is recorded. For comparability and reproducibility, we
use the --time-unit=B option in Valgrind to measure the runtime of the program in terms of the number
of allocated and deallocated bytes. We use the same main program and event samples for both runs and
consider a fictitious Z + 10 jet merging run, so that every event multiplicity, including the 9-jet sample,
is processed as an intermediate node. We run each multiplicity independently with the maximal possible
number of snapshots available, which may be at most (but is not necessarily identical to) 1000. To gain the
most detailed possible picture of the memory allocations, we choose a relatively small number of 1000 events
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Figure 17: PYTHIA and VINCIA memory usage scaling in pp ! Z + jets merging at
p
s = 14 TeV.

As a gauge of the scaling behaviour of the memory usage in both merging implementations, we plot
the total allocated/deallocated memory per 1k events in Fig. 17. For each multiplicity, we average over
statistically independent runs and from 7 jets on, we also average over the di↵erent groupings. While PYTHIA

shows a rather dramatic scaling, with allocating and deallocating a total of 1 TiB of data for Z + 9 jets,
the VINCIA curve remains almost flat, with only a small peak around 3 additional jets. The latter can be
understood by considering that the sector shower has a comparable memory footprint as the merging and
that in the latter maximally two histories are stored concurrently, cf. Section 2.3. At high multiplicities,
most of the events get vetoed during the trial showers and the sector shower is never started o↵ these events.
For samples with 1 – 3 additional jets, on the other hand, a fair number of events are accepted and further
processed by the sector shower, explaining the small increase in memory usage there.

5. Conclusions

We here presented the first-ever implementation of the CKKW-L merging approach with sector showers,
which alleviates the bottlenecks of conventional implementations while accurately calculating the Sudakov
factors as generated by the shower. The merging scheme was implemented for the VINCIA antenna shower in
the PYTHIA 8.3 event generator; this implementation is mostly independent from the default CKKW-L one,
and has been made public in the PYTHIA 8.304 release.

We have validated the implementation for processes of immediate phenomenological interest and studied
the scaling behaviour of the method in multi-jet merging in vector boson production at high multiplicities.
While the time to construct sector shower histories scales approximately linearly with the number of hard
jets, the overall event generation time as well as the memory usage stays approximately constant. Both
provides a significant improvement over the exponential scaling of the default merging implementation in
PYTHIA. As a consequence, including merging hard jets with the sector shower in fact becomes easier with
increasing multiplicity. We gained a first estimate of renormalisation scale uncertainties arising at high
merged multiplicities and compared preliminary results to PYTHIA’s CKKW-L implementation.
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Memory
Optimizations 
work in progress

Brooks & Preuss, “Efficient multi-jet merging with the VINCIA sector shower”, 2008.09468

Conve
ntio

nal C
KKW-L

Sector Merging

http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf
https://arxiv.org/abs/2008.09468


The Final Frontier: Shower Accuracy
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๏2nd-order radiative corrections 
•Iterating only single emissions, one after the other, will fail to properly describe multi-
emission interferences & correlations 
•Iterating single and double emissions ➜ problematic overlaps, double counting 

๏VINCIA sector approach 
•➜ Clean separation of phase space 
into non-overlapping “iterated” 
(2→3) and “direct” (2→4) sectors  

๏Proof of concept @ NNLO: 
•Campbell, Hoche, Li, Preuss, Skands 2108.07133 

•Goal: iterate full structure ➜ shower 

๏Highly active research field: 
•Alternative approaches also hotly 
pursued: E.g.: PanScales (Oxford).
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Figure 1: Ratio of the evolution variable of the four-parton and three-parton configuration log
⇣
p2
?,4/p

2
?,3

⌘
in e+e� ! 4 j. The region > 0 corresponds

to unordered contributions not reached by strongly-ordered showers.

defined as

d�>+2 =
X

j

⇥>j/IK⇥
sct
j/IK d� j

+2 . (32)

For 2 ! 4 emissions o↵ quark-antiquark and gluon-
gluon antennae, we use the double-real antenna func-
tions in [44, 45, 47]. We note that NLO quark-gluon
antenna functions appear in the Standard Model at low-
est order for three final-state particles and are hence not
of interest for our test case of e+e� ! j j. We wish
to point out, however, that the NLO quark-gluon an-
tenna functions in [46, 47] contain spurious singularities
which have to be removed before a shower implementa-
tion is possible.

As a validation, we show in fig. 1 the ratio of the
four-jet to three-jet evolution variable for e+e� ! 4 j at
p

s = 240 GeV. To focus on the perturbative realm, the
shower evolution is constrained to the region between
t0 = s and tc = (5 GeV)2. The region > 0 corresponds
to the unordered part of phase space to which strongly-
ordered showers cannot contribute. Due to the use of
sector showers, there is a sharp cut-o↵ at the bound-
ary between the ordered and unordered region, as the

sector criterion ensures that the last emission is always
the softest and therefore, no recoil e↵ects can spoil the
strong ordering of the shower. As expected, the inclu-
sion of direct 2 ! 4 branchings gives access to the un-
ordered parts of phase space, a crucial element of our
matching method.

4.3. LO Matrix-Element Corrections

In order for the shower expansion to match the fixed-
order calculation, we need (iterated) 2 7! 3 tree-level
MECs and (direct) 2 7! 4 tree-level MECs. Both take
a particularly simple form in the sector-antenna frame-
work, as will be shown below.

At leading-colour, tree-level MECs to the ordered
sector shower can be constructed as [55, 67]

wLO,LC
2 7!3,i (�2,�+1) =

RLC
i (�2,�+1)

P
j ⇥

sct
j/IK Asct

j/IK(pi, p j, pk)B(�2)
,

wLO,LC
3 7!4,i (�3,�+1) =

RRLC
i (�3,�+1)

P
j ⇥

sct
j/IK Asct

j/IK(pi, p j, pk)RLC
i (�3)

,

7

Campbell, Hoeche, Li, 
Preuss, Skands: 2108.07133

https://arxiv.org/abs/2108.07133
https://arxiv.org/abs/2108.07133
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Next: Resonance Decays
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Unstable resonances (top quarks, Z/W 
bosons, and Higgs bosons) will decay

d�̂0

… and their decay products will shower

Hard Interaction

Resonance Decays

Matrix Elements

Final-State Radiation

Initial-State Radiation

QED Radiation

Weak Showers



2. How does a process with unstable particles radiate?

24

๏First step = factorise production and decay(s) 
•Treat production as if all produced particles were stable 
•

Q
ED

 d
ip

ol
e

• Recoil effects do not change the invariant mass of each particle 
• => Preserves the Breit-Wigner shape

“Radiation in Production”

Charged 

particle



Radiation in Decays

25

๏Conventional “sequential” treatment 
•Treat each decay (sequentially) as if alone in the universe 

QED tripole

⊗

W+

t

b
w =

−2
9

w =
2
3

w =
1
3

• Shower explicitly preserves total invariant mass inside each system 
• => Preserves the Breit-Wigner shape



• Question: 
• What about radiation at energies   (and )?Eγ ≲ Γt Eγ ≲ ΓW

Radiation in Decays

26

๏Conventional “sequential” treatment 
•Treat each decay (sequentially) as if alone in the universe 

QED tripole

⊗

W+

t

b
w =

−2
9

w =
2
3

w =
1
3



Beyond the Narrow-Width Limit
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•What does a long-wavelength photon see? 
๏ It should not be able to resolve the (short-lived) intermediate state

PRODUCTION

⊗

W+

t

b

⊗

w =
2
3

• ➤ Expect interference between 
decay(s) 

• For wavelengths λ ≳
ℏc
Γ

W−

wbW+ =
1
3

wWW = 1

wW−b̄ =
1
3

wW+b̄ =
−1
3

wbW− =
−1
3

wbb̄ =
1
9

QED 
quadrupole

Should affect radiation spectrum, for energies    
+ Interferences and recoils between systems => non-local BW modifications

Eγ ≲ Γ

b̄



Interleaved Resonance Decays (VINCIA)
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๏Overlap between EW shower and resonance decays

Q2

W!qq̄0

Q2

b W+

q q̄0

t

Q2

t!bW

b q q̄0

Hard system Resonance system Resonance system

m2

t

m2

W

Q2

hard

Figure 1: Illustration of the recursive resonance treatment in a top-decay system.

non-interleaved treatments, these scales set the upper kinematic limits for the showers that take
place inside each of the resonance-decay systems. These showers do not involve recoils to any
partons outside of the respective resonance-decay system, hence they preserve the total invariant
mass of it and thereby also the shape of its Breit-Wigner distribution. The new aspect is the
introduction of the scales Q

2
t!bW

and Q
2
W!qq̄0 , which are of order the corresponding widths,

below which each of the resonance-decay systems are merged into their production system(s).
Extending eq. (1) to include interleaved resonance decays, it becomes:

dP

dQ2
=

dP
RES

dQ2
+

✓
dP

MPI

dQ2
+

dP
ISR+FSR

dQ2

◆
(5)

⇥ exp

"
�

Z
Q

2
i�1

Q2
dQ

02
✓

dP
MPI

dQ02 +
dP

ISR+FSR

dQ02

◆#
,

where it is understood that the ISR+FSR term includes a sum over QED and QCD radiators,
and similarly the RES term includes a sum over decayers.

Di↵erent from conventional interleaved parton-shower and MPI kernels, we do not include
the term dP

RES
/dQ

2 in the Sudakov factor. This is because the probability density expressed
by the Breit-Wigner distribution is already unitary and contains its own infinite-order resum-
mation. In other words: if a resonance is produced, its decay happens once, and once only; there
is no need for a Sudakov-style resummation of it. Due to the interleaving with in particular the
EW shower, there is, however, a finite probability (given by the EW Sudakov factor) that the
resonance will undergo one or more EW branchings before it gets a chance to decay. We return
to this in sec. 3.

6

Brooks, PS, Verheyen, 

SciPost Phys. 12 (2022) 3, 101 

[arXiv:2108.10786]

https://arxiv.org/abs/2108.10786
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d�̂0

Confinement
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๏Event structure still in terms of (colour-charged) quarks & gluons 
•Confinement must set in when they reach O(1fm) relative distances.

Between a single quark-antiquark 
pair, we know the long-distance 
behaviour is a linear potential

“Cornell potential”: 

 V(r) = −
4
3

αs

r
+ κr

r0 = 0.5fm κ ∼ 0.9 GeV/fm



Time to call a string a string
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๏What physical system has a linear potential? A string. 

๏

MPIMPI

d�̂0

•This is the basis for the Lund 
String Fragmentation Model  
Andersson, Gustafson, Pettersson, Sjöstrand, … (’78 - ‘83) 

A comparatively simple 1+1 
dimensional model of massless 
relativistic strings, with tension 

 κ ∼ 1 GeV/fm

➤ The signature feature 
of the Pythia Monte 

Carlo event generator 



Hadronisation
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๏Original Figure: 
2203.11601

More about strings and recent exciting 
discoveries at LHC in my next seminar Nov 30

๏➤ We finally have a model that can 
be compared to experiments …

https://arxiv.org/abs/2203.11601


Anatomy of an LHC Collision

32

Hard Interaction
Resonance Decays

MECs, Matching & Merging

FSR

ISR*
QED

Weak Showers

Hard Onium
Multiparton Interactions

Beam Remnants*
Strings

Ministrings / Clusters

Colour Reconnections
String Interactions

Bose-Einstein & Fermi-Dirac
Primary Hadrons

Secondary Hadrons

Hadronic Reinteractions
(*: incoming lines are crossed)

๏Original Figure: 
2203.11601

https://arxiv.org/abs/2203.11601

