Particle Theory Seminar, Oxford, 19 October 2023

Anatomy of an LHC Collision — and Challenges for the Future

Peter Skands

RS Wolfson Visiting Fellow, U of Oxford / Merton College, and Monash U.

Australian Government

Australian Research Council

LHC Collisions – Theory vs Real Life

Theory Goal: Use LHC measurements to test hypotheses about Nature.

But have no exact solutions to QFT for the SM or Beyond How to make predictions to form (reliable) conclusions?

Colliding Protons

Problem #1: we are colliding — and observing — hadrons Strongly bound states of quarks and gluons (non-perturbative QCD)

How do we connect this...

Elementary Fields & Symmetries "Fundamental" parameters. Asymptotic freedom, perturbative QFT

... with this?

"Emergent" degrees of freedom Jets of hadrons

What do I mean by "Emergent" degrees of freedom?

G.H.Lewes (1875): "the emergent is **unlike its components** insofar as ... it **cannot be reduced** to their sum or their difference."

In Quantum Field Theory: "Components" = Elementary interactions — encoded in the Lagrangian Perturbative expansions ~ elementary interactions to n^{th} power

What else is there? Structure beyond (fixed-order) perturbative expansions:*Fractal scaling*, of jets within jets within jets ...JETS (& RGEs)*Confinement (in QCD)*, of coloured partons within hadronsSTRINGS

Image Credits: mrwallpaper.com

Image Credits: Yeimaya

Textbook "quark-model" proton:

- Three quarks
- Quark-model flavour & spin wave functions

Real-life hadrons

Are composite & strongly bound, with time-dependent structure

For wavelengths ~ confinement scale:

quark & gluon plane waves are not going to be good approximations

 \implies forget about the interaction picture and perturbation theory

Figure by T. Sjöstrand

Asymptotic Freedom in QCD (Gross, Politzer, Wilczek – Nobel 2004)

Over **short** distances, quarks and gluons **do** behave like *almost* free particles Then it's OK to start from free-field solutions (plane waves) and treat interactions as perturbations \implies The interaction picture and perturbation theory are saved!

Hadron-level cross sections can be computed as (sums over): **Perturbative Parton-level cross sections Parton Distribution Functions** Thus, we can compute, e.g., the total top-quark-pair cross section we expect at LHC:

(carrying fractions x_a and x_b of the respective proton energies) These (& equivalent quark ones) were measured at previous colliders (esp. HERA); increasingly now also at LHC itself.

(Collins, Soper, '87)

Great! Now can we compare to measurements?

With factorisation, we recover the use of perturbation theory (for high-scale processes*) But we also lose a lot of detail (and still cannot address low scales)

*for so-called Infrared and Collinear Safe Observables

Beware: scale hierarchies

In a $t\bar{t}$ + jets event like this one, there are a lot of different scales

The top mass and pT values Jet pT scales Substructure scales? Top (and W) decay scales

The problem with fixed-order perturbation theory

The relative accuracy of fixed-order pQCD is reduced for processes/ observables that involve scale hierarchies

Schematic example

NNLO calculation of the rate of events passing a jet veto

 $L \propto \ln(p_{\perp veto^2} / Q_{hard}^2)$ Total loss of predictivity if the veto scale $p_{\perp veto}$ is so small that $\alpha_s L^2 \sim 1$. Reduced precision even for higher veto scales. Logs counteract naive suppression.

Fixed-Order calculations most accurate for single-single scale problems Effective accuracy reduced for processes/observables with scale hierarchies

- NNLO

$$(L^4 + L^3 + L^2 + L + F_2)$$

Naively, QCD radiation suppressed by a_s≈0.1

 \rightarrow Truncate at fixed order = LO, NLO, ...

But beware the jet-within-a-jet-within-a-jet ...

Example: SUSY pair production at LHC₁₄, with M_{SUSY} ≈ 600 GeV

LHC - sps1a - m~600 Ge	Plehn, Rainwater, PS PLB645(200)					
FIXED ORDER pQCD	$\sigma_{\rm tot}[{\rm pb}]$	$ ilde{g} ilde{g}$	$\tilde{u}_L \tilde{g}$	$\tilde{u}_L \tilde{u}_L^*$	$\tilde{u}_L \tilde{u}_L$	
$p_{T,j} > 100 \text{ GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1
inclusive X + 1 "jet"	$\rightarrow \sigma_{1j}$	2.89	2.74	0.136	0.145	0
inclusive X + 2 "jets" –	$ ightarrow \sigma_{2j}$	1.09	0.85	0.049	0.039	0
$p_{T,j} > 50 \text{ GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1
	σ_{1j}	5.90	5.37	0.283	0.285	1
	σ_{2j}	4.17	3.18	0.179	0.117	1

(Computed with SUSY-MadGraph)

All the scales are high, $Q \gg 1$ GeV, so perturbation theory **should** be OK

Perturbation theory for Multiscale Problems

Fixed Order:

Extend perturbation theory by resumming logs to all orders

(Here using a slightly unconventional exponentiated "double-log" counting based on $\alpha_{\rm s}L^2 \sim 1$ instead of $\alpha_{\rm s}L \sim 1$

NNLO

$$+L^{2}+L+F_{2}$$
)

What does this look like?

Schematic Example: starting scale = 100 GeV

Conventional ("Caesar-style") log counting Based on $\alpha_{\rm s}L \sim 1$

Exponentiated "double-log" counting Based on $\alpha_s L^2 \sim 1$

Universality of Bremsstrahlung Logs

Most bremsstrahlung is driven by **divergent propagators** → simple universal structure, independent of process details

Amplitudes *factorise* in singular limits

In **collinear** limits, we get so-called **DGLAP** splitting kernels: $|\mathcal{M}_{F+1}(\ldots,a,b,\ldots)|^2 \xrightarrow{a||b} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots,a+b,\ldots)|^2$

In **soft** limits $(E_g/Q \rightarrow 0)$, we get dipole factors (same as classical):

$$|\mathcal{M}_{F+1}(\ldots,i,j,k\ldots)|^2 \stackrel{j_g \to 0}{\to} g_s^2 \mathcal{C} \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots,i,k,\ldots)|^2$$

These limits are not independent; they overlap in phase space. How to treat the two consistently has given rise to **many** individual approaches: Angular ordering, angular vetos, dipoles, global antennae, sector antennae, ...

After 40 years of development, how far have we got?

- In fixed-order perturbative QCD (pQCD): $LO \rightarrow NLO \rightarrow NNLO \rightarrow N^{3}LO \leftarrow State of the art for simple processes$ ¹ State of the art for complex processes
- Translates to accuracies of order a few per cent or better
- For all-orders showers, it makes no sense to count "orders" Instead, we count "logarithms" (arising from $1/Q^2$ propagators on previous slide integrated over phase spaces $\propto dQ^2$)
- **Until very recently:** (NB: several ways to count logs, here using conventional $\alpha_s L \sim 1$ counting) Angular ordering (80s): (N)LL Modern dipole/antenna showers: (N)LL Colour flow also still "leading colour" (with small refinements)

Last remaining "leading" frontiers in pQCD

Many **new** efforts over the past decade! (Notably, PanScales, here in Oxford)

Why is that hard?

Simplified analogy:

Using a "Koch snowflake" as a stand-in for perturbation theory

Some Complications

Showers are quantum stochastic processes, not deterministic rules Several branching types:

- $q \rightarrow qg, g \rightarrow gg, \ldots$
- On multiparton phase spaces
- (+ overlaps/double-counting/dead zones)

Colour and spin structure

- + Interference effects
- Universality
- Start from *any* hard process ~ starting shape
- Scaling violation (QCD is not conformal)
- **Exact Conservation Laws**

Unitarity: need perfect cancellations between (singular) real and virtual corrections.

Matching, Merging, and Matrix-Element Corrections

- Essentially: use exact rule for first few orders; then let shower approximation take over
 - LO matrix-element corrections (> Sjöstrand et al., 80s) LO merged calculations (> CKKW, Lönnblad, '00s + more recent) NLO matched calculations (> MC@NLO, POWHEG '00s)

State of the art (for LHC phenomenology right now): Merging several NLO + PS matched calculations (> UNLOPS, FxFx, ...)

Intense activity; here just using "my" projects as representative examples: NNLO + PS matching (Proof of concept ➤ Campbell, Hoeche, Li, Preuss, PS, '21) Iterated LO matrix-element corrections (> soon...) Iterated NLO matrix-element corrections (> in a while ()) Limiting factors are **complexity growth** & **shower accuracy**

Complexity Growth: a bottleneck for matching and merging

In conventional ("global") showers, each phase-space point receives contributions from many possible branching "histories" (="clusterings") \sim sum over (singular) diagrams \implies full singularity structure \checkmark

		Number of Histories for $n \ { m Branchings}$ (Starting from a single $qar q$ pair)							
		n = 1	n = 2	n = 3	n = 4	n = 5	n = 6	n = 7	
	CS Dipole	2	8	48	384	3840	46080	645120	
) (Global Antenna	1	2	6	24	120	720	5040	

[~] Fewer partial-fractionings, but still factorial growth

For CKKW-L style merging: (incl UMEPS, NL3, UNLOPS, ...) Need to take all contributing shower histories into account. Bottleneck at high multiplicities (+ high code complexity)

New in PYTHIA (8.3): Sectorized Antenna Showers in Vincia

PartonShowers:Model = 2

Sector antennae: no partial-fractioning of any singularities.

Divide the *n*-gluon phase space up into *n* non-overlapping sectors, inside each of which only the most singular (~" classical") kernel is allowed to contribute.

Lorentz-invariant def of "most classical" gluon based on "ARIADNE p_T ":

 $p_{\perp j}^2 = \frac{S_{ij}S_{jk}}{S_{iik}}$ with $s_{ij} \equiv 2(p_i \cdot p_j)$ (+ generalisations for heavy-quark emitters)

Achieves (N)LL with a single history.

Factorial \rightarrow constant scaling in number of gluons. Generalisation to $g \rightarrow q\bar{q} \Longrightarrow$ factorial in # of same-flavour quark pairs.

Brooks, Preuss & PS 2003.00702 (+ Lopez-Villarejo & PS 1109.3608)

Kosower, hep-ph/9710213 hep-ph/0311272 (+ Larkoski & Peskin 0908.2450, 1106.2182)

Gustafson & Pettersson, NPB 306 (1988) 746

New: Sectorized CKKW-L Merging in Pythia 8.306

Brooks & Preuss, "Efficient multi-jet merging with the VINCIA sector shower", 2008.09468

Ready for serious applications

Work ongoing to optimise baseline algorithm. Discovery Project (22): NNLO matching, $2 \rightarrow 4$ sector antennae, NLO interfaces, ... Vincia tutorial: http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf

The Final Frontier: Shower Accuracy

2nd-order radiative corrections

Iterating only single emissions, one after the other, will fail to properly describe multiemission interferences & correlations

Iterating single and double emissions -> problematic overlaps, double counting

Next: Resonance Decays

... and their decay products will shower

2. How does a process with unstable particles radiate?

First step = factorise production and decay(s) Treat production as if all produced particles were stable

"Radiation in Production"

Recoil effects do not change the invariant mass of each particle

=> Preserves the Breit-Wigner shape

Radiation in Decays

Conventional "sequential" treatment Treat each decay (sequentially) as if alone in the universe

Shower explicitly preserves total invariant mass inside each system

=> Preserves the Breit-Wigner shape

Radiation in Decays

Conventional "sequential" treatment Treat each decay (sequentially) as if alone in the universe

Question: What about radiation at energies $E_{\gamma} \lesssim \Gamma_t$ (and $E_{\gamma} \lesssim \Gamma_W$)?

Beyond the Narrow-Width Limit

What does a long-wavelength photon see?

It should not be able to resolve the (short-lived) intermediate state

Should affect radiation spectrum, for energies $E_{\gamma} \lesssim \Gamma$ + Interferences and recoils between systems => non-local BW modifications

Interleaved Resonance Decays (VINCIA)

Confinement

Event structure still in terms of (colour-charged) quarks & gluons Confinement must set in when they reach O(1fm) relative distances.

Time to call a string a string

What physical system has a linear potential? A string.

This is the basis for the **Lund String Fragmentation Model**

Andersson, Gustafson, Pettersson, Sjöstrand, ... ('78 - '83)

A comparatively simple 1+1 dimensional model of massless relativistic strings, with tension $\kappa \sim 1 \text{ GeV/fm}$

> The signature feature of the Pythia Monte Carlo event generator

Hadronisation

More about strings and recent exciting discoveries at LHC in my next seminar Nov 30

> We finally have a model that can be compared to experiments ...

Anatomy of an LHC Collision

- O Hard Interaction
- Resonance Decays
- MECs, Matching & Merging
- FSR
- ISR*
- QED
- Weak Showers
- Hard Onium
- Multiparton Interactions
- Beam Remnants*
- Strings
- Ministrings / Clusters
- Colour Reconnections
- String Interactions
- Bose-Einstein & Fermi-Dirac
- Primary Hadrons
- Secondary Hadrons
- Hadronic Reinteractions
- (*: incoming lines are crossed)