NNLO Matrix-Element Corrections

1. Brief overview of current (N)NLO matching approaches (using off-the-shelf showers, with LO Shower Kernels)
2. New: fully-differential NNLO matching scheme (based on "sectorised" NLO Shower Kernels \rightarrow VinciaNNLO)
3. Outlook

Peter Skands (Monash University)

Fixed Order Calculations \& Parton Showers

Fixed Order pQCD

Hard QCD corrections
Well-resolved jets

Parton Showers

Jet substructure \& soft radiation; recoil effects
Precursor for hadronisation, particle-level events

Definition: $\sigma_{j}^{(\ell)}=$ perturbative coefficient* for $\mathrm{X}+j$ jets, at order $\left(\alpha_{s}\right)^{j+\ell} \sigma_{0}^{(0)}$
= The full perturbative coefficient
$=$ LO shower kernel (correct single-unresolved limits, leading poles)

NLO + PS Matching

NLO singularity structure $=$ single-unresolved limits

(4) Matched by LO kernels in off-the-shelf showers*
*Still glossing over some colour subtleties, not the main point here.

NLO+PS: two general approaches

- MC@NLO [Frixione, Webber hep-ph/0204244] modified subtraction with shower kernels
- PoWHEG [Nason hep-ph/0409146] [Bengtsson, Sjöstrand, PLB185(1987)435] Born-local NLO weight + MEC in shower
$\binom{$ refinements KRKNLO [Jadach et al. 1503.06849] }{ and MAcNLOPS [Nason, Salam 2111.03553] }

Some "challenges" (largely well explored \& understood by now, but relevant to remind before discussing NNLO)
[Frederix et al., 2002.12716]
Mc@NLO: subtraction terms for each PS; negative weights (\rightarrow Mc@NLO- Δ) Powheg: mismatches between POWHEG and PS evolution variables can be numerically important even when formally subleading (\rightarrow truncated showers)

Status of NNLO + PS Matching

NNLO singularity structure $=$ single- and double-unresolved limits

- Double-unresolved / 2nd-order singularities not matched by (iterated) LO kernels.
* These must be dealt with (regulated/unitarised) entirely on the non-shower side.

NNLO+PS: first approaches, for some processes

- UN2LOPS [Höche et al. 1405.3607] inclusive NNLO + unitary merging
- NNLOPS/MiNNLOPS
[Hamilton et al. 1212.4504]/[Monni et al. 1908.06987] regulated NLO Powheg $1 j+$ NNLO
- GENEVA [Alioli et al. 1211.7049]

NNLO matched resummation + truncated shower
Some challenges (depending on your point of view):
UN2LOPS: Sudakov from explicit unitarisation \rightarrow event-weight flips \rightarrow low efficiencies?
MiNNLOps/GenEVA: need analytic NNLL-NNLO Sudakov; done for several processes.
Resummation and shower pt variables must be the same to LL. Effects of mismatches beyond controlled orders? Complex processes / "semi-unresolved" kinematics?

Much Recent Progress (since ~ 2021)

MiNNLOPS

Photon Pair Production [Gavardi et al., 2204.12602]
Top Pair Production [Mazitelli et al., 2112.12135]
VH production (with $H \rightarrow b \bar{b}$) [Zanoli et al., 2112.04168], (Haisch et al., 2204.00663]
V \& $\mathrm{V} \gamma$ production [Buonocore et al., 2108.05337], [Lombardi et al., 2103.12077], [Lombardi et al., 2010.10478]
Full summary in Snowmass contribution [Buonocore et al., 2203.07240]

Geneva

$\mathrm{V} \gamma$ production [Cridge et al., 2105.13214]
ZZ production [Alioli et al., 2103.01214]
Colour-singlet + N3LL [Alioli et al., 2102.08390]
Photon pair production [Alioli et al., 2010.10498]

UN2LOPS

Recently, mainly conceptual work on N3LO matching (TOMTE) ${ }_{[\text {Prestel }}^{\text {[Bene, } 2106.03206]}$ [Bertone, Prestel, 2202.01082]

New Approach: NNLO Matrix-Element Corrections

A Brief History of Matrix-Element Corrections

Historically, the oldest matching strategy

FSR: [Bengtsson, Sjöstrand, PLB185(1987)435];
ISR: [Miu, Sjöstrand, hep-ph/9812455]
Start from Born configuration; generate 1 st shower emission as usual
But include real-emission ME/PS factor in accept probability
\rightarrow PYtHIA default for hardest emission in single-H/V production processes \& in
most 2-body decays (incl BSM)

Value of coefficients changed via unitarity but singular structure unchanged

HERWIG also introduced MECs (+ ME events to populate a.o. dead zone) [Seymour, hep-ph/9410414]

POWHEG: [Nason hep-ph/0409146]
Also include Born-local NLO K-factor

+ Shower-agnostic formulation applicable to general processes
\rightarrow POWHEG BOX [Alioli et al, 1002.2581]

	0	1	2	3	$\xrightarrow{\text { Legs }}$
0	$\sigma_{0}(0)$	$\sigma_{1}(0)$	$\sigma_{2}{ }^{(0)}$	$\sigma_{3}(0)$	
$\stackrel{\square}{\circ} 1$	$\sigma_{0}{ }^{(1)}$	$\sigma_{1}{ }^{(1)}$	$\sigma_{2}{ }^{(1)}$	\ldots	
2	$\sigma_{0}{ }^{(2)}$	$\sigma_{1}{ }^{(2)}$..		

Powheg as MECs

Powheg master formula (for 2 Born jets):
O Born $\mid \mathrm{M}^{2} \quad$ Born One-loop MEC

$$
\langle O\rangle_{\mathrm{NLO}+\mathrm{PS}}^{\mathrm{POWHEG}}=\int \mathrm{d} \Phi_{2} \underset{\mathrm{~B}\left(\Phi_{2}\right)}{\stackrel{k_{\mathrm{NLO}}\left(\Phi_{2}\right)}{\underbrace{\mathcal{S}_{2}\left(t_{0}, O\right)}_{\text {local } K \text {-factor }}} \begin{array}{|c|}
\mathcal{S}_{\text {shower operator }}
\end{array} \text { Shower off Born }}
$$

Main trick: matrix-element correction (MEC) in first shower emission

$$
\mathcal{S}_{2}\left(t_{0}, O\right)=\Delta_{2}\left(t_{0}, t_{\mathrm{c}}\right) O\left(\Phi_{2}\right)+\int_{t_{\mathrm{c}}}^{t_{0}} \prod_{\text {Shower PS and kernel }}^{\mathrm{d} \Phi_{+1} A_{2 \mapsto 3}\left(\Phi_{+1}\right) w_{2 \mapsto 3}^{\mathrm{MEC}}} \Delta_{2}\left(t, t_{\mathrm{c}}\right) O\left(\Phi_{2}\right)
$$

Powheg as MECs

Powheg master formula (for 2 Born jets):
O Born $\mid \mathrm{M}^{2} \quad$ Born One-loop MEC

$$
\langle O\rangle_{\stackrel{\text { NLO }+\mathrm{PS}}{\mathrm{POWHEG}}}^{\mathrm{NLH}}=\int \mathrm{d} \Phi_{2} \underset{\mathrm{~B}\left(\Phi_{2}\right)}{\substack{k_{\mathrm{NLO}}\left(\Phi_{2}\right)}} \begin{array}{|c}
\mathcal{S}_{2}\left(t_{0}, O\right) \\
\hline \text { local } K \text {-factor shower operator }
\end{array}
$$

Main trick: matrix-element correction (MEC) in first shower emission

$$
\mathcal{S}_{2}\left(t_{0}, O\right)=\Delta_{2}\left(t_{0}, t_{\mathrm{c}}\right) O\left(\Phi_{2}\right)+\int_{t_{\mathrm{c}}}^{t_{\text {Shower PS and kernel }}^{t_{0}} \mathrm{~d} \Phi_{+1} A_{2 \mapsto 3}\left(\Phi_{+1}\right) \omega_{2 \mapsto 3}^{\mathrm{MEC}}} \Delta_{2}\left(t, t_{\mathrm{c}}\right) O\left(\Phi_{2}\right)
$$

where $w_{2 \mapsto 3}^{\mathrm{MEC}}=\frac{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}{A_{2 \mapsto 3}\left(\Phi_{+1}\right) \mathrm{B}\left(\Phi_{2}\right)}$ and

Global showers: denominator is generally a sum of terms
Sector showers: denominator is normally a single term (discussed more later)

POWHEG as MECs

Powheg master formula (for 2 Born jets):

$$
\langle O\rangle_{\mathrm{NLO}+\mathrm{PS}}^{\mathrm{POWHEG}}=\int \mathrm{d} \Phi_{2} \underbrace{\mathrm{~B}\left(\Phi_{2}\right)}_{\text {local } K \text {-factor }} \stackrel{k_{\text {shower operator }}^{k_{\mathrm{NLO}}\left(\Phi_{2}\right)}}{\mathcal{S}_{2}\left(t_{0}, O\right)}
$$

Main trick: matrix-element correction (MEC) in first shower emission

Global showers: denominator is generally a sum of terms
Sector showers: denominator is normally a single term (discussed more later)

Possible to do NNLO Matching via Iterated MECs ?

Iterated MECs not possible with off-the-shelf showers

E.g., strong p_{\perp}-ordering cuts out part of the second-order phase space

Double-differential distribution in $\frac{p_{\perp 1}}{m_{Z}} \& \frac{p_{\perp 2}}{p_{\perp 1}}>$
Example point: $\mathrm{Q}_{0}=91 \mathrm{GeV}, \mathrm{P}_{\mathrm{T} 1}=5 \mathrm{GeV}, \mathrm{P}_{\text {т } 2}=8 \mathrm{GeV}$ Unordered but has $p_{\perp 2} \ll Q_{0}$: "Double Unresolved"

Example: $Z \rightarrow q g g \bar{q}$

$$
R_{4}=\frac{\text { Sum(shower histories) }}{\left|M_{Z \rightarrow 4}^{(\mathrm{LOLLC})}\right|^{2}}
$$

(Note: due to recoil effects, swapping the order of the two branchings does not simply give PT1 $=$ $8 \mathrm{GeV}, \mathrm{P}_{T 2}=5 \mathrm{GeV}$ but for this example point just produces a different unordered set of scales.)

Vice to Virtue: Define Ordered and Unordered Phase-Space Sectors

Ordered clusterings \Leftrightarrow iterated single branchings
Unordered clusterings \Leftrightarrow new direct double branchings

Vice to Virtue: Define Ordered and Unordered Phase-Space Sectors

Ordered clusterings \Leftrightarrow iterated single branchings
Unordered clusterings \Leftrightarrow new direct double branchings

Corresponding Feynman diagram(s) have highly off-shell intermediate propagator

Intermediate "clustered" on-shell 3-parton state at (C) is merely a convenient stepping stone in phase space \Rightarrow integrate out

Direct (unordered) Double-Branching Generator

Sudakov integral for direct double branchings above scale $Q_{B}<Q_{A}$:

Generic doublebranching kernel
$-\ln \Delta\left(Q_{A}^{2}, Q_{B}^{2}\right)=\int_{0}^{Q_{A}^{2}} \mathrm{~d} Q_{1}^{2} \int_{Q_{B}^{2}}^{Q_{A}^{2}} \mathrm{~d} Q_{2}^{2} \Theta\left(Q_{2}^{2}-Q_{1}^{2}\right) f\left(Q_{1}^{2}, Q_{2}^{2}\right)$
We use: [Li \&PS (2017); Giele, Kosower, Ps (2011)]

$$
f\left(Q_{1}^{2}, Q_{2}^{2}\right) \propto \frac{\alpha_{s}^{2}\left(Q_{2}^{2}\right)}{Q_{2}^{2}\left(Q_{1}^{2}+Q_{2}^{2}\right)} \text { beackups sides }
$$

Swap integration order: outer integral along $\mathbf{Q}_{\mathbf{2}}$

$$
=\int_{Q_{B}^{2}}^{Q_{A}^{2}} \mathrm{~d} Q_{2}^{2} \int_{0}^{Q_{2}^{2}} \mathrm{~d} Q_{1}^{2} f\left(Q_{1}^{2}, Q_{2}^{2}\right)=\int_{Q_{B}^{2}}^{Q_{A}^{2}} \mathrm{~d} Q_{2}^{2} F\left(Q_{2}^{2}\right)
$$

\rightarrow First generate physical scale Q_{B}, then generate $0<Q_{1}<Q_{B}+\operatorname{two} z$ and φ choices

NNLO MECs

Iterated + Direct double branchings allows to fill all of phase space

\Longrightarrow Can now consider NNLO MECs
Proof of concept for hadronic Z decays in VINCIA: [Campbell, Höche, Li, Preuss, Ps, 2108.07133]

Idea: "Powheg at NNLO" (focus here on $e^{+} e^{-} \rightarrow 2 j$) "Two-loop MEC"

$$
\langle O\rangle_{\mathrm{NNLO}+\mathrm{PS}}^{\mathrm{VINCIA}}=\int \mathrm{d} \Phi_{2} \mathrm{~B}\left(\Phi_{2}\right) \underset{\text { local } K \text {-factor }}{k_{\mathrm{NNLO}}\left(\Phi_{2}\right)} \underset{\text { shower operator }}{\mathcal{S}_{2}\left(t_{0}, O\right)}
$$

Need:
(1) (Born-local) NNLO K-factors
(2) shower filling strongly-ordered and unordered regions of 1 - and 2-emission phase space
(3) tree-level MECs in strongly-ordered and unordered shower paths
(4) NLO MECs in the first emission

1. Born-Local NNLO K-factor

Reweight each Born-level event by local K-factor

$$
\begin{aligned}
k_{\mathrm{NNLO}}\left(\Phi_{2}\right) & =1+\frac{\mathrm{V}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{S}}^{\mathrm{NLO}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{VV}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{T}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}_{\mathrm{S}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)} \\
& +\int \mathrm{d} \Phi_{+1}\left[\frac{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{S}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{RV}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{T}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{B}\left(\Phi_{2}\right)}\right] \\
& +\int \mathrm{d} \Phi_{+2}\left[\frac{\mathrm{RR}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{S}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}\right]
\end{aligned}
$$

Fixed-Order Coefficients:

Subtraction Terms (not tied to shower formalism):

Note: requires "Born-local" NNLO subtraction terms. Currently only for simplest cases. Some ideas what to do in meantime - but anticipate such subtractions in near future

\otimes Shower Operator with Second-Order MECs

Key aspect
up to matched order, include process-specific NLO corrections into shower evolution:
(1) correct first branching to exclusive $\left(<t^{\prime}\right)$ NLO rate:

$$
\Delta_{2 \mapsto 3}^{\mathrm{NLO}}\left(t_{0}, t^{\prime}\right)=\exp \left\{-\int_{t^{\prime}}^{t_{0}} \mathrm{~d} \Phi_{+1} \underline{\mathrm{~A}_{2 \mapsto 3}\left(\Phi_{+1}\right) w_{2 \mapsto 3}^{\mathrm{NLO}}}\left(\Phi_{2}, \Phi_{+1}\right)\right\}
$$

Iterated:

(Ordered)

(3) add direct $2 \mapsto 4$ branching and correct it to LOME:

$$
\Delta_{2 \mapsto 4}^{\mathrm{LO}}\left(t_{0}, t\right)=\exp \left\{-\int_{t}^{t_{0}} \mathrm{~d} \Phi_{+2}^{>} \underline{\left.\mathrm{A}_{2 \mapsto 4}\left(\Phi_{+2}\right) w_{2 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{2}, \Phi_{+2}\right)\right\}}\right.
$$

\Rightarrow entirely based on MECs and sectorisation
\Rightarrow by construction, expansion of extended shower matches NNLO singularity structure

Direct:

(Unordered)

2. Shower Filling both Single- and

Double-Branching Phase Space

Based on Sector Antennce

Sectorised Branching Formalism

Suggested by Kosower [Kosower, PRP57(199855410; PRD71 (200050455016]; aso used in Larkoski \& Peskin, PRD881(20010)054010; PRD8442011)330034]

Divide n-gluon phase space into n non-overlapping sectors, inside each of which only the most singular kernel is allowed to contribute.
\Longrightarrow Each sector branching kernel must contain the full soft-collinear singular structure of its sector ∇

Lorentz-invariant def of "most singular" gluon:

Based on ARIADNE $p_{\perp j}^{2}=\frac{s_{i j} s_{j k}}{s_{i j k}}$ with $s_{i j} \equiv 2\left(p_{i} \cdot p_{j}\right)$
(+ generalisations for heavy-quark emitters)
Suitable for antenna approach. Vanishes linearly when either $s_{i j} \rightarrow 0$ or $s_{j k} \rightarrow 0$, quadratically when both $\rightarrow 0$.
(Avoids splitting collinear and soft into separate sectors).

Produces same singularity structure as global

 approach, with a single history.\Longrightarrow with a single unique scale
(Generalisation to $g \rightarrow q \bar{q} \Longrightarrow$ factorial growth in same-flavour quark pairs.)

Example: single-branching
sectors in $H \rightarrow g_{i} g_{j} g_{k}$

Single-Branching Sector Kernels

Sector antenna functions have to incorporate full single-unresolved limits for given PS point - e.g. (FF) $q g \mapsto q g g\left(s_{i j}=2 p_{i} \cdot p_{j}\right)$:

$$
A_{q g \mapsto q g g}^{\text {sct }}\left(i_{q}, j_{g}, k_{g}\right) \rightarrow \begin{cases}\frac{2 s_{i k}}{s_{i j} s_{j k}} & \text { if } j_{g} \text { soft } \\ \frac{1}{s_{i j}} \frac{1+z^{2}}{1-z} & \text { if } i_{q} \| j_{g} \\ \frac{1}{s_{j k}} \frac{2(1-z(1-z))^{2}}{z(1-z)} & \text { if } j_{g} \| k_{g}\end{cases}
$$

Compare to global antenna functions:

- only "half" of the $j_{g} \| k_{g}$ limit contained in the splitting kernel:

$$
A_{q g \mapsto q g g}^{\mathrm{gl}}\left(i_{q}, j_{g}, k_{g}\right) \rightarrow \begin{cases}\frac{2 s_{i k}}{s_{i j} j_{j k}} & \text { if } j_{g} \text { soft } \\ \frac{1}{s_{i j}} \frac{1+z^{2}}{1-z} & \text { if } i_{q} \| j_{g} \\ \frac{1}{s_{j k}} \frac{1+z^{3}}{1-z} & \text { if } j_{g} \| k_{g}\end{cases}
$$

- "rest" of the $j k$-collinear limit reproduced by neighbouring antenna ($z \leftrightarrow 1-z$)

The VINCIA Sector Antenna Shower

Full-fledged sector-antenna shower implemented in Pythia 8.304

PartonShowers:Model $=2$ [Brooks, Preuss \& PS 2003.00702]
Sector approach is merely an alternative way to fraction singularities, so formal accuracy* of the shower should be retained.

Note: same (global) tune parameters used for sector runs with Vincia
[Hoche et al., 2106.10987] NB: also fully compatible with POWHEG Box for NLO Matching (dedicated Vincia POWHEG UserHooks).

3. Tree-Level MECs

(for both iterated-single and direct-double branchings)

MECs are extremely simple in sector showers

Sector kernels can be replaced by ratios of (colour-ordered) tree-level MEs:

- Global shower: $A_{I K \rightarrow i j k}^{\mathrm{glb}}(i, j, k) \rightarrow A_{I K \rightarrow i j k}^{\mathrm{glb}} \frac{\left|M_{n+1}(\ldots, i, j, k, \ldots)\right|^{2}}{\sum_{\text {hehistories }} A_{h}\left|M_{n}\left(\ldots I_{h}, K_{h}, \ldots\right)\right|^{2}}=$ crischer \& Prestel 1706.06218]
(-) Sector shower: $A_{I K \rightarrow i j k}^{\text {sct }}(i, j, k) \rightarrow \frac{\left|M_{n+1}(\ldots, i, j, k, \ldots)\right|^{2}}{\left|M_{n}(\ldots I, K, \ldots)\right|^{2}}=$ simple [Lopez-Villarejo \& PS 1109.3608]

Can also incorporate (fixed-order) sub-leading colour effects by "colour MECs":

$$
w_{\mathrm{col}}=\frac{\sum_{\alpha, \beta} \mathcal{M}_{\alpha} \mathcal{M}_{\beta}^{*}}{\sum_{\alpha}\left|\mathcal{M}_{\alpha}\right|^{2}}
$$

Example: $Z \rightarrow q \bar{q}+2 g$

$$
\begin{aligned}
P_{\mathrm{MEC}} & =w_{\mathrm{col}} \frac{A_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)}{A_{3}^{0}\left(\widetilde{13_{q}, \widetilde{34}}, 2_{\bar{q}}\right)} \theta\left(p_{\perp, 134}^{2}<p_{\perp, 243}^{2}\right)+w_{\mathrm{col}} \frac{A_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)}{A_{3}^{0}\left(1_{q}, \widetilde{34_{g}}, \widetilde{\left.23_{\bar{q}}\right)} \theta\left(p_{\perp, 243}^{2}<p_{\perp, 134}^{2}\right)\right.} \\
w_{\mathrm{col}} & =\frac{A_{4}^{0}(1,3,4,2)+A_{4}^{0}(1,4,3,2)-\frac{1}{N_{\mathrm{C}}^{2}} \tilde{A}_{4}^{0}(1,3,4,2)}{A_{4}^{0}(1,3,4,2)+A_{4}^{0}(1,4,3,2)}
\end{aligned}
$$

Real and Double-Real MEC factors

Separation of double-real integral defines tree-level MECs:

$$
\begin{aligned}
& \int_{t}^{t_{0}} \mathrm{~d} \Phi_{+2} \frac{\mathrm{RR}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}=\int_{t}^{t_{0}} \mathrm{~d} \Phi_{+2}^{>} \frac{\mathrm{RR}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\int_{t}^{t_{0}} \mathrm{~d} \Phi_{+2}^{<} \frac{\mathrm{RR}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{B}\left(\Phi_{2}\right)} \\
= & \int_{t}^{t_{0}} \mathrm{~d} \Phi_{+2}^{>} \frac{\mathrm{A}_{2 \mapsto 4}\left(\Phi_{+2}\right) w_{2 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{2}, \Phi_{+2}\right)}{\text { direct/unordered } n \rightarrow n+2} \\
& +\int_{t^{\prime}}^{t_{0}} \frac{\mathrm{~d} \Phi_{+1} \frac{\mathrm{~A}_{2 \mapsto 3}\left(\Phi_{+1}\right) w_{2 \mapsto 3}^{\mathrm{LO}}\left(\Phi_{2}, \Phi_{+1}\right)}{\text { Iterated/ordered branching \#1}} \int_{t}^{t^{\prime}} \mathrm{d} \Phi_{+1}^{\prime} \frac{\mathrm{A}_{3 \mapsto 4}\left(\Phi_{+1}^{\prime}\right) w_{3 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{3}, \Phi_{+1}^{\prime}\right)}{\text { Iterated/ordered branching \#2 }}}{}
\end{aligned}
$$

Iterated tree-level MECs in ordered region:

$$
\begin{aligned}
& w_{2 \mapsto 3}^{\mathrm{LO}}\left(\Phi_{2}, \Phi_{+1}\right)=\frac{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{A}_{2 \mapsto 3}\left(\Phi_{+1}\right) \mathrm{B}\left(\Phi_{2}\right)} \\
& w_{3 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{3}, \Phi_{+1}^{\prime}\right)=\frac{\mathrm{RR}\left(\Phi_{3}, \Phi_{+1}^{\prime}\right)}{\mathrm{A}_{3 \mapsto 4}\left(\Phi_{+1}^{\prime}\right) \mathrm{R}\left(\Phi_{3}\right)}
\end{aligned}
$$

Tree-level MECs in unordered region:

$$
w_{2 \mapsto 4}^{\mathrm{LO}}\left(\Phi_{2}, \Phi_{+2}\right)=\frac{\mathrm{RR}\left(\Phi_{2}, \Phi_{+2}\right)}{\mathrm{A}_{2 \mapsto 4}\left(\Phi_{+2}\right) \mathrm{B}\left(\Phi_{2}\right)}
$$

Thus, the full tree-level 4parton matrix element is imposed

Not only in the direct/ unordered phase-space sector, but also in the iterated/ordered sector

Validation: Real and Double-Real Corrections

4. NLO MECs for the First Emission

The Real-Virtual Correction Factor

$$
w_{2 \mapsto 3}^{\mathrm{NLO}}=w_{2 \mapsto 3}^{\mathrm{LO}}\left(1+w_{2 \mapsto 3}^{\mathrm{V}}\right)
$$

studied analytically in detail for $Z \rightarrow q \bar{q}$ in [Hartgring, Laenen, Skands 1303.4974]:

\Rightarrow now: generalisation \& (semi-)automation in VINCIA in form of NLO MECs

Real-Virtual Corrections: NLO MECs

Rewrite NLO MEC as product of LO MEC and "Born"-local K-factor $1+w^{\mathrm{V}}$
("Powheg in the exponent"):

$$
w_{2 \mapsto 3}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}\right)=w_{2 \mapsto 3}^{\mathrm{LO}}\left(\Phi_{2}, \Phi_{+1}\right) \times\left(1+w_{2 \mapsto 3}^{\mathrm{V}}\left(\Phi_{2}, \Phi_{+1}\right)\right)
$$

Local correction given by three terms:

$$
\begin{aligned}
w_{2 \mapsto 3}^{\mathrm{V}}\left(\Phi_{2}, \Phi_{+1}\right)= & \left(\frac{\mathrm{RV}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}+\frac{\mathrm{I}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}\right)}{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}\right. \\
\mathrm{NLO} \text { Born }+1 j & \left.+\int_{0}^{t} \mathrm{~d} \Phi_{+1}^{\prime}\left[\frac{\mathrm{RR}\left(\Phi_{2}, \Phi_{+1}, \Phi_{+1}^{\prime}\right)}{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}-\frac{\mathrm{S}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}, \Phi_{+1}^{\prime}\right)}{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}\right]\right) \\
\mathrm{NLO} \text { Born } & -\left(\frac{\mathrm{V}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\frac{\mathrm{I}^{\mathrm{NLO}}\left(\Phi_{2}\right)}{\mathrm{B}\left(\Phi_{2}\right)}+\int_{0}^{t_{0}} \mathrm{~d} \Phi_{+1}^{\prime}\left[\frac{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}^{\prime}\right)}{\mathrm{B}\left(\Phi_{2}\right)}-\frac{\mathrm{S}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}^{\prime}\right)}{\mathrm{B}\left(\Phi_{2}\right)}\right]\right) \\
\text { shower } & +\left(\frac{\alpha_{\mathrm{S}}}{2 \pi} \log \left(\frac{\kappa^{2} \mu_{\mathrm{PS}}^{2}}{\mu_{\mathrm{R}}^{2}}\right)+\int_{t}^{t_{0}} \mathrm{~d} \Phi_{+1}^{\prime} \mathrm{A}_{2 \mapsto 3}\left(\Phi_{+1}^{\prime}\right) w_{2 \mapsto 3}^{\mathrm{LO}}\left(\Phi_{2}, \Phi_{+1}^{\prime}\right)\right)
\end{aligned}
$$

- First and third term from NLO shower evolution, second from NNLO matching
- Calculation can be (semi-)automated, given a suitable NLO subtraction scheme

New: NNLO+PS for $H \rightarrow b \bar{b}$

Slide adapted from C. Preuss (HP2, Newcastle, Sept 2022)

NNLO accuracy in $H \rightarrow 2 j$ implies NLO correction in first emission and LO correction in second emission.

Outlook

The VINCIANNLO method (aka NNLO MECs) is in principle general
First fully-differential NNLO matching; built on shower with NNLO-accurate pole structure No dependence on any auxiliary scales (and/or external analytic input other than matrix elements)

Addition of colour singlets trivial; automation on the level of "process classes". E.g., if $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 2 \mathrm{j}$ implemented, also $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 2 \mathrm{j}+\mathrm{X}$ with any set of colour singlets X .

Additional final-state partons straightforward. In practice, some pitfalls: Born-local NNLO weight not available in general.
Quark-gluon double-branching antenna functions develop spurious singularities, but:
No exact knowledge of double-branching kernels required.
Sector-antenna functions can effectively be replaced by matrix-element ratios.
Subtractions via "colour-ordered projectors" under development.
For hadronic initial states, the technique remains structurally the same.
Interplay of NLO parton evolution and NLO shower evolution needs clarification.
Further questions on phase-space coverage ("power showers" needed to fill full PS?)

Further Work

Current status

Soon ...

VINCIANNLO Implementation of SM colour-singlet decays ($V / H \rightarrow q \bar{q}, H \rightarrow g g$) Automation of iterated tree-level MECs. Using interfaces to MadGraph \& Comix. Final-Final double-branchers ($2 \rightarrow 4$ antenna branchers; QG parents still need work).

Next few years (post doc opening soon at Monash)

Iterated NLO MECs for final-state radiators. Using MCFM interface [Campbell, Hoche, Preuss 2107.04472] Incoming Partons (double-branchings, interplay with PDFs, initial-state phase space, ...)

Required from fixed-order community (anticipated on \sim short time scale)
Born-local NNLO k-factors for "arbitrary" processes; in reasonable CPU time?

Final Remarks: Perspectives for Matching at N3LO

TOMTE (similar in spirit to UN2LOPS)

Starts from NNLO+PS matched cross section for $\mathrm{X}+$ jet \sim UN2LOPS
Allow jet to become unresolved, regulated by shower Sudakov Remove unwanted NNLO terms and subtract projected 1-jet bin from 0-jet bin Include N3LO jet-vetoed zero-jet cross section
Some challenges:
Large amount of book-keeping \rightarrow complex code \& computational bottlenecks?
Many counter-events, counter-counter-events, etc \rightarrow many weight sign flips.
\Longrightarrow Huge computing resources for relatively slow convergence?

N3LO MECs? (hypothetical extension of VINCIANNLO MECs)

Method in principle generalises.
Add direct-triple $(2 \rightarrow 5)$ branchings to cover all of phase space: in principle simple.
Challenging: need local NNLO subtractions for Born +1 .

Extra Slides

The Solution that worked at LO: Smooth Ordering

Wanted starting point for (LO) matrix-element corrections over all of phase space (good approx \rightarrow small corrections)

Allow newly created antennae to evolve over their full phase spaces, with suppressed (beyond-LL) probability: smooth ordering

Giele, Kosower, PZS: PRD84 (2011) 054003

Smooth ordering: An excellent approximation

(at tree level)

(Why it works?)

The antenna factorisations are on shell

n on-shell partons $\rightarrow \mathbf{n + 1}$ on-shell partons
In the first $2 \rightarrow 3$ branching, final-leg virtualities assumed ~ 0

Cannot be neglected in unordered part of phase space

$$
\text { Interpretation: off-shell effect } \quad \frac{1}{2 p_{i} \cdot p_{j}} \rightarrow \frac{P_{\text {imp }}(n \rightarrow n+1)}{2 p_{i} \cdot p_{j}}=\frac{1}{2 p_{i} \cdot p_{j}+\mathcal{O}\left(p_{\perp n+1}^{2}\right)}
$$

Good agreement with ME \rightarrow good starting point for $2 \rightarrow 4$

The problem with Smooth Ordering

Smooth ordering: nice tree-level expansions (small ME corrections) \Rightarrow good 2 $\rightarrow 4$ starting point
 But we worried the Sudakov factors were "wrong" \Rightarrow not good starting point for $2 \rightarrow 3$ virtual corrections? Not good exponentiation?

$2 \rightarrow 4$ Trial Generation

$$
\begin{align*}
\frac{1}{\left(16 \pi^{2}\right)^{2}} a_{\text {trial }}^{2 \rightarrow 4} & =\frac{2}{\left(16 \pi^{2}\right)^{2}} a_{\text {trial }}^{2 \rightarrow 3}\left(Q_{3}^{2}\right) P_{\text {imp }} a_{\text {trial }}^{2 \rightarrow 3}\left(Q_{4}^{2}\right) \\
& =C\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \frac{128}{\left(Q_{3}^{2}+Q_{4}^{2}\right) Q_{4}^{2}} . \tag{15}
\end{align*}
$$

Solution for constant trial a_{s}

$$
\begin{aligned}
& \mathcal{A}_{2 \rightarrow 4}^{\text {trial }}\left(Q_{0}^{2}, Q^{2}\right)=C I_{\zeta} \frac{\ln (2) \hat{\alpha}_{s}^{2}}{8 \pi^{2}} \ln \frac{Q_{0}^{2}}{Q^{2}} \ln \frac{m^{4}}{Q_{0}^{2} Q^{2}} \\
\Rightarrow & Q^{2}=m^{2} \exp \left(-\sqrt{\ln ^{2}\left(Q_{0}^{2} / m^{2}\right)+2 f_{R} / \hat{\alpha}_{S}^{2}}\right)
\end{aligned}
$$

$$
\text { where } f_{R}=-4 \pi^{2} \ln R /\left(\ln (2) C I_{\zeta}\right) . \quad \text { (Same } \mathrm{I}_{\text {zeta }} \text { as in } \mathrm{GKS} \text {) }
$$

Solution for first-order running a_{s} (also used as overestimate for 2-loop running):

$$
\begin{equation*}
Q^{2}=\frac{4 \Lambda^{2}}{k_{\mu}^{2}}\left(\frac{k_{\mu}^{2} m^{2}}{4 \Lambda^{2}}\right)^{-1 / W-1(-y)} \text { Lambert } W . \tag{20}
\end{equation*}
$$

where

$$
y=\frac{\ln k_{\mu}^{2} m^{2} / 4 \Lambda^{2}}{\ln k_{\mu}^{2} Q_{0}^{2} / 4 \Lambda^{2}} \exp \left[-f_{R} b_{0}^{2}-\frac{\ln k_{\mu}^{2} m^{2} / 4 \Lambda^{2}}{\ln k_{\mu}^{2} Q_{0}^{2} / 4 \Lambda^{2}}\right],
$$

Scale Definitions

Conventional ("global") shower-branching (and subtraction) formalisms:

Each phase-space point receives contributions from several branching "histories" = clusterings
~ sum over (singular) kernels \Longrightarrow full singularity structure ∇

When these are generated by a shower-style formalism (a la POWHEG):

Each term has its own value of the shower scale = scale of last branching
Complicates the definition of an unambiguous matching condition between the (multi-scale) shower and the (single-scale) fixed-order calculation.

1 st attempt: define matching condition via fully exclusive jet cross sections [Hartgring, Laenen, Ps, 1303.4974] 2nd attempt: define double-branching "sectors" with unique scales [Li, PS, 1611.00013]
3rd attempt: sectorise everything [Campbell, Höche, Li, Preuss, PS, 2108.07133]

Sector-Antenna Subtraction

Borrow some concepts from FKS to calculate "Born"-local real integral in NLO MECs:

- Decompose (colour-ordered) real correction into shower sectors:

$$
\begin{aligned}
& \int_{0}^{t^{\prime}} \mathrm{d} \Phi_{+1}^{\prime}\left[\frac{\mathrm{RR}\left(\Phi_{2}, \Phi_{+1}, \Phi_{+1}^{\prime}\right)}{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}-\frac{\mathrm{S}^{\mathrm{NLO}}\left(\Phi_{2}, \Phi_{+1}, \Phi_{+1}^{\prime}\right)}{\mathrm{R}\left(\Phi_{2}, \Phi_{+1}\right)}\right] \\
= & \sum_{j} \int_{0}^{t^{\prime}} \mathrm{d} \Phi_{i j k}^{\mathrm{ant}} \Theta_{i j k}^{\mathrm{sct}}\left[\frac{\mathrm{RR}\left(\Phi_{3}, \Phi_{i j k}^{\mathrm{ant}}\right)}{\mathrm{R}\left(\Phi_{3}\right)}-A_{l K \mapsto i j k}^{\mathrm{sct}}(i, j, k)\right]
\end{aligned}
$$

- Integral over shower sector $\Theta_{i j k}^{\text {sct }}$ in general not analytically calculable
- Need to add/subtract integral over "simple" sector with known integral:

$$
\int_{0}^{t^{\prime}} \mathrm{d} \Phi_{i j k}^{\mathrm{ant}}\left[\Theta_{i j k}^{\mathrm{sct}}-\Theta_{i j k}^{\mathrm{simple}}\right] A_{l K \mapsto i j k}^{\mathrm{sct}}(i, j, k)+\int_{0}^{t^{\prime}} \mathrm{d} \Phi_{i j k}^{\mathrm{ant}} \Theta_{i j k}^{\mathrm{simple}} A_{l K \mapsto i j k}^{\mathrm{sct}}(i, j, k)
$$

\Rightarrow Adds bottleneck, as difference of step functions not ideal for MC integration

Colour-Ordered Projectors

Better: use smooth projectors [Frixione et al. 0709.2092]

$$
\operatorname{RR}\left(\Phi_{3}, \Phi_{+1}^{\prime}\right)=\sum_{j} \frac{C_{i j k}}{\sum_{m} C_{\ell m n}} \operatorname{RR}\left(\Phi_{3}, \Phi_{i j k}^{\mathrm{ant}}\right), \quad C_{i j k}=A_{I K \mapsto i j k} \mathrm{R}\left(\Phi_{3}\right)
$$

- But: antenna-subtraction term not positive-definite!
- To render this well-defined, need to work on colour-ordered level

$$
\mathrm{RR}=\mathcal{C} \sum_{\alpha} \mathrm{RR}^{(\alpha)}-\frac{\mathcal{C}}{N_{\mathrm{C}}^{2}} \sum_{\beta} \mathrm{RR}^{(\beta)} \pm \ldots
$$

- Different colour factors enter with different sign, but no sign changes within one term

$$
\mathcal{C}\left[\frac{C_{i j k}}{\sum_{m} C_{\ell m n}} \frac{\mathrm{RR}^{(\alpha)}\left(\Phi_{3}, \Phi_{i j k}^{\mathrm{ant}}\right)}{\mathrm{R}\left(\Phi_{3}\right)}-A_{I K \mapsto i j k}\right]
$$

\Rightarrow Numerically better behaved, uses standard antenna-subtraction terms

New: Sectorized CKKW-L Merging in Pythia 8.306

Brooks \& Preuss, "Efficient multi-jet merging with the VINCIA sector shower", 2008.09468
Ready for serious applications (Note: Vincia also has dedicated POWHEG hooks)
Work ongoing to optimise baseline algorithm.
Work at Fermilab: NNLO matching, $2 \rightarrow 4$ sector antennae, MCFM interface, ...
Vincia tutorial: http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf

