Anatomy of an LHC Collision — and Challenges for the Future

Peter Skands (Monash University) November 2022

LHC Collisions – Theory vs Real Life

Theory Goal: Use LHC measurements to test hypotheses about Nature.

LHC Run 1:

Proton-Proton collisions

 $E_{beam} = 3.5 \text{ TeV}$ $E_{p+p} = 7 \text{ TeV}$

The ATLAS Experiment at the LHC

ATLAS collision event at 7 TeV from March 2010

http://atlas.ch

But we have no exact solutions to (B)SM Quantum Field Theories. How to make predictions to form (reliable) conclusions?

 $M_{proton} \sim 1 \text{ GeV/c}^2$ → Lorentz boost $\gamma = E/M \sim 3500$

Confounded by Confinement

We are colliding — and observing — hadrons Strongly bound states of quarks and gluons (non-perturbative QCD)

How do we connect this...

Elementary Fields & Symmetries "Fundamental" parameters. Asymptotic freedom, perturbative QFT

... with this?

"Emergent" degrees of freedom Jets of hadrons

Textbook "quark-model" proton:

"Three quarks for muster Mark" (Gell-Mann/Joyce) Quark-model flavour \otimes spin wave functions

Real-life hadrons

Are composite & strongly bound, with time-dependent structure

For wavelengths ~ confinement scale:

quark & gluon plane waves are not going to be good approximations

 \implies forget about the interaction picture and perturbation theory

Figure by T. Sjöstrand

Nobel Prize 2004: Asymptotic Freedom in QCD (Gross, Politzer, Wilczek) Over **short** distances, quarks and gluons **do** behave like *almost* free particles Then it's OK to start from free-field solutions (plane waves) and treat interactions as perturbations \implies The interaction picture and perturbation theory are saved!

Hadron-level cross sections can be computed as (sums over): **Perturbative Parton-level cross sections Parton Distribution Functions** Thus, we can compute, e.g., the total top-quark-pair cross section we expect at LHC:

(carrying fractions x_a and x_b of the respective proton energies) These (& equivalent quark ones) were measured at previous colliders (esp. HERA); increasingly now also at LHC itself.

(Collins, Soper, '87)

Compare with measurements

With factorisation, we recover the use of perturbation theory (for high-Q processes*) But we also lose a lot of detail (and still cannot address low Q)

*for so-called Infrared and Collinear Safe Observables

The scattered partons carry QCD and/or electric charges Will give off bremsstrahlung radiation, at wavelengths > 1/Q. Probabilities can be computed order by order in perturbation theory

But the leading (~classical) effects can also be (re)summed to ∞ perturbative order.

Can be achieved numerically by Markov-Chain Monte Carlo algorithms which iterate **factorised** emission probabilities:

> Parton Showers

E.g.: Sjöstrand ('85, '86, '87), Marchesini & Webber ('84, '87, '88), Gustafson ('88) + many more recent

Many new efforts over the past decade!

Parton Showers = Iterated Sums over "Radiation Kernels"

Most bremsstrahlung is driven by **divergent propagators** → simple universal structure, independent of process details

Amplitudes *factorise* in singular limits

In **collinear** limits, we get so-called **DGLAP** splitting kernels: $|\mathcal{M}_{F+1}(\ldots,a,b,\ldots)|^2 \stackrel{a||b}{\to} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots,a+b,\ldots)|^2$

In **soft** limits $(E_g/Q \rightarrow 0)$, we get dipole factors (same as classical):

$$|\mathcal{M}_{F+1}(\ldots,i,j,k\ldots)|^2 \stackrel{j_g \to 0}{\to} g_s^2 \mathcal{C} \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots,i,k,\ldots)|^2$$

These limits are not independent; they overlap in phase space. How to treat the two consistently has given rise to **many** individual approaches: Angular ordering, angular vetos, dipoles, global antennae, sector antennae, ...

After 40 years of development, how far have we got?

- In fixed-order perturbative QCD (pQCD): $LO \rightarrow NLO \rightarrow NNLO \rightarrow N^{3}LO \leftarrow State of the art for simple processes$ ¹ State of the art for complex processes
- Translates to accuracies of order a few per cent or better
- For all-orders showers, it makes no sense to count "orders"
- Instead, people count "logarithms" (arising from $1/Q^2$ propagators on previous slide integrated over phase spaces $\propto dQ^2$)
- Counting logs is not the only way to judge (ignores other important aspects), but:
- Angular ordering (80s): (N)LL
- Modern dipole/antenna showers: (N)LL
- **Colour flow** also still "leading colour"
 - (with small refinements)

Last remaining "leading" frontiers in pQCD

Why is that hard?

Simplified analogy:

Using a "Koch snowflake" as a stand-in for perturbation theory

Some Complications:

Showers are quantum stochastic processes, not deterministic rules Several branching types, on multiparton phase spaces (beware overlaps/double-counting/dead zones) With SU(3) colour structure, spin/polarisation structure, and quantum interference **Universality:** start from any hard process (~ starting "shape"); + scaling violation. **Conservation Laws:** must be momentum conserving, and Lorentz & gauge invariant. **Unitarity:** must have *perfect* cancellations between (singular) real and virtual corrections.

Matching, Merging, and Matrix-Element Corrections

- Essentially: use exact rule for first few orders; then let shower approximation take over
 - LO matrix-element corrections (> Sjöstrand et al., 80s) LO merged calculations (> CKKW, Lönnblad, '00s + more recent) NLO matched calculations (> MC@NLO, POWHEG '00s)

State of the art (for LHC phenomenology right now): Merging several NLO + PS matched calculations (> UNLOPS, FxFx, ...)

Intense activity; here just using "my" projects as representative examples: NNLO + PS matching (Proof of concept ➤ Campbell, Hoeche, Li, Preuss, PS, '21) Iterated LO matrix-element corrections (> soon...) Iterated NLO matrix-element corrections (> in a while ()) Limiting factors are **complexity growth** & **shower accuracy**

Complexity Growth: a bottleneck for matching and merging

In conventional ("global") showers, each phase-space point receives contributions from many possible branching "histories" (="clusterings") \sim sum over (singular) diagrams \implies full singularity structure \checkmark

		Number of Histories for n Branchings (Starting from						single $q ar q$ pair)
		n = 1	n = 2	n = 3	n = 4	n = 5	n = 6	n = 7
	CS Dipole	2	8	48	384	3840	46080	645120
) (Global Antenna	1	2	6	24	120	720	5040

[~] Fewer partial-fractionings, but still factorial growth

For CKKW-L style merging: (incl UMEPS, NL3, UNLOPS, ...) Need to take all contributing shower histories into account. Bottleneck at high multiplicities (+ high code complexity)

New in PYTHIA (8.3): Sectorized Antenna Showers in Vincia

PartonShowers:Model = 2

Sector antennae: no partial-fractioning of any singularities.

Divide the *n*-gluon phase space up into *n* non-overlapping sectors, inside each of which only the most singular (~" classical") kernel is allowed to contribute.

Lorentz-invariant def of "most classical" gluon based on "ARIADNE p_T ":

 $p_{\perp j}^2 = \frac{S_{ij}S_{jk}}{S_{iik}}$ with $s_{ij} \equiv 2(p_i \cdot p_j)$ (+ generalisations for heavy-quark emitters)

Achieves (N)LL with a single history.

Factorial \rightarrow constant scaling in number of gluons. Generalisation to $g \rightarrow q\bar{q} \Longrightarrow$ factorial in # of same-flavour quark pairs.

Brooks, Preuss & PS 2003.00702 (+ Lopez-Villarejo & PS 1109.3608)

Kosower, hep-ph/9710213 hep-ph/0311272 (+ Larkoski & Peskin 0908.2450, 1106.2182)

Gustafson & Pettersson, NPB 306 (1988) 746

New: Sectorized CKKW-L Merging in Pythia 8.306

Brooks & Preuss, "Efficient multi-jet merging with the VINCIA sector shower", 2008.09468

Ready for serious applications

Work ongoing to optimise baseline algorithm. Discovery Project (22): NNLO matching, $2 \rightarrow 4$ sector antennae, NLO interfaces, ... Vincia tutorial: http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf

The Final Frontier: Shower Accuracy

2nd-order radiative corrections

Iterating only single emissions, one after the other, will fail to properly describe multiemission interferences & correlations

Iterating single and double emissions -> problematic overlaps, double counting

(Resonance Decays and Weak Showers)

- 1. Unstable resonances (top quarks, Z/W bosons, and Higgs bosons) will decay ... and their decay products will shower
 - 2. Weak SU(2) bremsstrahlung
 - Both are topics of active research (E.g.: R. Verheyen & PS, <u>2108.10786</u>)
 - Many interesting questions and applications (but no major revolutions expected).

Such Stuff as Beams are Made Of

Crucial to describe event structure at hadron colliders

Before we talk about confinement

Recall that the protons were composite

Who said only a *single* pair of partons collided?

As they pass through each other, The two protons present a **beam** of partons to each other

Multi-Parton Interactions (MPI)

MCMC algorithms with iterated application of factorised scattering probabilities. Around since 80s.

Sjöstrand ('85) + a few more recent

Confinement

Event structure still in terms of (colour-charged) quarks & gluons Configement must set in when they reach O(1fm) relative distances.

It's all about connections

So if we know which partons are each others' "colour partners", we can draw linear potentials between them:

Time to call a string a string

What physical system has a linear potential? A string.

This is the basis for the Lund **String Fragmentation Model**

Andersson, Gustafson, Pettersson, Sjöstrand, ... ('78 - '83)

A comparatively simple 1+1 dimensional model of massless relativistic strings, with tension $\kappa \sim 1 \text{ GeV/fm}$

> The signature feature of the Pythia Monte Carlo event generator

The string model provides a mapping:

- Quarks > String endpoints
- Gluons > Kinks on strings
- Further evolution then governed by string world sheet (area law)

+ string breaks by tunnelling

By analogy with "Schwinger mechanism" in QED (electron-positron pair production in strong electric field)

Predictive for phase-space distribution of hadrons (but not for their spin/flavour composition > Bierlich, Chakraborty, Gustafson, Lönnblad '22)

Hyperfine splitting effects in string hadronization

Jets of Hadrons!

Hadronisation

can be compared to experiments

What a strange world we live in, said Alice

Landmark measurement by ALICE ('17)

Ratios of strange hadrons to pions

June 2017

Other signs of "collectivity"

"CMS ridge" (CMS '10):

Long-distance correlations between particles at same azimuthal angle, in "busy" events — not predicted!

Interpreted as sign of a "collective flow" along common (transverse) axis By now many follow-up measurements confirming same features

Taken together: string junctions, strangeness enhancement, flow I think indicates that we are seeing **QCD string interactions** Strings have physical properties of vortex lines. Strings with same flux orientation repel each other, like two co-rotating tornadoes. Lund group has implemented a model of "string shoving". The interaction energy also increases the string tension > more strangeness

These new measurements, and our growing understanding of them, are ushering in a new era of exploration of emergent non-perturbative phenomena

Apologies: Many things not mentioned ...

Photon-induced processes (photoproduction)

- Photons can appear pointlike, or with partonic substructure ~ hadrons
- Flavour Physics, Neutrino Physics, Cosmic Rays, ...

New Physics ...

Dark Matter and Dark Sectors / Hidden Valleys > Desai, Sjöstrand

Hadrons, heavy ions, ropes, shoving, diffraction, coalescence ... Heavy lons, ropes, shoving > Much work in Lund & Jyväskyla (+ Monash) Hadronic Rescattering > Sjöstrand, Utheim 2005.05658 Bose-Einstein & Fermi-Dirac Correlations (> N-particle correlations, Femtoscopy)

Brand new Comprehensive Guide: 2203.11601 315 pages: "A comprehensive guide to the physics and usage of Pythia 8.3"

Thank you!

Anatomy of an LHC Collision

- O Hard Interaction
- Resonance Decays
- MECs, Matching & Merging
- **FSR**
- ISR*
- **QED**
- Weak Showers
- Hard Onium
- Multiparton Interactions
- Beam Remnants*
- Strings
- Ministrings / Clusters
- Colour Reconnections
- String Interactions
- Bose-Einstein & Fermi-Dirac
- Primary Hadrons
- Secondary Hadrons
- Hadronic Reinteractions
- (*: incoming lines are crossed)

Cornell potential

Potential V(r) between **static** (lattice) and/or **steady-state** (hadron spectroscopy) colour-anticolour charges:

$$V(r) = -\frac{a}{r}$$

Coulomb part

Lund string model built on the asymptotic large-r linear behaviour

But intrinsically only a statement about the late-time / longdistance / steady-state situation. Deviations at early times?

Coulomb effects in the grey area between shower and hadronization? **Low-**r slope > κ favours "early" production of quark-antiquark pairs?

+ Pre-steady-state thermal effects from a (rapidly) expanding string? Berges, Floerchinger, and Venugopalan JHEP 04(2018)145)

κr

String part Dominates for $r \gtrsim 0.2 \, {\rm fm}$

Toy Model with Time-Dependent String Tension

Model constrained to have same average tension as Pythia's default "Monash Tune"

► same average N_{ch} etc ► main LEP constraints basically unchanged. But expect different fluctuations / correlations, e.g. with multiplicity N_{ch} .

N. Hunt-Smith & PS arxiv: 2005.06219

- Want to study (suppressed) tails with very low and very high N_{ch}.
- These plots are for LEP-like statistics.
- Would be crystal clear at CEPC/ FCC-ee

Colour Connections: Between which partons do confining potentials form?

High-energy collisions with QCD bremsstrahlung + multi-parton interactions Final states with very many coloured partons Who gets confined with whom?

Starting point for MC generators = Leading Colour limit $N_C \rightarrow \infty$

 \implies Probability for any given colour charge to accidentally be same as any other $\rightarrow 0$.

 \implies Each colour appears only once & is matched by a unique anticolour.

Example (from upcoming big Pythia 8.3 manual):

 $e^+e^- \rightarrow Z^0 \rightarrow q\bar{q}$ + parton shower

Naively, corrections suppressed by $1/N_C^2 \sim 10\%$

But in pp collisions, multi-parton interactions \implies many such systems

Each has probability \sim 10% + significant overlaps in phase space \implies CR more likely than not

Colour Reconnections Original Goal: describe observables like <p_>(n_{ch})

Note: for more on flow-like effects from CR, see also, e.g., Ortiz Velasquez et al. arXiv:1303.6326

Both **MPI-based** (default) and **QCD-based** CR [1505.01681] reproduce the rising trend of

No CR \implies <pt> approximately the same for all N_{ch} (Many MPI just produce more hadrons, but with ~ same

(Just one example here, that I could easily obtain from mcplots.cern.ch; with minor differences all other CM energies and fiducial cuts show same trend)

QCD-based CR Model: Rules of the Game

Christiansen & PS <u>1505.01681</u>

MPI + showers \implies partons with LC connections

Idea: stochastically allow $(1/N_{c}^{2})$ colour correlations, using SU(3) rules:

- $3 \otimes \overline{3} = 8 \oplus 1$ for uncorrelated colour-anticolour pairs (allows "dipole CR") (1)
- $3 \otimes 3 = 6 \oplus \overline{3}$ for uncorrelated colour-colour pairs (allows "junction CR") (2)
- Then choose between which ones to realise confining potentials Smallest measure of "invariant string length" \propto number of hadrons

Strangeness

Enter: Close-Packing

"Close Packing" of strings Fischer & Sjöstrand, 1610.09818 Even with CR, high-multiplicity events still expected to involve multiple overlapping strings. Interaction energy \implies higher effective string tension (similar to "Colour Ropes")

 \implies strangeness (& baryons & <p_T>)

Current close-packing model in Pythia only for "thermal" string-breaking model

> Interesting in its own right!

2021: Monash student J. Altmann extended it to conventional stringbreaking model and began the (complicated) work to extend to junction topologies. Work in progress!

Intended as a simple alternative to rope model.

What do LHC collisions look like?

~1

Some look like this:

Most of them look like this:

ALICE

37

First Physics at Colliders = Counting Tracks

7 TeV with ALICE at LHC

ALICE Collaboration • K. Aamodt (Oslo U.) et al. (2010)

Published in: Eur. Phys. J.C 68 (2010) 345-354 · e-Print: 1004.3514 [hep-ex]

First 7-TeV LHC measurement

Probability distribution for the **number of charged particles** (illustrated to the left with real collisions)

Experimentally: simple to measure. Count number of "tracks" left by ionising charged particles

Theoretically: impossible to predict (in perturbative QFT)... Why? Can we predict **anything at all?** We were still able to make predictions within ~10%; How?

& correct for imperfect reconstruction of those tracks.