Anatomy of an LHC Collision - and Challenges for the Future

\Rightarrow \#ै
Peter Skands (Monash University)
June 2022

Real Life vs Theory

The Large Hadron Collider

 Located at CERNBecame the highest-energy collider on March 30, 2010:
At that time: proton-proton collisions at 7 TeV centre-ofmass energy ($\gamma \sim 3700$)
~ doubled since

The ATLAS Experiment at the LHC

ATLAS collision event at 7 TeV from March 2010

> http://atlas.ch
gatlas
国

Theory Goal:

Use LHC measurements to test hypotheses about what Nature is doing. But have no exact solutions to Quantum Field Theory. How to make predictions to form (reliable) conclusions?

Confounded by Confinement

We are colliding - and observing - hadrons

Strongly bound states of quarks and gluons (non-perturbative OCD)
How do we connect this...
... with this?

Elementary Fields \& Symmetries "Fundamental" parameters.
Asymptotic freedom, perturbative QFT

"Emergent" degrees of freedom Jets of hadrons

Consider a hadron; why is it complicated?

Textbook "quark-model" proton:

"Three quarks for muster Mark" (Gell-Mann/Joyce):
Undergrads learn about quark-model wave functions

Real-life hadrons

Are composite \& strongly bound, with time-dependent structure
For wavelengths ~ confinement scale: quark \& gluon plane waves are not going to be good approximations
\Longrightarrow forget about the interaction picture and perturbation theory

Figure by T. Sjöstrand

What about shorter wavelengths?

Nobel Prize 2004: Asymptotic Freedom in QCD (Gross, Politzer, Wilizek)
Over short distances, quarks and gluons do behave like almost free particles Then it's OK to start from free-field solutions (plane waves) and treat interactions as perturbations \Longrightarrow The interaction picture and perturbation theory are saved!

> Parametrise "mess" in terms of (measurable) probability densities for each type of plane wave: Parton Distribution Functions (PDFs)

August 2021
Q [GeV]
Source: PDG
Figure by T . S iöstrand

Mathematically, the cross section factorises

(Collins, Soper, '87)
Hadron-level cross sections can be computed as (sums over):

Perturbative Parton-level cross sections \otimes Parton Distribution Functions

Thus, we can compute, e.g., the total top-quark-pair cross section we expect at LHC:

Probability densities for finding gluons inside protons A and B (carrying fractions x_{a} and x_{b} of the respective proton energies)
These (+ their quark equivalents) have been extensively measured at previous colliders (esp. HERA); increasingly now also at LHC itself.

Compare with measurements

Theorist:
This is a $t \bar{t}$ event

Experimentalist: Is this a $t \bar{t}$ event?

With factorisation, we recover the use of perturbation theory (for high-Q processes*) But we also lose a lot of detail (and still cannot address low Q)

Accuracy \& Detail 1: Radiative Corrections

The scattered partons carry OCD and/or electric charges

Will give off bremsstrahlung radiation, at wavelengths > 1/Q.
Probabilities can be computed order by order in perturbation theory

But the leading (~classical) effects can also be (re)summed to ∞ perturbative order.

Can be achieved numerically by MarkovChain Monte Carlo algorithms which iterate factorised emission probabilities:
$>$ Parton Showers
E.g.: Sjöstrand ('85, '86, '87), Marchesini \& Webber
('84, '87, '88), Gustafson ('88) + many more recent
Many new efforts over the past decade!

Parton Showers = Iterated Sums over "Radiation Kernels"

Most bremsstrahlung is driven by divergent propagators \rightarrow simple universal structure, independent of process details

Amplitudes factorise in singular limits

In collinear limits, we get so-called DGLAP splitting kernels:

$$
\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
$$

In soft limits $\left(E_{g} / Q \rightarrow 0\right)$, we get dipole factors (same as classical):

$$
\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

These limits are not independent; they overlap in phase space. How to treat the two consistently has given rise to many individual approaches: Angular ordering, angular vetos, dipoles, global antennae, sector antennae, ...

After 40 years of development, how far have we got?

In fixed-order perturbative OCD (pOCD):

$\mathrm{LO} \rightarrow \mathrm{NLO} \rightarrow$ NNLO $\rightarrow \mathrm{N}^{3} \mathrm{LO} \longleftarrow$ State of the art for simple processes
$\downarrow \quad \uparrow$ State of the art for complex processes
Translates to accuracies of order a few per cent or better
For all-orders showers, it makes no sense to count "orders"
Instead, people count "logarithms" (arising from $1 / Q^{2}$ propagators on previous slide integrated over phase spaces $\propto \mathrm{d} Q^{2}$)

Counting logs is not the only way to judge (and ignores other important aspects), but:
Angular ordering (80s): (N)LL
Modern dipole/antenna showers: (N)LL
Colour flow also still "leading colour" (with small refinements)

Last remaining
"leading" frontiers in pQCD

Why is that hard?

Simplified analogy:

Using a "Koch snowflake" as a stand-in for perturbation theory

Some Complications:

Showers are quantum stochastic processes, not deterministic rules
Several branching types, on multiparton phase spaces (beware overlaps/double-counting/dead zones)
With $S U(3)$ colour structure, spin/polarisation structure, and quantum interference
Universality: start from any hard process (~ starting "shape"); + scaling violation.
Conservation Laws: must be momentum conserving, and Lorentz \& gauge invariant.
Unitarity: must achieve perfect cancellations between (singular) real and virtual corrections.

Well Established for First Few Orders

Matching, Merging, and Matrix-Element Corrections

Essentially: use exact rule for first few orders; then let shower approximation take over

LO matrix-element corrections ($\boldsymbol{\$}$ Sjöstrand et al., 80s)
LO merged calculations ($\boldsymbol{\text { Lönnblad et al., '00s + more recent) }}$
NLO matched calculations ($>$ MC@NLO, POWHEG '00s)
State of the art (for LHC phenomenology right now): Merging several NLO + PS matched calculations (UNLOPS, FXFX, ...)

Intense activity; here just using "my" projects as representative examples:
NNLO + PS matching (Proof of concept Campbell, Hoeche, Li, Preuss, PS, '21)
Iterated LO matrix-element corrections ($>$ Preuss, PS, soon...) Iterated NLO matrix-element corrections (>Preuss, PS, in a while 3)
Limiting factors are complexity growth \& shower accuracy

The Final Frontier: Shower Accuracy

Second-order radiative corrections

Iterating only single-emission probabilities will ultimately fail to describe multiemission correlations \& interferences
Hard to iterate single and double emissions without any overlaps.

VINCIA sector approach (> Preuss, PS)

Clean separation of phase space into "ordered" and "unordered" sectors (using single-valued resolution Q) Pieces look ready. Proof of concept for iterated single emissions (augmented by virtual \& double-emission MEC factors) + "direct" double-emissions

Goal: iterate full structure; not there yet

Alternative approaches:

Dire (also in Pythia $>$ Gellersen); PanScales (different but related project $>$ Verheyen)

(Resonance Decays and Weak Showers)

I will add a few further details without much comment

(Otherwise this talk would be too long)

Such Stuff as Beams are Made Of

Crucial to describe event structure at hadron colliders

Confinement

Event structure still in terms of (colour-charged) quarks \& gluons

Confinement must set in when they reach $\mathrm{O}(1 \mathrm{fm})$ relative distances.

It's all about connections

So if we know which partons are each others' "colour partners", we can draw linear potentials between them:

There are, however, ambiguities
Especially in complex events with many MPI

> Colour Reconnections (CR)

Represented by inner blue shaded band. Generally thought to act to minimise the total linear potential.

Sjöstrand \& v. Zijl ('85), Christiansen \& PS ('15) + ...

Illustration by J. Altmann

Christiansen \& PS ('15)

Time to call a string a string

What physical system has a linear potential? A string.

This is the basis for the Lund String Fragmentation Model

Andersson, Gustafson, Peterson, Sjöstrand, ... ('78 - '83)
A comparatively simple $1+1$ dimensional model of massless relativistic strings, with tension $\kappa \sim 1 \mathrm{GeV} / \mathrm{fm}$
> The signature feature of the Pythia Monte Carlo event generator

A New Set of Degrees of Freedom

The string model provides a mapping:

Quarks > String endpoints

Gluons - Kinks on strings
Further evolution then governed by string world sheet (area law)

+ string breaks by tunnelling
By analogy with "Schwinger mechanism" in QED (electron-positron pair production in strong electric field)

Predictive for phase-space distribution of hadrons (but not for their spin/flavour composition > Bierlich, Chakraborty, Gustafson, Lönnblad '22)
$>$ Jets of Hadrons!
Hyperfine splitting effects in string hadronization

Hadronisation

- We finally have a model that can be compared to experiments in full detail ...

... Does it work?

I can only show you a few hand-picked measurements I find particularly interesting

Unique feature of SU(3): Y-Shaped 3-String "Junctions" > Baryons

"Colour reconnection" modelling based on stochastic sampling of $S U(3)$ group probabilities allows for random connections

What a strange world we live in, said Alice

Landmark measurement by ALICE ('17)

 Ratios of strange hadrons to pions

Other signs of "collectivity"

"CMS ridge" (CMS '10):

Long-distance correlations between particles at same azimuthal angle, in "busy" events — not predicted!
Interpreted as sign of a "collective flow" along common (transverse) axis
By now many follow-up measurements confirming same features
Taken together: string junctions, strangeness enhancement, flow I think indicates that we are seeing OCD string interactions Strings have physical properties of vortex lines. Strings with same flux orientation repel each other, like two co-rotating tornadoes.

Lund group has implemented a model of "string shoving".
The interaction energy also increases the string tension
more strangeness

These new measurements, and our growing understanding of them, are ushering in a new era of exploration of emergent non-perturbative phenomena

Apologies: Many things not mentioned ...

Photon-induced processes (photoproduction)

Photons can appear pointlike, or with partonic substructure ~ hadrons $\boldsymbol{~ H e l e n i u s ~}$

More showers and matching/merging schemes ...
> Gellersen, Mrenna, Preuss

New Physics ...

Dark Matter and Dark Sectors / Hidden Valleys > Desai, Sjöstrand
Hadrons, Heavy ions, ropes, shoving, diffraction, ...
Heavy lons, ropes, shoving > Bierlich, Chakraborty, Helenius, Lönnblad, Utheim
Hadronic Rescattering > Sjöstrand, Utheim
Quarkonia, Tau decays (\& LHCb) - Ilten
Heavy-flavour fragmentation >PS (with Monash-Warwick colleagues)
> New Comprehensive Guide: arXiv:2203.11601

Anatomy of an LHC Collision

OHard Interaction

- Resonance Decays
- MECs, Matching \& Merging
- FSR
- ISR*
\square QED
Weak Showers
Hard OniumMultiparton Interactions
\square Beam Remnants*
$\mathbb{\Delta}$ Strings
© Ministrings / Clusters
Colour Reconnections
String Interactions
Bose-Einstein \& Fermi-Dirac
- Primary Hadrons
- Secondary Hadrons
- Hadronic Reinteractions
(*: incoming lines are crossed)

Sum Over Histories

Sum over partial-fractions \Longrightarrow full singularity structure ∇

Means each ($n+1$)-parton phase-space point receives contributions from several possible shower "histories" ~ clusterings.

	Number of Histories for n Branchings		Starting from a single $9 \overline{\mathrm{q}}$ pair)				
	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$
CS Dipole	2	8	48	384	3840	46080	645120
\longrightarrow Global Antenna	1	2	6	24	120	720	5040

Fewer partial-fractionings, but still factorial growth

CKKW-L style merging (incl UMEPS, NLL, UNLOPS, ...)
Need to take all contributing shower histories into account.
Bottleneck at high multiplicities (+ high code complexity)

Sector Showers

New in Pythia 8.304: Sectorized Antenna Showers in Vincia

PartonShowers:Model = 2 Brooks, Preuss \& PS 2003.00702
Sector antennae: no partial-fractioning of any singularities.
Each sector-antenna kernel contains the full soft-eikonal singularity and also the full collinear singularities for each gluon.

Kosower, hep-ph/9710213 hep-ph/0311272; Larkoski \& Peskin 0908.2450 \&
1106.2182; Lopez-Villarejo \& PS 1109.3608; Brooks,
Preuss \& PS 2003.00702 up into n non-overlapping sectors, inside each of which only one

VINCIA: Lorentz-invariant def of most singular gluon based on ARIADNE p_{T} :

$$
p_{\perp j}^{2}=\frac{s_{i j} s_{j k}}{s_{i j k}} \quad \text { with } s_{i j} \equiv 2\left(p_{i} \cdot p_{j}\right) \quad(+ \text { generalisations for heavy-quark emitters) }
$$

No sum over histories!

Factorial \rightarrow constant scaling in number of gluons.
Generalisation to $g \rightarrow q \bar{q} \Longrightarrow$ factorial in number of same-flavour quark pairs.

So What?

As a pure shower, our advert would not be that impressive
"Vincia -- not worse than any other LL* shower !"

Still, it does have better coherence properties than default Pythia showers Especially important for VBF [2003.00702], top production and decays [2003.00702], and also just for hadron collisions in general; anything with colour flow through the process.

(+ No time to discuss ...)

- New "interleaved" treatment of resonance decays + EW Shower [2108.10786]
- Dedicated "exact" treatment of quark mass effects [1108.6172]
- QED multipole showers with full soft interference [2002.04939]
- Reproduces eikonal point-by-point in phase space whereas angular ordering only does so at the azimuthally averaged level.

Main point: achieves LL* with a single history, not a factorial number.
"Maximally bijective" = simple skeleton to build new things on top of. E.g., NNLO matching proof of concept [2108.07133]
$L L *$ = NLL for a few IRC-safe observables, LL + exact (E,p) cons for most; not quite LL for some.

Sectorized CKKW-L Merging in Pythia 8.306

Brooks \& Preuss, 2008.09468

Work ongoing to optimise baseline algorithm
Already now it is mature and ready for serious applications.
Feedback on default tuning and how sector merging works for you is valuable.
Note: Vincia also has dedicated POWHEG hooks; NLO sector merging coming in 2022.
Vincia tutorial: http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf

Re-examations of String Basics? Time dependence?

Cornell potential

Potential $\mathrm{V}(\mathrm{r})$ between static (lattice) and/or steady-state (hadron spectroscopy) colour-anticolour charges:

$$
V(r)=-\frac{a}{r}+\kappa r
$$

Lund string model built on the asymptotic large-r linear behaviour
But intrinsically only a statement about the late-time / longdistance / steady-state situation. Deviations at early times?
Coulomb effects in the grey area between shower and hadronization? Low-r slope > к favours "early" production of quark-antiquark pairs?

+ Pre-steady-state thermal effects from a (rapidly) expanding string?

Toy Model with Time-Dependent String Tension

Model constrained to have same average tension as Pythia's default "Monash Tune"
same average $N_{c h}$ etc $>$ main LEP constraints basically unchanged.
But expect different fluctuations / correlations, e.g. with multiplicity N_{ch}.

Colour Connections: Between which partons do confining potentials form?

High-energy collisions with QCD bremsstrahlung + multi-parton interactions
> final states with very many coloured partons Who gets confined with whom?

Starting point for MC generators = Leading Colour limit $N_{C} \rightarrow \infty$
\Longrightarrow Probability for any given colour charge to accidentally be same as any other $\rightarrow 0$.
\Longrightarrow Each colour appears only once \& is matched by a unique anticolour.
Example (from upcoming big Pythia 8.3 manual): $e^{+} e^{-} \rightarrow Z^{0} \rightarrow q \bar{q}+$ parton shower

Naively, corrections suppressed by $1 / N_{C}^{2} \sim 10 \%$
But in pp collisions, multi-parton interactions \Longrightarrow many such systems

Each has probability ${ }^{\sim} 10 \%+$ significant overlaps in phase space \Longrightarrow CR more likely than not

Colour Reconnections Original Goal: describe observables like <pr>(nch)

Note: for more on flow-like effects

Both MPI-based (default) and QCD-based CR [1505.01681] reproduce the rising trend of <pT>(N_{ch})

No $\mathbf{C R} \Longrightarrow\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$ approximately the same for all N_{ch} (Many MPI just produce more hadrons, but with ~ same

QCD-based CR Model: Rules of the Game

MPI + showers \Longrightarrow partons with LC connections

Idea: stochastically allow ($1 / \mathrm{N}_{\mathrm{C}}{ }^{2}$) colour correlations, using $\mathrm{SU}(3)$ rules:
(1) $3 \otimes \overline{3}=8 \oplus 1$ for uncorrelated colour-anticolour pairs (allows "dipole CR")
(2) $3 \otimes 3=6 \oplus \overline{3}$ for uncorrelated colour-colour pairs (allows "junction $C R^{\prime \prime}$)

Then choose between which ones to realise confining potentials
Smallest measure of "invariant string length" \propto number of hadrons

LHCb: also in Bottom

Λ_{b} asymmetry

$$
A=\frac{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)-\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}{\sigma\left(\Lambda_{\mathrm{b}}^{0}\right)+\sigma\left(\bar{\Lambda}_{\mathrm{b}}^{0}\right)}
$$

Without junction CR , an important source of low-pт Λ_{b} production is when $a b$ quark combines with the proton beam remnant.
Not possible for $\bar{\Lambda}_{b}$ (no \bar{p} remnant at LHC)
QCD CR adds large amount of low-pt junction Λ_{b} and $\bar{\Lambda}_{b}$, in equal amounts. Dilutes asymmetry!

Strangeness

QCD-CR is not a mechanism for strangeness enhancement

When we look at "steps in strangeness", we see disagreements

Similarly, $\Xi / \Lambda, \ldots$

ALICE 2021: also in charm

Enter: Close-Packing

"Close Packing" of strings Fischer \& Sibostrand, 1610.09818

Even with CR, high-multiplicity events still expected to involve multiple overlapping strings.
Interaction energy \Longrightarrow higher effective string tension (similar to "Colour Ropes")
\Longrightarrow strangeness (\& baryons \& $\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$)
Current close-packing model in Pythia only for "thermal" string-breaking model

2021: Monash student J. Altmann extended it to conventional stringbreaking model and began the (complicated) work to extend to junction topologies. Work in progress! Intended as a simple alternative to rope model.

Preliminary results (J. Altmann)

What do LHC collisions look like?

Most of them look like this:

Some look like this:

Low-multiplicity minimum-bias event
pp 7 TeV (June 2010)

First Physics at Colliders = Counting Tracks

Charged-particle multiplicity measurement in proton-proton collisions at $\sqrt{s}=$ 7 TeV with ALICE at LHC

Jargon for "number of"
ALICE Collaboration • K. Aamodt (Oslo U.) et al. (2010)
April, 2010
Published in: Eur.Phys.J.C 68 (2010) 345-354 • e-Print: 1004.3514 [hep-ex]

First 7-TeV LHC measurement

Probability distribution for the number of charged particles (illustrated to the left with real collisions)

Experimentally: simple to measure.

Count number of "tracks" left by ionising charged particles \& correct for imperfect reconstruction of those tracks.

Theoretically: impossible to predict (in perturbative QFT)... Why? Can we predict anything at all? We were still able to make predictions within $\sim 10 \%$; How?

