

Vincia in Pythia 8.304 C. Preuss, P. Skands, R. Verheyen

Coherent Resonance-Final Antennae Relevant for top decay

Coherent Initial-Final Antennae Esp relevant for VBF; also top, jets, ...

Sophisticated treatment of Finite Widths Relevant for top, W, Z

Fully coherent multipole QED shower + option for electroweak shower

Not discussed explicitly in these slides

Dedicated CKKW-L Merging Implementation "Sector Merging" (efficient scaling with N_{Legs})

Top Physics with Vincia

Note: tutorial that reproduces these plots: <u>http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf</u>

Can persist through NLO matching.

→ recoilToColoured = on/off

Ambiguities in Pythia's baseline shower for colour flows through decays (i.e., top decays).

beyond narrow-width approximation; paper in progress)

(Remaining ambiguities suppressed by 1/Nc²

Vector Boson Fusion with Vincia

Paper in progress, including effects of NLO merging (POWHEG) and LO multi-jet merging (CKKW-L) up to six jets

 Ambiguities in Pythia's baseline shower for Can persist through NLO matching.

(& Pythia 8.3 baseline multi-jet LO merging cannot handle VBF)

Ambiguities in Pythia's baseline shower for colour flows through hard process (such as VBF).

Vincia = QCD antennae ➤ no ambiguity at LC* Coherent Initial-Final Antennae

Ritzmann, Kosower, Skands, *Phys.Lett.B* 718 (2013) 1345-1350 • e-Print: 1210.6345 Fischer, Prestel, Ritzmann, Skands, *Eur.Phys.J.C* 76 (2016) 11, 589 • e-Print: 1605.06142 Brooks, Preuss, Skands, *JHEP* 07 (2020) 032 • e-Print: 2003.00702

+ **Sector Merging** (dedicated CKKW-L implementation for Vincia's sector shower, can handle VBF; see same tutorial)

Brooks & Preuss e-Print: 2008.09468 [hep-ph]

(Remaining ambiguities suppressed by

(Backup Slide: What are Interleaved Resonance Decays?)

Starting point same as usual: final-state resonances treated as stable (~ narrow-width approximation)

New: treat decays of unstable resonances <u>during</u> shower evolution, at scale ~ off-shellness $Q_R^2 \equiv |m^2 - m_0^2|$

 \implies Resonances replaced by their decay products (+shower) at an average scale ~ $\Gamma_{\rm res}$

decay products can do that. (~ Formation time argument.)

that resonance disappears \succ Expect more interference in tails.

Roughly corresponds to strong ordering (as measured by propagator virtualities) in rest of shower.

Allows (suppressed) effects reaching scales > Γ

Note: $\sum_{P} BW_{R}$ is absent from Sudakov since BW distribution is already unitary (a resonance-decay happens once and only once)