QED and EW showers in Vincia Rob Verheyen

Ronald Kleiss, Peter Skands, Helen Brooks

Kleiss, RV 1709.04485 Skands, RV 2002.04939 Kleiss, RV 2002.09248 Brooks, Skands, RV 2108.10786

European Research Council

Established by the European Commission

One-slide Vincia summary

1. Phase space factorisation

 $d\Phi_{\rm ps} = \frac{1}{16\pi^2} \lambda^{\frac{1}{2}} (m_{IK}^2, m_I^2, m_K^2) \, ds_{ij} \, ds_{jk} \frac{d\varphi}{2\pi}$

2. Ordering scale: Ariadne p_{\perp}^2

$$p_{\perp}^2 = \frac{s_{ij}s_{jk}}{s_{IK}}$$

3. Branching kernel: Antenna functions

$$a_{q\bar{q}}(s_{ij}, s_{jk}) = 4\pi\alpha_s C_F \left(2\frac{s_{ik}}{s_{ij}s_{jk}} - 2\frac{m_i^2}{s_{ij}^2} - 2\frac{m_k^2}{s_{jk}^2} + \frac{1}{s_{jk}^2}\right)$$

QED Showers

QCD vs. QED

Coherent Photon Radiation

Soft limit $|M_{n+1}(\{p\}, p_j)|^2 = -8\pi\alpha \sum_{x \in \mathcal{X}} \sigma_x Q_x \sigma_y Q_y \frac{s_{xy}}{s_{xj} s_{yj}} |M_n(\{p\}|^2)$ Collinear limit

 $|M_{n+1}(p_1, ..., p_i, ..., p_n, p_j)|^2 = 4\pi\alpha Q_i^2 \frac{2}{s_{ij}} P_{I \to ij}(z)|M_i|^2$

Single branching kernel $\bar{a}^{\text{QED}}(\{p\}, p_j) = -\sum_{\{x,y\}} \sum_{x,y} \sum_{j=1}^{n} \sum_{x,y} \sum_{x,y}$

Sectorize the phase space

 $|M_{n+1}(\{p\}, p_j)|^2 = \bar{a}^{\text{QED}}(\{p\}, p_j) \sum \Theta(p_{\perp,xy}^2) |M_n(\{\bar{p}\}_{xy})|^2 \longleftarrow x, y \text{ does the emission}$ ${x,y}$ $p_{\perp,xy}^2$ is the smallest of all p_{\perp}^2

$$I_{n+1}(p_1, ..., p_i + p_j, ..., p_n)|^2$$

$$\sum_{x,y\}} \sigma_x Q_x \sigma_y Q_y a_{f\bar{f}}^{\text{QED}}(s_{xj}, s_{yj})$$

High-mass Drell-Yan

 $m_{ee}^2 > 1$ TeV, $p_{\perp,e} > 25$ GeV and $|\eta_e| < 3.5$ $p_{\perp,\gamma} > 0.5$ GeV and $|\eta_{\gamma}| < 3.5$

Electroweak Showers

EW Showers

- Real corrections: EW gauge bosons, tops, Higgs part of jets
- Virtual corrections: Universal incorporation of Sudakov logs $\frac{\alpha}{\pi} \ln^2 \left(s/Q_{\rm EW}^2 \right)$

Features of the EW sector

•Chiral \rightarrow Helicity showers

Larkoski, Lopez-Villarejo, Skands 1301.0933 Fischer, Lifson, Stands, 1708.01736

- •EW-scale mass corrections
- Longitudinal polarisations / Goldstone bosons
- Neutral boson interference
- Double-counting between QCD and EW
- Resonance-like branchings

$$\epsilon_0^{\mu}(p) = \frac{1}{m} \left(p^{\mu} - \frac{m^2}{p \cdot k} k^{\mu} \right)$$

Lots of Antenna Functions

$$\begin{split} a_{f_{\lambda}\mapsto f_{\lambda}V_{\lambda}}^{FF} &= 2(v-\lambda a)^{2} \frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2}-m_{I}^{2})^{2}} \frac{1}{x_{j}} \\ a_{f_{\lambda}\mapsto f_{\lambda}V_{-\lambda}}^{FF} &= 2(v-\lambda a)^{2} \frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2}-m_{I}^{2})^{2}} \frac{x_{i}^{2}}{x_{j}} \\ a_{f_{\lambda}\mapsto f_{-\lambda}V_{\lambda}}^{FF} &= 2\frac{1}{(m_{ij}^{2}-m_{I}^{2})^{2}} \left((v-\lambda a)m_{i} \frac{1}{\sqrt{x_{i}}} - (v+\lambda a)m_{I}\sqrt{x_{i}} \right)^{2} \\ a_{f_{\lambda}\mapsto f_{\lambda}V_{0}}^{FF} &= \frac{1}{(m_{ij}^{2}-m_{I}^{2})^{2}} \left[(v-\lambda a) \left(\frac{m_{I}^{2}}{m_{j}}\sqrt{x_{i}} - \frac{m_{i}^{2}}{m_{j}} \frac{1}{\sqrt{x_{i}}} - 2m_{j} \frac{\sqrt{x_{i}}}{x_{j}} \right) + (v+\lambda a) \frac{m_{I}m_{i}}{m_{j}} \frac{x_{j}}{\sqrt{x_{i}}} \right]^{2} \\ a_{f_{\lambda}\mapsto f_{-\lambda}V_{0}}^{FF} &= \frac{(m_{I}(v+\lambda a) - m_{i}(v-\lambda a))^{2}}{m_{j}^{2}} \frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2}-m_{I}^{2})^{2}} x_{j}. \end{split}$$

$$\begin{split} a^{FF}_{f_{\lambda}f_{\lambda}H} &= \frac{e^2}{4s^2_w} \frac{m^4_i}{s^2_w} \frac{1}{(m^2_{ij} - m^2_I)^2} \left(\sqrt{x_i} + \frac{1}{\sqrt{x_i}}\right)^2 \\ a^{FF}_{f_{\lambda}f_{-\lambda}H} &= \frac{e^2}{4s^2_w} \frac{m^2_i}{s^2_w} \frac{\tilde{m}^2_{ij}}{(m^2_{ij} - m^2_I)^2} x_j. \end{split}$$

$$\begin{split} a_{V_{\lambda}\mapsto V_{\lambda}H}^{FF} &= \frac{e^2}{s_w^2} \frac{m_v^4}{m_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \\ a_{V_{\lambda}\mapsto V_0H}^{FF} &= \frac{e^2}{2s_w^2} \frac{m_v^2}{m_w^2} \frac{\tilde{m}_{ij}^2}{(m_{ij}^2 - m_I^2)^2} x_i x_j \\ a_{V_0\mapsto V_{\lambda}H}^{FF} &= \frac{e^2}{2s_w^2} \frac{m_v^2}{m_w^2} \frac{\tilde{m}_{ij}^2}{(m_{ij}^2 - m_I^2)^2} \frac{x_j}{x_i} \\ a_{V_0\mapsto V_0H}^{FF} &= \frac{e^2}{4s_w^2} \frac{m_v^2}{m_w^2} \frac{\tilde{m}_{ij}^2}{(m_{ij}^2 - m_I^2)^2} \frac{x_j}{x_i} \\ a_{V_0\mapsto V_0H}^{FF} &= \frac{e^2}{4s_w^2} \frac{1}{m_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \left(m_I^2 - 2m_i^2 \left(x_i + \frac{1}{x_i} \right) \right)^2. \end{split}$$

$$\begin{split} a_{V_{\lambda}\mapsto f_{\lambda}\bar{f}_{-\lambda}}^{FF} &= 2(v-\lambda a)^{2} \frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2}-m_{I}^{2})^{2}} x_{j}^{2} \\ a_{V_{\lambda}\mapsto f_{-\lambda}\bar{f}_{\lambda}}^{FF} &= 2(v+\lambda a)^{2} \frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2}-m_{I}^{2})^{2}} x_{i}^{2} \\ a_{V_{\lambda}\mapsto f_{-\lambda}\bar{f}_{-\lambda}}^{FF} &= 2 \frac{1}{(m_{ij}^{2}-m_{I}^{2})^{2}} \left((v+\lambda a) m_{i} \sqrt{\frac{x_{j}}{x_{i}}} + (v-\lambda a) m_{j} \sqrt{\frac{x_{i}}{x_{j}}} \right)^{2} \\ a_{V_{0}\mapsto f_{\lambda}\bar{f}_{\lambda}}^{FF} &= \frac{((v+\lambda a) m_{i} - (v-\lambda a) m_{j})^{2}}{m_{I}^{2}} \frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2}-m_{I}^{2})^{2}} \\ a_{V_{0}\mapsto f_{\lambda}\bar{f}_{-\lambda}}^{FF} &= \frac{1}{(m_{ij}^{2}-m_{I}^{2})^{2}} \\ &\times \left[(v-\lambda a) \left(2m_{I} \sqrt{x_{i}x_{j}} - \frac{m_{i}^{2}}{m_{I}} \sqrt{\frac{x_{j}}{x_{i}}} - \frac{m_{j}^{2}}{m_{I}} \sqrt{\frac{x_{i}}{x_{j}}} \right) + (v+\lambda a) \frac{m_{i}m_{j}}{m} \frac{1}{\sqrt{x_{i}x_{j}}} \right]^{2}. \end{split}$$

$$\begin{split} a_{V_{\lambda}\mapsto V_{\lambda}V_{\lambda}}^{FF} &= 2g_{v}^{2}\frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2}-m_{I}^{2})^{2}}\frac{1}{x_{i}x_{j}}\\ a_{V_{\lambda}\mapsto V_{\lambda}V_{-\lambda}}^{FF} &= 2g_{v}^{2}\frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2}-m_{I}^{2})^{2}}\frac{x_{i}^{3}}{x_{j}}\\ a_{V_{\lambda}\mapsto V_{-\lambda}V_{\lambda}}^{FF} &= 2g_{v}^{2}\frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2}-m_{I}^{2})^{2}}\frac{x_{j}^{3}}{x_{i}}\\ a_{V_{\lambda}\mapsto V_{\lambda}V_{0}}^{FF} &= g_{v}^{2}\frac{1}{(m_{ij}^{2}-m_{I}^{2})^{2}}\frac{(m_{I}^{2}-m_{i}^{2}-\frac{1+x_{i}}{x_{j}}m_{j}^{2})^{2}}{m_{j}^{2}}\\ a_{V_{\lambda}\mapsto V_{0}V_{\lambda}}^{FF} &= g_{v}^{2}\frac{1}{(m_{ij}^{2}-m_{I}^{2})^{2}}\frac{(m_{I}^{2}-m_{j}^{2}-\frac{1+x_{j}}{x_{i}}m_{i}^{2})^{2}}{m_{i}^{2}}\\ a_{V_{\lambda}\mapsto V_{0}V_{0}}^{FF} &= \frac{g_{v}^{2}}{2}\frac{(m_{I}^{2}-m_{I}^{2}-m_{I}^{2})^{2}}{m_{i}^{2}}\frac{(m_{I}^{2}-m_{I}^{2}-m_{I}^{2})^{2}}{m_{i}^{2}}\frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2}-m_{I}^{2})^{2}}x_{i}x_{j}. \end{split}$$

Lots of Antenna Functions (pt. 2)

$$\begin{split} a_{V_{0}\mapsto V_{\lambda}V_{-\lambda}}^{FF} &= g_{v}^{2} \frac{1}{(m_{ij}^{2} - m_{l}^{2})^{2}} \frac{(m_{l}^{2}(1 - 2x_{i}) + m_{i}^{2} - m_{j}^{2})^{2}}{m_{l}^{2}} & a_{f_{\lambda}\mapsto f_{\lambda}V}^{II} \\ a_{V_{0}\mapsto V_{\lambda}V_{0}}^{FF} &= \frac{g_{v}^{2}}{2} \frac{(m_{l}^{2} - m_{i}^{2} + m_{j}^{2})^{2}}{m_{l}^{2}m_{j}^{2}} \frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2} - m_{l}^{2})^{2}} \frac{x_{i}}{x_{i}} \\ a_{V_{0}\mapsto V_{0}V_{\lambda}}^{FF} &= \frac{g_{v}^{2}}{2} \frac{(m_{l}^{2} + m_{i}^{2} - m_{j}^{2})^{2}}{m_{l}^{2}m_{i}^{2}} \frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2} - m_{l}^{2})^{2}} \frac{x_{i}}{x_{j}} \\ &= \frac{g_{v}^{FF}}{2} \frac{1}{m_{l}^{2}m_{i}^{2}m_{j}^{2}} \frac{1}{m_{l}^{2}m_{i}^{2}} \frac{m_{ij}^{2}}{(m_{ij}^{2} - m_{l}^{2})^{2}} \frac{x_{i}}{x_{j}} \\ &= \frac{g_{v}^{FF}}{4m_{l}^{2}m_{i}^{2}m_{j}^{2}} \frac{1}{m_{l}^{2}m_{i}^{2}m_{j}^{2}} \frac{1}{(m_{ij}^{2} - m_{l}^{2})^{2}} \frac{x_{i}}{(m_{ij}^{2} - m_{l}^{2})^{2}} \\ &\times \left[m_{l}^{4}x_{i}x_{j}(x_{i} - x_{j}) + 2m_{l}^{2}(m_{i}^{2}x_{j}^{2}(1 + x_{i}) - m_{j}^{2}x_{i}^{2}(1 + x_{j})) \right]^{2} . \\ &= (m_{i}^{2} - m_{j}^{2})(m_{i}^{2}x_{j}(1 + x_{j}) + m_{j}^{2}x_{i}(1 + x_{i})) \right]^{2} . \\ &= a_{H\mapsto f_{\lambda}\bar{h}\bar{h}} = \frac{e^{2}}{4s_{w}^{2}} \frac{m_{i}^{2}}{s_{w}^{2}} \frac{\tilde{m}_{ij}^{2}}{(m_{ij}^{2} - m_{l}^{2})^{2}} \left(\sqrt{\frac{x_{i}}{x_{j}}} - \sqrt{\frac{x_{j}}{x_{i}}}\right)^{2} . \end{split}$$

$$a_{H\mapsto f_{\lambda}\bar{f}_{\lambda}}^{FF} = \frac{e^2}{4s_w^2} \frac{m_i^2}{s_w^2} \frac{\tilde{m}_{ij}^2}{(m_{ij}^2 - m_I^2)^2}$$

$$FF_{H\mapsto f_{\lambda}\bar{f}_{-\lambda}} = \frac{e^2}{4s_w^2} \frac{m_i^4}{s_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \left(\sqrt{\frac{x_i}{x_j}} - \sqrt{\frac{x_j}{x_i}}\right)^2.$$

$$\begin{split} a_{H\mapsto V_{\lambda}V_{-\lambda}}^{FF} &= \frac{e^2}{s_w^2} \frac{m_w^4}{m_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \\ a_{H\mapsto V_{\lambda}V_0}^{FF} &= \frac{e^2}{2s_w^2} \frac{m_v^2}{m_w^2} \frac{\tilde{m}_{ij}^2}{(m_{ij}^2 - m_I^2)^2} \frac{x_j}{x_i} \\ a_{H\mapsto V_0V_{\lambda}}^{FF} &= \frac{e^2}{2s_w^2} \frac{m_v^2}{m_w^2} \frac{\tilde{m}_{ij}^2}{(m_{ij}^2 - m_I^2)^2} \frac{x_i}{x_j} \\ a_{H\mapsto V_0V_0}^{FF} &= \frac{e^2}{4s_w^2} \frac{1}{m_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \left(m_I^2 - 2m_v^2 \left(\frac{1}{x_i x_j} - \frac{1}{x_i} \right) \right) \\ a_{H\mapsto V_0V_0}^{FF} &= \frac{e^2}{4s_w^2} \frac{1}{m_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \left(m_I^2 - 2m_v^2 \left(\frac{1}{x_i x_j} - \frac{1}{x_i} \right) \right) \\ a_{H\mapsto V_0V_0}^{FF} &= \frac{e^2}{4s_w^2} \frac{1}{m_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \left(m_I^2 - 2m_v^2 \left(\frac{1}{x_i x_j} - \frac{1}{x_i} \right) \right) \\ a_{H\mapsto V_0V_0}^{FF} &= \frac{e^2}{4s_w^2} \frac{1}{m_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \left(m_I^2 - 2m_v^2 \left(\frac{1}{x_i x_j} - \frac{1}{x_i} \right) \right) \\ a_{H\mapsto V_0V_0}^{FF} &= \frac{1}{4s_w^2} \frac{1}{m_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \left(m_I^2 - 2m_v^2 \left(\frac{1}{x_i x_j} - \frac{1}{x_i} \right) \right) \\ a_{H\mapsto V_0V_0}^{FF} &= \frac{1}{4s_w^2} \frac{1}{m_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \left(m_I^2 - 2m_v^2 \left(\frac{1}{x_i x_j} - \frac{1}{x_i} \right) \right) \\ a_{H\mapsto V_0V_0}^{FF} &= \frac{1}{4s_w^2} \frac{1}{m_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \left(m_I^2 - 2m_v^2 \left(\frac{1}{x_i x_j} - \frac{1}{x_i} \right) \right) \\ a_{H\mapsto V_0V_0}^{FF} &= \frac{1}{4s_w^2} \frac{1}{m_w^2} \frac{1}{(m_{ij}^2 - m_I^2)^2} \left(m_I^2 - \frac{1}{2s_w^2} \right)$$

$$\begin{split} a_{f_{\lambda}\mapsto f_{\lambda}V_{\lambda}}^{II} &= 2(v-\lambda a)^{2} \frac{\tilde{q}_{aj}^{2}}{(m_{A}^{2}-q_{ai}^{2})^{2}} \frac{1}{x_{A}} \frac{1}{x_{j}} \\ a_{f_{\lambda}\mapsto f_{\lambda}V_{-\lambda}}^{II} &= 2(v-\lambda a)^{2} \frac{\tilde{q}_{aj}^{2}}{(m_{A}^{2}-q_{ai}^{2})^{2}} \frac{x_{A}}{x_{j}} \\ a_{f_{\lambda}\mapsto f_{-\lambda}V_{\lambda}}^{II} &= 2\frac{1}{(m_{A}^{2}-q_{ai}^{2})^{2}} \left((v-\lambda a) \frac{m_{A}}{\sqrt{x_{A}}} - (v+\lambda a) \sqrt{x_{A}} m_{a} \right)^{2} \\ a_{f_{\lambda}\mapsto f_{\lambda}V_{0}}^{II} &= \frac{1}{(m_{A}^{2}-q_{ai}^{2})^{2}} \\ &\times \left[(v-\lambda a) \left(\frac{m_{a}^{2}}{m_{j}} \sqrt{x_{A}} - \frac{m_{A}^{2}}{m_{j}} \frac{1}{\sqrt{x_{A}}} - 2m_{j} \frac{\sqrt{x_{A}}}{x_{j}} \right) + (v+\lambda a) \frac{m_{a}m_{A}}{m_{j}} \frac{x_{j}}{\sqrt{x_{A}}} \right]^{2} \\ a_{f_{\lambda}\mapsto f_{-\lambda}V_{0}}^{II} &= \frac{((v-\lambda a)m_{A} - (v+\lambda a)m_{a})^{2}}{m_{j}^{2}} \frac{\tilde{q}_{aj}^{2}}{(m_{A}^{2}-q_{ai}^{2})^{2}} \frac{x_{j}}{x_{A}} \end{split}$$

$$\begin{aligned} a_{f_{\lambda}f_{\lambda}H}^{II} &= \frac{e^2}{4s_w^2} \frac{m_a^4}{s_w^2} \frac{1}{(m_A^2 - q_{ai}^2)^2} \frac{1}{x_A} \left(\sqrt{x_A} + \frac{1}{\sqrt{x_A}} \right)^2 \\ a_{f_{\lambda}f_{-\lambda}H}^{II} &= \frac{e^2}{4s_w^2} \frac{m_a^2}{s_w^2} \frac{\tilde{q}_{aj}^2}{(m_A^2 - q_{ai}^2)^2} \frac{1}{x_A} x_j. \end{aligned}$$

 $1\bigg)\bigg)^2.$

Collinear Limits

$$\tilde{m}_{ij}^2 = m_{ij}^2 - \frac{m_i^2}{z^2} - \frac{m_j^2}{(1-z)^2}$$

calar

Overestimate Determination

 $\mathcal{O}(1000)$ types of branchings (all FSR + ffV ISR)

Parameterized overestimate

$$a_{\text{trial}}^{\text{FF}} = \frac{1}{m_{ij}^2 - m_I^2} \left[c_1^{\text{FF}} + c_2^{\text{FF}} \frac{1}{z} + c_3^{\text{FF}} \frac{1}{1-z} + c_4^{\text{FF}} \frac{m_I^2}{m_{ij}^2 - m_I^2} \right] \longrightarrow \text{Efficient veto algorithm}$$

For every branching:

- Generate random branchings in random antennae
- Set up *linear programming* system
- Solve numerically

$$\begin{array}{l} \text{Minimize } a_{\mathrm{trial},i}^{\mathrm{FF}} - a_i^{\mathrm{FF}} \\ \text{While } \forall i: \ a_{\mathrm{trial},i}^{\mathrm{FF}} > a_i^{\mathrm{FF}} \end{array}$$

Virtual Sudakov logs

 $pp \rightarrow ZZ \rightarrow e^+ e^- \mu^+ \mu^- (100 \text{ TeV})$

Dark Matter Decay Spectra

Comparison with analytic results

Bauer, Rodd, Webber 2007.15001

Novel features in the Electroweak Sector

Neutral Boson Interference

Interference between γ, Z_T and h, Z_L

- Complicated solution: Evolve density matrices Very computationally expensive
- Simple solution: Apply event weight \rightarrow Does not get Sudakov right

Bosonic Interference

Overlap Veto

100000000

100000001

Last emission QCD

_ast emission EW?

Double counting problem

Veto procedure

$$P? \longrightarrow d_{ij}^{\text{Last}} < \min\left(d_{ij}^{\text{EW}}\right) \longrightarrow \text{Accept} \\ \text{Branching} \\ d_{ij} = \min\left(k_{T,i}^2, k_{T,j}^2\right) \frac{\Delta_{ij}}{R} + m_i^2 + m_j^2 -$$

Overlap Veto

Resonance Matching

Branchings like $t \to bW_{,} Z \to q\bar{q}$ etc.

- Large scales: EW shower offers best description
- Small scales: **Breit-Wigner distribution**

$$BW(Q^2) \propto \frac{m_0 \Gamma(m)}{Q^4 + m_0^2 \Gamma(m)^2}$$

Matching:

- Sample mass from Breit-Wigner upon production
- Suppress shower by factor

$$\frac{Q^4}{(Q^2 + Q_{\rm EW}^2)^2}$$

Decay when shower hits off-shellness scale

Interleaved Resonance Decays

Sequential

- Complete evolution of the hard system
- Perform resonance shower

Interleaved

- Evolution up to offshellness scale of the resonance
- Perform resonance shower
- Insert showered decay products and continue evolution

Interleaved Resonance Decays

 $ee \to t\bar{t}$ (Parton level)

Conclusions

QED Shower

Includes full soft multipole structure, while interleaved with QCD shower

EW Shower

- Rich physics & many features unique to the EW sector
 - EW symmetry breaking / Goldstone contributions
 - Matching to resonance decays
 - Neutral boson interference
 - Overlap between hard scatterings
- Many other features yet to implement
 - Treatment of soft & spin interference
 - Bloch-Nordsieck violations

Interleaved Resonance Decays

- Physically-intuitive treatment of finite-width / offshell resonances
- More results in 2108.10786

QED & EW shower, and interleaved resonance decays available in Pythia 8.304

Interleaving Results

