Hadronization & Underlying Event

QCD and Event Generators Lecture 3 of 3

Peter Skands

Monash University

(Melbourne, Australia)

From Partons to Pions

Consider a parton emerging from a hard scattering (or decay) process

It starts at a high factorization scale $Q = Q_F = Q_{hard}$

Qhard

How about I just call it a hadron? \rightarrow "Local Parton-Hadron Duality"

It ends up at a low effective factorization scale $Q \sim m_{\rho} \sim 1 \text{ GeV}$

q

Early models: "Independent Fragmentation"

Local Parton Hadron Duality (LPHD) can give useful results for inclusive quantities in collinear fragmentation

Motivates a simple model:

"Independent Fragmentation"

- The point of confinement is that partons are **coloured**
- Hadronisation = the process of **colour neutralisation**
 - → Unphysical to think about independent fragmentation of a single parton into hadrons
 - → Too naive to see LPHD (inclusive) as a justification for Independent Fragmentation (exclusive)
- → More **physics** needed

A physical hadronization model

- Should involve at least **two** partons, with opposite color charges^{*}
- A strong **confining field** emerges between the two when their separation ≥ 1fm

*) Really, a colour singlet state $\frac{1}{\sqrt{3}}(|R\bar{R}\rangle + |G\bar{G}\rangle + |B\bar{B}\rangle)$; the LC **colour flow rules** discussed in lecture 1 allow us to tell which partons to pair up (at least to LC; see arXiv:<u>1505.01681</u>)

Linear Confinement

Using explicit computer simulations of QCD on a 4D "lattice" (lattice QCD), one can compute the potential energy of a colour-singlet $q\bar{q}$ state, as a function of the distance, r, between the q and \bar{q}

Motivates a Model

A high-energy quark-gluon-antiquark system is created and starts to fly apart

- Quarks → String Endpoints
- Gluons → Transverse Excitations (kinks)
- **Physics** then in terms of 1+1dim string "worldsheet" evolving in spacetime
- Probability of **string break** (by quantum tunneling) constant per unit space-time area

Computer algorithms to model this process began to be developed in late 70'ies and early 80'ies → Monte Carlo Event Generators Modern MC hadronization models: PYTHIA (string), HERWIG (cluster), SHERPA (cluster)

$$\mathscr{P} \propto \exp\left(\frac{-m^2 - p_{\perp}^2}{(\kappa/\pi)}\right)$$

The (Lund) String Hadronization Model ↔ PYTHIA (org JETSET)

Simple space-time picture

Highly predictive, few free parameters

Causality and Lorentz invariance \implies "Lund Symmetric Fragmentation Function" with two free parameters *a* and *b*:

$$f(z) \propto \frac{(1-z)^a}{z} \exp(-bm_{\perp}^2/z)$$

with $z \sim E_{hadron}/E_{quark}$

Details of string breaks more complicated Many free parameters for **flavour & spin** of produced hadrons \rightarrow fit to $e^+e^- \rightarrow$ hadrons

String breaks are separated by **spacelike** intervals **-> causally disconnected**

 \rightarrow We do not have to consider the string breaks in any specific time order \rightarrow choose the most convenient order for us: starting from the endpoints ("outside-in")

Hadron Spectra = combination of α_s choice & non-perturbative parameters

Monash U.

Note: using light-cone coordinates: $p_+ = E + p_z$

 $\pi^+(\vec{p}_{\perp 0} - \vec{p}_{\perp 1}, z_1 p_+)$

 $K^{0}(\vec{p}_{\perp 1} - \vec{p}_{\perp 2}, z_{2}(1 - z_{1})p_{+})$

Non-Perturbative Domain Fragmentation function $f(z,Q_{IR})$ + p_T / flavour /... parameters, hadron decay tables

Quark vs Gluon Jets

QCD and Event Generators

The Cluster Model ↔ HERWIG, SHERPA

Starting observation: "Preconfinement"

Large clusters \rightarrow string-like. (In PYTHIA, small strings \rightarrow cluster-like).

MC vs Hadron Collisions

Now that we have a model that includes hard interactions, showers, and string fragmentation, let's apply it to pp collisions!

FIG. 3. Charged-multip. results (Ref. 32) vs simple models: dashed low p_T only, full including hard scatterings, dash-dotted also including initial- and final-state radiation

 $p_{T_{min}} = 1.8$ GeV, roughly two-thirds of all events would be expected to contain a hard interaction. The remaining $\frac{1}{3}$ is still assumed to be low p_T .

The inclusion of hard interactions actually results in negligible improvements of Figs. 3 and 4. The reason is that most "hard" interactions still have a n-for the sea

QCD and Event Generators

some global (quantum) number tells the entire event to fluctuate up or down across many units of rapidity?

Further evidence of additional physics in hadron-hadron

1.2

1983: discovery of the **"Pedestal Effect"** UA1: $p\bar{p}$ at $\sqrt{s} = 540 \,\mathrm{GeV}$ Studies of jets with E_T up to 100 GeV Phys. Lett. B 132 (1983) 214-222 "Outside the [jet], a constant E_T in $\Delta y \times \Delta \Phi = 0.05 \times$ plateau is observed, whose height is independent of the jet E_{T} . Its value is substantially higher than the one observed for minimum ۸ bias events." In hadron-hadron collisions, **hard jets** sit on

"pedestals" of increased particle production extending far from the jet cores.

Simple question: what does the *average* LHC collision look like? First question: how many are there? What is $\sigma_{tot}(pp)$ at LHC ? Around 100mb (of which about half is "inelastic, non-diffractive")

Minimum Bias = Minimal trigger requirement At least one hit in some simple and efficient hit counters (typically at large η) (Double-sided trigger requirement suppresses "single diffraction")

Dissecting the Pedestal

Today, we call the pedestal "the Underlying Event"

Rapidity (along beam axis)

A uniform (constant) particle density per rapidity unit is just what a string produces ...

Illustrations by T. Sjöstrand

but the **height** of the pedestal was much larger than that of **one** string...

Multiple Interactions?

Total inelastic pp cross section @ 8 TeV* ~ 80 mb (measured by TOTEM) Compare this to perture the calculation of $\mathbb{CD}^{2} \to 2$ scattering cross section (mainly t-channel gluon exchange; divergent for pare 1.30 DF2.3LO α_=0.135 CTEQ6L1 **Section (mab)** ted o 8 TeV $QCD 2 \rightarrow 2 cross$ pp section dominated $\sigma_{2\rightarrow 2}(p_{T} \ge p_{Tmin}) \text{ vs } p_{Tmin}$ by t-channel gluon – α_s=0.130 NNPDF2.3LO exchange Cross 10² total inelastic cross section Pythia 8.183 Integrated 10⁻¹ 10⊧ LO QCD 2→2 (Rutherford) Larger than total pp cross section Pythia 8.183 for $\hat{p}_{\perp} \leq 4 \,\mathrm{GeV}$ $1 \sqrt{0} \frac{1}{0}$ 15 5 10 20

*Note: nothing particularly special about 8 TeV; the crossover point would be lower at lower E_{CM} and higher at higher E_{CM}

Interpret to mean that **every** pp collision has **more** than one $2 \rightarrow 2$ QCD scattering with $\hat{p}_{\perp} \leq 4 \,\mathrm{GeV}$

Physics of the Pedestal

Recall Factorisation: Subdivide calculation

Hard scattering: parton-parton cross section $d\hat{\sigma}$ independent of non-pert. dynamics

x PDF factors $f(x, Q_F^2)$ representing: partitioning of proton into struck **parton** + unresolved **remnant**, at factorisation scale Q_F^2

Multi-Parton Interactions (MPI)

Several QCD $2 \rightarrow 2$ in **one** pp collision

⇒ need Multi-parton PDFs (PYTHIA, e.g., Sjöstrand & PS JHEP 03 (2004) 053 • hep-ph/0402078)

Constructed using **momentum** and **flavour conservation**; goes beyond existing factorisation theorems (though some work on special case Double Parton Scattering)

(More issues such as colour reconnections, saturation, rescattering, higher twist, not covered here)

Naively
$$\langle n_{2\to 2}(p_{\perp \min}) \rangle = \frac{\sigma_{2\to 2}(p_{\perp \min})}{\sigma_{tot}}$$

If the interactions are assumed ~ independent (naive factorisation) → Poisson

$$\mathcal{P}_n = rac{\langle n
angle^n}{n!} e$$

Real Life

Color screening: $\sigma_{2\rightarrow 2}\rightarrow 0$ for $p_{\perp}\rightarrow 0$

high-n tail

Impact-parameter dependence + physical correlations \rightarrow not simple product

Momentum conservation suppresses

Impact Parameter Dependence

1. **Simple Geometry** (in impact-parameter plane) Simplest idea: smear PDFs across a **uniform disk** of size πr_p^2 \rightarrow simple geometric overlap factor ≤ 1 in dijet cross section Some collisions have the full overlap, others only partial \implies Poisson distribution with different mean $\langle n_{\rm MPI} \rangle$ at each b

2. More realistic **Proton b-shape** (used by all modern MPI models)

Smear PDFs across a non-uniform disk E.g., Gaussian(s), or **more**/less peaked (e.g., EM form factor) Overlap factor = convolution of two such distributions

 \rightarrow Poisson distribution with different mean $\langle n \rangle$ at each b "Lumpy Peaks" \rightarrow large matter overlap enhancements, higher <n>

Note: this is an *effective* description. Not the actual proton mass density. E.g., peak in overlap function $(\gg 1)$ can represent unlikely configurations with huge overlap enhancement. Typically use total σ_{inel} as normalization.

MC with MPI vs Hadron Collisions

Plots from: Sjöstrand & v. Zijl, Phys.Rev.D36 (1987) 2019

Characterising The Underlying Event

There are many UE variables. The most important is $\langle \Sigma p_T \rangle$ in the "Transverse Region"

Monash U.

"Transverse Region" (TRNS)

Sensitive to activity at right angles to the hardest jets

→ Useful definition of **Underlying Event**

Min-Bias VS Underlying Event

Tautology: A jet trigger provides a bias $(\rightarrow$ subsample of minimum-bias)

Pedestal effect:

Events with a hard jet trigger are accompanied by a higher plateau of ambient activity

MPI: interpreted as a biasing effect. Small pp impact parameters → larger matter overlaps \rightarrow more MPI \rightarrow higher chances for a hard interaction

Interleaved Evolution

The model in Pythia 8

Sjöstrand, P.S., JHEP 0403 (2004) 053; EPJ C39 (2005) 129

Jdel → Underlying Event (note: interactions correllated in colour: hadronization not independent) \sim "Finegraining" \rightarrow correlations between all perturbative activity at successively smaller scales

How many MPI are there? *

Example for pp collisions at 13 TeV — PYTHIA's default MPI model

*note: can be arbitrarily soft

Summary — Divide and Conquer

Separation of time scales > Factorisations

→ Can split **big** problem into many (nested) pieces + make random choices (MC)² ~ like in nature

 $\mathcal{P}_{\text{event}} = \mathcal{P}_{\text{hard}} \otimes \mathcal{P}_{\text{dec}} \otimes \mathcal{P}_{\text{ISR}} \otimes \mathcal{P}_{\text{FSR}} \otimes \mathcal{P}_{\text{MPI}} \otimes \mathcal{P}_{\text{Had}} \otimes \dots$

Physics

Hard Process & Decays:

Use process-specific (N)LO matrix elements (e.g., $gg \rightarrow H^0 \rightarrow \gamma\gamma$) \rightarrow Sets "hard" resolution scale for process: Q_{HARD}

ISR & FSR (Initial- & Final-State Radiation):

Driven by differential (e.g., DGLAP) evolution equations, dP/dQ^2 , as function of resolution scale; from Q_{HARD} to $Q_{HAD} \sim 1 \text{ GeV}$

MPI (Multi-Parton Interactions)

Protons contain lots of partons \rightarrow can have additional (soft) partonparton interactions \rightarrow Additional (soft) "Underlying-Event" activity

Hadronisation

Non-perturbative modeling of partons \rightarrow hadrons transition

Final Remarks — Why study QCD?

We tend to focus on how useful it is, essential even, to collider phenomenology (MC tools, NⁿLO, etc).

But let's not forget how pretty it is

And how little we still know about it ... especially beyond fixed order

Image Credits: blepfo

Extra Slides

RECAP: Colour Flow

Coherence of pQCD cascades \rightarrow not much "overlap" between systems → Leading-colour approximation pretty good

(LEP measurements in $e^+e^- \rightarrow W^+W^- \rightarrow hadrons$ confirm this (at least to order 10% ~ 1/N_c²)) **Note**: (much) more color getting kicked around in hadron collisions. More tomorrow.

(Note on the Length of Strings)

In **Spacetime**:

String tension \approx 1 GeV/fm \rightarrow a 5-GeV quark can travel 5 fm before all its kinetic energy is transformed to potential energy in the string.

Then it must start moving the other way (\rightarrow "yo-yo" model of mesons. Note: string breaks \rightarrow several mesons)

Fragmentation Function

(see lecture notes for how selection is made

The meson M takes a fraction z of the quark momentum,

How big that fraction is, $z \in [0,1],$ is determined by the *fragmentation* function, $f(z, Q_0^2)$

Left-Right Symmetry

Causality → Left-Right Symmetry

- → Constrains form of fragmentation function!
- → Lund Symmetric Fragmentation Function

Note: In principle, *a* can be flavour-dependent. In practice, we only distinguish between baryons and mesons

1980: string (colour coherence) effect

1980: string (colour coherence) effect

(Aside: What is diffraction?)

Also: "Double Diffraction": both protons explode; defined by gap inbetween "Central Diffraction": two protons + a central (exclusive) system

Glueball-Proton Collider with variable E_{CM}

1: A Simple Model

A minimal model incorporating single-parton factorization, perturbative unitarity, and energy-and-momentum conservation

Take literally

 $\sigma_{2\to 2}(p_{\perp \min}) = \langle n \rangle(p_{\perp \min}) \sigma_{\text{tot}}$

Parton-Parton Cross Section

Hadron-Hadron Cross Section

- I. Choose $p_{T\min}$ cutoff
 - = main tuning parameter
- 2. Interpret $\langle n \rangle (p_{T\min})$ as mean of Poisson distribution Equivalent to assuming all parton-parton interactions equivalent and independent ~ each take an instantaneous "snapshot" of the proton
- 3. Generate *n* parton-parton interactions (PQCD $2 \rightarrow 2$)

Veto if total beam momentum exceeded \rightarrow overall (E,p) cons

- 4. Add impact-parameter dependence $\rightarrow \langle n \rangle = \langle n \rangle \langle b \rangle$ Assume factorization of transverse and longitudinal d.o.f., \rightarrow PDFs : f(x,b) = f(x)g(b)*b* distribution ∝ EM form factor → JIMMY model (F77 Herwig) ← Butterworth, Forshaw, Seymour Constant of proportionality = second main tuning parameter
- 5. Add separate class of "soft" (zero-pt) interactions representing interactions with $p_T < p_{T\min}$ and require $\sigma_{soft} + \sigma_{hard} = \sigma_{tot}$ Herwig 7 model Bähr et al. arXiv:0905.4671

Ordinary CTEQ, MSTW, NNPDF, ...

Z.Phys. C72 (1996) 637

The Pedestal (now called the Underlying Event)

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

(Not Infrared Safe)

Large Non-factorizable Corrections

Prediction off by $\approx 10\%$

Large Non-factorizable Corrections

Prediction off by < 10%

Truth is in the eye of the beholder:

P. Skands

R. Field: "See, I told you!" Y. Gehrstein: "they have to fudge it again"

"Toward"

Transver

l'ransver se

Sum(pT) Density (TRANS)

- (more) Infrared Safe