Hadronization \& Underlying Event

QCD and Event Generators Lecture 3 of 3

Peter Skands
Monash University
(Melbourne, Australia)

㴆C Cnet (D)

From Partons to Pions

Consider a parton emerging from a hard scattering (or decay) process

How about I just call it a hadron?

$$
\rightarrow \text { "Local Parton-Hadron Duality" }
$$

Parton \rightarrow Hadrons?

Early models: "Independent Fragmentation"

Local Parton Hadron Duality (LPHD) can give useful results for inclusive quantities in collinear fragmentation

Motivates a simple model:

But ...

The point of confinement is that partons are coloured
Hadronisation $=$ the process of colour neutralisation
\rightarrow Unphysical to think about independent fragmentation of a single parton into hadrons
\rightarrow Too naive to see LPHD (inclusive) as a justification for Independent Fragmentation (exclusive)
\rightarrow More physics needed

Colour Neutralisation

A physical hadronization model

Should involve at least two partons, with opposite color charges*
A strong confining field emerges between the two when their separation $\gtrsim 1 \mathrm{fm}$

*) Really, a colour singlet state $\frac{1}{\sqrt{3}}(|R \bar{R}\rangle+|G \bar{G}\rangle+|B \bar{B}\rangle)$; the LC colour flow rules discussed in lecture 1 allow us to tell which partons to pair up (at least to LC; see arXiv:1505.01681)

Linear Confinement

Using explicit computer simulations of QCD on a 4D "lattice" (lattice QCD), one can compute the potential energy of a colour-singlet $q \bar{q}$ state, as a function of the distance, r, between the q and \bar{q}

"Cornell Potential" fit: $V(r)=-\frac{a}{r}+\kappa r \quad$ with $\kappa \sim 1 \mathrm{GeV} / \mathrm{fm} \quad(\rightarrow$ could lift a 16-ton truck $)$

Motivates a Model

A high-energy quark-gluon-antiquark system is created and starts to fly apart

- Quarks \rightarrow String Endpoints
- Gluons \rightarrow Transverse Excitations (kinks)
- Physics then in terms of $1+1$ dim string "worldsheet" evolving in spacetime
- Probability of string break (by quantum tunneling) constant per unit space-time area

Computer algorithms to model this process began to be developed in late 70'ies and early 80'ies

$$
\rightarrow \text { Monte Carlo Event Generators }
$$

Modern MC hadronization models: PYTHIA (string), HERWIG (cluster), SHERPA (cluster)

The (Lund) String Hadronization Model \leftrightarrow PYTHIA (org Jetset)

Simple space-time picture
Highly predictive, few free parameters

Causality and Lorentz invariance \Longrightarrow "Lund Symmetric Fragmentation Function" with two free parameters a and b :
$f(z) \propto \frac{(1-z)^{a}}{z} \exp \left(-b m_{\perp}^{2} / z\right)$
with $z \sim E_{\text {hadron }} / E_{\text {quark }}$

Details of string breaks more complicated
Many free parameters for flavour \& spin of produced hadrons \rightarrow fit to $e^{+} e^{-} \rightarrow$ hadrons

Iterative String Breaks

String breaks are separated by spacelike intervals \rightarrow causally disconnected
\rightarrow We do not have to consider the string breaks in any specific time order \rightarrow choose the most convenient order for us: starting from the endpoints ("outside-in")

Note: using light-cone coordinates: $p_{+}=E+p_{z}$

Hadron Spectra = combination of α_{s} choice \& non-perturbative parameters

Quark vs Gluon Jets

Hallmark feature of Lund string model:
Gluon connected to two string pieces

Each quark connected to one string piece
\rightarrow expect factor $2 \sim C_{A} / C_{F}$ larger particle multiplicity in gluon jets vs quark jets

Can be important for discriminating new-physics signals (decays to quarks vs decays to gluons, vs composition of background and bremsstrahlung combinatorics)

The Cluster Model \leftrightarrow HERWIG, SHERPA

Starting observation: "Preconfinement"

+ Force $\mathrm{g} \rightarrow \mathrm{qq}$ splittings at Q_{0}
\rightarrow high-mass q-qbar "clusters"
Isotropic 2-body decays to hadrons according to $P S \approx\left(2 s_{1}+1\right)\left(2 s_{2}+1\right)\left(p^{*} / m\right)$

Large clusters \rightarrow string-like. (In PYTHIA, small strings \rightarrow cluster-like).

MC vs Hadron Collisions

Now that we have a model that includes hard interactions, showers, and string fragmentation, let's apply it to pp collisions!

Further evidence of additional physics in hadron-hadron

1983: discovery of the "Pedestal Effect"
UA1: $p \bar{p}$ at $\sqrt{s}=540 \mathrm{GeV}$
Studies of jets with E_{T} up to 100 GeV
Phys. Lett. B 132 (1983) 214-222
"Outside the [jet], a constant E_{T} plateau is observed, whose height is independent of the jet E_{T}. Its value is substantially higher than the one observed for minimum bias events."

In hadron-hadron collisions, hard jets sit on "pedestals" of increased particle production extending far from the jet cores.

What's "Minimum-Bias"?

Simple question: what does the average LHC collision look like?
First question: how many are there? What is $\sigma_{\text {tot }}(p p)$ at LHC ?
Around 100 mb (of which about half is "inelastic, non-diffractive")

Minimum Bias $=$ Minimal trigger requirement
At least one hit in some simple and efficient hit counters (typically at large η) (Double-sided trigger requirement suppresses "single diffraction")

Dissecting the Pedestal

Today, we call the pedestal "the Underlying Event"

A uniform (constant) particle density per rapidity unit is just what a string produces ...

but the height of the pedestal was much larger than that of one string...

Multiple Interactions?

Parton-Parton vs Proton-Proton Cross Sections

Total inelastic pp cross section @ $8 \mathrm{TeV}^{\star} \sim 80 \mathrm{mb}$ (measured by TOTEM) Compare this to perturbative calculation of QCD $2 \rightarrow 2$ scattering cross section (mainly t-channel gluon exchange; divergent for $p_{T} \rightarrow 0$)

$$
\text { QCD } 2 \rightarrow 2 \text { cross }
$$ section dominated by t-channel gluon exchange

Larger than total pp cross section for $\hat{p}_{\perp} \leq 4 \mathrm{GeV}$

Interpret to mean that every pp collision has more than one $2 \rightarrow 2$ OCD scattering with $\hat{p}_{\perp} \leq 4 \mathrm{GeV}$
*Note: nothing particularly special about 8 TeV; the crossover point would be lower at lower E_{CM} and higher at higher E_{CM}

Physics of the Pedestal

Recall Factorisation: Subdivide calculation

Hard scattering: parton-parton cross section $d \hat{\sigma}$ independent of non-pert. dynamics x PDF factors $f\left(x, Q_{F}^{2}\right)$ representing: partitioning of proton into struck parton + unresolved remnant, at factorisation scale Q_{F}^{2}

Multi-Parton Interactions (MPI)

Several QCD $2 \rightarrow 2$ in one pp collision

\Longrightarrow need Multi-parton PDFs $\overline{\text { (PYTHIA, e.g., Sjöstrand \& PS JHEP } 03 \text { (2004) 053 • hep-ph/0402078) }}$
Constructed using momentum and flavour conservation; goes beyond existing factorisation theorems (though some work on special case Double Parton Scattering)
(More issues such as colour reconnections, saturation, rescattering, higher twist, not covered here)

How many?

Naively

$$
\left\langle n_{2 \rightarrow 2}\left(p_{\perp \min }\right)\right\rangle=\frac{\sigma_{2 \rightarrow 2}\left(p_{\perp \min }\right)}{\sigma_{\mathrm{tot}}}
$$

If the interactions are assumed \sim independent (naive factorisation) \rightarrow Poisson

$$
\mathcal{P}_{n}=\frac{\langle n\rangle^{n}}{n!} e^{-\langle n\rangle}
$$

Real Life

Color screening: $\sigma_{2 \rightarrow 2 \rightarrow 0}$ for $p_{\perp} \rightarrow 0$
Momentum conservation suppresses high-n tail
Impact-parameter dependence

+ physical correlations
\rightarrow not simple product

Impact Parameter Dependence

1. Simple Geometry (in impact-parameter plane)

Simplest idea: smear PDFs across a uniform disk of size πr_{p}^{2}
\rightarrow simple geometric overlap factor ≤ 1 in dijet cross section
Some collisions have the full overlap, others only partial
\Longrightarrow Poisson distribution with different mean $\left\langle n_{\text {MPI }}\right\rangle$ at each b
2. More realistic Proton b-shape (used by all modern MPI models)

Smear PDFs across a non-uniform disk
E.g., Gaussian(s), or more/less peaked (e.g., EM form factor)

Overlap factor $=$ convolution of two such distributions
\rightarrow Poisson distribution with different mean <n> at each b "Lumpy Peaks" \rightarrow large matter overlap enhancements, higher <n>

Note: this is an effective description. Not the actual proton mass density. E.g., peak in overlap function (>1) can represent unlikely configurations with huge overlap enhancement. Typically use total $\sigma_{i n e l}$ as normalization.

MC with MPI vs Hadron Collisions

Plots from: Sjöstrand \& v. Ziil, Phys.Rev.D36 (1987) 2019

Fluctuations in $\mathbf{n}_{\text {mpi }} \rightarrow$ Bigger (global) fluctuations

FIG. 12. Charged-multiplicity distribution at 540 GeV , UA5 results (Ref. 32) vs multiple-interaction model with variable impact parameter: solid line, double-Gaussian matter distribution; dashed line, with fix impact parameter [i.e., $\widetilde{O}_{0}(b)$].

MPI \rightarrow Long-distance correlations in rapidity

Impact-parameter dependence \rightarrow UE

Characterising The Underlying Event

There are many UE variables.
The most important is $\left.<\Sigma \mathrm{p}_{\mathrm{T}}\right\rangle$ in the "Transverse Region"

"Transverse Region"

 (TRNS)Sensitive to activity at right angles to the hardest jets
\rightarrow Useful definition of Underlying Event

Min-Bias VS Underlying Event

Tautology:

A jet trigger provides a bias

(\rightarrow subsample of minimum-bias)

Pedestal effect:

Events with a hard jet trigger are accompanied by a higher plateau of ambient activity

MPI: interpreted as a biasing effect. Small pp impact parameters \rightarrow larger matter overlaps \rightarrow more MPI \rightarrow higher chances for a hard interaction

Plot from maplots.cern.ch

Interleaved Evolution

The model in Pythia 8

How many MPI are there?

Example for pp collisions at 13 TeV — PYTHIA's default MPI model

*note: can be arbitrarily soft

Summary - Divide and Conquer

Physics Separation of time scales $>$ Factorisations Maths

\rightarrow Can split big problem into many (nested) pieces + make random choices (MC) ${ }^{2}$ ~ like in nature

$$
\mathcal{P}_{\text {event }}=\mathcal{P}_{\text {hard }} \otimes \mathcal{P}_{\text {dec }} \otimes \mathcal{P}_{\text {ISR }} \otimes \mathcal{P}_{\text {FSR }} \otimes \mathcal{P}_{\text {MPI }} \otimes \mathcal{P}_{\text {Had }} \otimes \ldots
$$

 counting between fixed-order and shower corrections

Hard Process \& Decays:

Use process-specific (N)LO matrix elements (e.g., gg $\rightarrow \mathrm{H}^{0} \rightarrow \gamma \gamma$)
\rightarrow Sets "hard" resolution scale for process: QHARD
ISR \& FSR (Initial- \& Final-State Radiation):
Driven by differential (e.g., DGLAP) evolution equations, $\mathrm{dP} / \mathrm{dQ}^{2}$, as function of resolution scale; from $\mathrm{Q}_{\text {HARD }}$ to $\mathrm{Q}_{\text {HAD }} \sim 1 \mathrm{GeV}$

MPI (Multi-Parton Interactions)

Protons contain lots of partons \rightarrow can have additional (soft) partonparton interactions \rightarrow Additional (soft) "Underlying-Event" activity

Hadronisation

Non-perturbative modeling of partons \rightarrow hadrons transition

Final Remarks - Why study OCD?

We tend to focus on how useful it is, essential even, to collider phenomenology (MC tools, NnLO, etc).

But let's not forget how pretty it is

And how little we still know about it
... especially beyond fixed order

Extra Slides

RECAP: Colour Flow

Colour flow in parton showers

Coherence of pQCD cascades \rightarrow not much "overlap" between systems
\rightarrow Leading-colour approximation pretty good
(LEP measurements in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}-\rightarrow$ hadrons confirm this (at least to order $10 \% \sim 1 / \mathrm{N}_{c}{ }^{2}$))
Note: (much) more color getting kicked around in hadron collisions. More tomorrow.

(Note on the Length of Strings)

In Spacetime:

String tension $\approx 1 \mathrm{GeV} / \mathrm{fm} \rightarrow$ a $5-\mathrm{GeV}$ quark can travel 5 fm before all its kinetic energy is transformed to potential energy in the string.

Then it must start moving the other way (\rightarrow "yo-yo" model of mesons. Note: string breaks \rightarrow several mesons)

In Rapidity :

(convenient variable in momentum space)

$$
\begin{gathered}
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\frac{1}{2} \ln \left(\frac{\left(E+p_{z}\right)^{2}}{E^{2}-p_{z}^{2}}\right) \\
\left(\text { for } m \rightarrow 0: \frac{1}{2} \ln \left(\frac{1+\cos \theta}{1-\cos \theta}\right)=-\ln \tan (\theta / 2)=\eta\right)
\end{gathered}
$$

Particle Production:
If the quark gives all its energy to a single pion traveling along the z axis

$$
y_{\max } \sim \ln \left(\frac{2 E_{q}}{m_{\pi}}\right)
$$

Scaling in lightcone $p_{ \pm}=E \pm p_{z}$
\Rightarrow flat central rapidity plateau (+ some endpoint effects)

Fragmentation Function

Having selected a hadron flavor

How much momentum does it take?
(see lecture notes for how selection is made between different spin/excitation states)
leftover string,
further string breaks

Spacetime Picture

Left-Right Symmetry

Causality \rightarrow Left-Right Symmetry
\rightarrow Constrains form of fragmentation function!
\rightarrow Lund Symmetric Fragmentation Function

$$
f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b\left(m_{h}^{2}+p_{\perp h}^{2}\right)}{z}\right)
$$

Small a $a=0.9 \rightarrow$ "high-z tail"

Small b
\rightarrow "low-z enhancement"

Note: In principle, a can be flavour-dependent. In practice, we only distinguish between baryons and mesons

1980: string (colour coherence) effect

1980: string (colour coherence) effect

Predicted unique event structure; inside \& between jets. Confirmed first by JADE 1980.
Generator crucial to sell physics!
(today: PS, M\&M, MPI, ...)

(Aside: What is diffraction?)

Single Diffraction

Also:
"Double Diffraction": both protons explode; defined by gap inbetween
"Central Diffraction": two protons + a central (exclusive) system

1: A Simple Model

Take literally

$$
\underset{\text { Parton-Parton Cross Section }}{\sigma_{2 \rightarrow 2}\left(p_{\perp \min }\right)}=\langle n\rangle\left(p_{\perp \min }\right) \sigma_{\text {Hadron-Hadron Cross Section }}^{\sigma_{\text {tot }}}
$$

I. Choose $p_{\text {Tmin }}$ cutoff

$=$ main tuning parameter
2. Interpret $\langle n\rangle\left(p_{T \text { min }}\right)$ as mean of Poisson distribution

Equivalent to assuming all parton-parton interactions equivalent and independent ~ each take an instantaneous "snapshot" of the proton
3. Generate n parton-parton interactions (pQCD $2 \rightarrow 2$) Veto if total beam momentum exceeded \rightarrow overall (E, p) cons
4. Add impact-parameter dependence $\rightarrow\langle n\rangle=\langle n\rangle$ (b)

Assume factorization of transverse and longitudinal d.o.f., \rightarrow PDFs : $f(x, b)=f(x) g(b)$ b distribution \propto EM form factor \rightarrow JIMMY model (F77 Herwig) \longleftarrow Butterworth, Forshaw, Seymour Constant of proportionality $=$ second main tuning parameter
Z.Phys. C72 (1996) 637
5. Add separate class of "soft" (zero-pt) interactions representing interactions with $p_{T}<p_{T \min }$ and require $\sigma_{\text {soft }}+\sigma_{\text {hard }}=\sigma_{\text {tot }}$
\rightarrow Herwig 7 model

LHC from 900 to 7000 GeV - ATLAS

"Away"

Track Density (TRANS)

(Not Infrared Safe)
Large Non-factorizable Corrections
Prediction off by $\approx 10 \%$
Truth is in the eye of the beholder:

Sum(pT) Density (TRANS)

(more) Infrared Safe
Large Non-factorizable Corrections
Prediction off by < 10\%

[^0]
[^0]: Y. Gehrstein: "they have to fudge it again"

