Lecture 2: Beyond Fixed Order - Showers & Merging

To start with, consider what a charged particle really looks like If it is **charged**, it has a **Coulomb field**

Weiszäcker (1934) & Williams (1935) noted that the EM fields of an electron in uniform **relativistic motion** are predominantly **transverse**, with $|E| \approx |B|$

Just like (a superposition of) **plane waves**!

Fast electrically charged particles carry with them **clouds of virtual photons**

a.k.a. "the method of virtual quanta" (e.g., Jackson, Classical *Electrodynamics*) or "the equivalent photon approximation" (EPA)

The Structure of (Charged) Quantum Fields

What does a charged particle look like in Quantum Field Theory? (in the interaction picture)

If it has a (conserved) **gauge charge**, it has a **Coulomb field**; made of massless gauge bosons.

→ An ever-repeating self-similar pattern of quantum fluctuations inside fluctuations inside fluctuations

At increasingly smaller distances : scaling

(modulo running couplings)

🔊 Monash U

P. Skands

The Structure of (Charged) Quantum Fields

What does a charged particle look like in Quantum Field Theory? (in the interaction picture)

If it has a (conserved) **gauge charge**, it has a **Coulomb field**; made of massless gauge bosons.

→ An ever-repeating self-similar pattern of quantum fluctuations inside fluctuations inside fluctuations

At increasingly smaller distances : scaling (modulo running couplings)

Nature makes copious use of such structures — **Fractals**

Mathematicians also like them Infinitely complex selfsimilar patterns

OK, that's pretty ... but so what?

Naively, QCD radiation suppressed by $\alpha_s \approx 0.1$

 \rightarrow Truncate at fixed order = LO, NLO, ...

But beware the jet-within-a-jet-within-a-jet \dots \longrightarrow 100 GeV can be "soft" at the LHC

Example: SUSY pair production at LHC₁₄, with $M_{SUSY} \approx 600$ GeV

LHC - sps1a - m~600 Ge	V Plehn, Rainwater, PS PLB645(2007)217						
FIXED ORDER pQCD	$\sigma_{\rm tot}[{\rm pb}]$	$ ilde{g} ilde{g}$	$\tilde{u}_L \tilde{g}$	$\tilde{u}_L \tilde{u}_L^*$	$\tilde{u}_L \tilde{u}_L$	TT	
$p_{T,j} > 100 \text{ GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1.30	σ for 2
inclusive X + 1 "jet"	$\rightarrow \sigma_{1j}$	2.89	2.74	0.136	0.145	0.73	na
inclusive X + 2 "jets"	$\rightarrow \sigma_{2j}$	1.09	0.85	0.049	0.039	0.26	
$p_{T,j} > 50 \text{ GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1.30	σ for s
	σ_{1j}	5.90	5.37	0.283	0.285	1.50	
	σ_{2j}	4.17	3.18	0.179	0.117	1.21	

(Computed with SUSY-MadGraph)

All the scales are high, $Q \gg 1$ GeV, so perturbation theory **should** be OK

< + jets much larger than</pre> ive factor-a_s estimate

50 GeV jets \approx larger than total cross section \rightarrow what is going on?

Why is fixed-order QCD not enough?

F.O. OCD requires Large scales (α_s small enough to be perturbative \rightarrow high-scale processes)

F.O. QCD also requires No hierarchies

 $Q_{\rm HARD}$ [GeV] Bremsstrahlung propagators $\propto 1/Q^2$ integrated over phase space $\propto dQ^2$ 100 \rightarrow logarithms 10 $\alpha_s^n \ln^m \left(Q_{\text{Hard}}^2 / Q_{\text{Brems}}^2 \right) \quad ; \ m \le 2n$ \rightarrow cannot truncate at any fixed order *n* if upper and lower integration limits are Λ_{QCD} hierarchically different

Monash U

The hard process "kicks off" a shower of successively softer radiation

- Fractal structure: if you look at $Q_{JET}/Q_{HARD} \ll 1$, you will resolve substructure.
- So it's **not** like you can put a cut at X (e.g., 50, or even 100) GeV and say: "Ok, now fixed-order matrix elements will be OK"

Extra radiation:

- Will generate corrections to your kinematics
- Extra jets from bremsstrahlung can be important combinatorial background especially if you are looking for decay jets of similar p_T scales (often, $\Delta M \ll M$)
- Is an unavoidable aspect of the quantum description of quarks and gluons (no such thing as a "bare" quark or gluon; they depend on how you look at them)

This is what parton showers are for

Monash U

The QCD Fractal

Most bremsstrahlung is driven by **divergent propagators** \rightarrow simple universal structure, independent of process details

Amplitudes *factorise* in singular limits

P(z) =**DGLAP** splitting kernels, with z = energy fraction $= E_a/(E_a + E_b)$ Partons ab $\stackrel{\bullet}{\text{"collinear"}} |\mathcal{M}_{F+1}(\dots,a,b,\dots)|^2 \stackrel{a||b}{\to} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\dots,a+b,\dots)|^2$ **Coherence** \rightarrow Parton *j* really emitted by (*i*, *k*) colour dipole: **eikonal** Gluon j $\stackrel{\bullet}{} |\mathcal{M}_{F+1}(\ldots,i,j,k\ldots)|^2 \stackrel{j_g \to 0}{\to} g_s^2 \mathcal{C} \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots,i,k,\ldots)|^2$ "soft":

Apply this many times for successively softer / more collinear emissions -> QCD fractal

+ scaling violation: $g_s^2 \rightarrow 4\pi \alpha_s(Q^2)$

Types of Showers

Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon parents, initial-state partons, and mass terms) not shown.

Great, starting from an arbitrary Born ME, we can now: Obtain tree-level ME with any number of legs (in soft/collinear approximation)

Doesn't look very "all-orders" though, does it? What about the loops?

Detailed Balance

Showers impose **Detailed Balance** (a.k.a. Probability Conservation ↔ **Unitarity**) When X branches to X+1 : Gain one X+1, Lose one X \rightarrow Virtual Corrections

Legs

→ Showers do "Bootstrapped Perturbation Theory" Imposed via differential event evolution

On Probability Conservation a.k.a. Unitarity

Probability Conservation: P(something happens) + P(nothing happens) = 1

In Showers: Imposed by Event evolution: "detailed balance"

When (X) branches to (X+1): **Gain** one (X+1). Lose one (X). \rightarrow A "gain-loss" differential equation. Cast as **iterative** (Markov-Chain Monte-Carlo) evolution algorithm, based on universality and unitarity. With evolution kernel ~ $\frac{|M_{n+1}|^2}{|M_n|^2}$ (typically a soft/collinear approx thereof) Evolve in some measure of **resolution** ~ hardness, 1/time ... ~ **fractal scale**

Typical choices $p_{\perp}, Q^2, E\theta, \dots$

"something happens"

Evolution ~ Fine-Graining the Description of the Event

(E.g., starting from QCD $2 \rightarrow 2$ hard process)

Resolution Scale

 $Q \sim Q_{\text{HARD}}$ $Q_{\text{HARD}}/Q < \text{``A few''}$

At most inclusive level "Everything is 2 jets"

Cross sections

At (slightly) finer resolutions, At high resolution, most events have >2 jets some events have 3, or 4 jets

> Fixed order: $\sigma_{X+n} \sim \alpha_s^n \sigma_X$

Unitarity \rightarrow number of splittings diverges while cross section remains $\sigma_{inclusive}$

$Q \ll Q_{\text{HARD}}$

Scale Hierarchy!

Fixed order diverges: $\sigma_{X+n} \sim \alpha_s^n \ln^{2n}(Q/Q_{HARD})\sigma_X$

A Subtlety: Initial vs Final State Showers

Separation meaningful for collinear radiation, but not for soft ...

Who emitted that gluon?

QFT = sum over amplitudes, then square \rightarrow interference quantum \neq classical (IF coherence) Respected by **antenna** and **dipole** languages (and by angular ordering, azimuthally averaged), but **not** by collinear **DGLAP** (e.g., PDF evolution but also PYTHIA without MECs.)

The final states generated by a shower algorithm will depend on

- 1. The choice of perturbative evolution variable(s) $t^{[i]}$.
- 2. The choice of phase-space mapping $d\Phi_{n+1}^{[i]}/d\Phi_n$.
- 3. The choice of radiation functions a_i , as a function of the phase-space variables.
- 4. The choice of renormalization scale function μ_R .
- 5. Choices of starting and ending scales.

Phase-space limits / suppressions for hard radiation and choice of hadronization scale

 \rightarrow gives us additional handles for **uncertainty estimates**, beyond just μ_R (+ ambiguities can be reduced by including more $pQCD \rightarrow merging!$)

Ordering & Evolutionscale choices

Recoils, kinematics

Non-singular terms, Coherence, Subleading Colour

Fixed Order 🔀 Showers plus

Fixed Order Paradigm: consider a single physical process

- Explicit solutions, process-by-process (to some extent automated) Standard-Model: typically NLO or NNLO Beyond-SM: typically LO or NLO
- Accurate for hard process, to given perturbative order
- Limited generality
- Multi-scale problems → logs of scale hierarchies, not resummed → loss of accuracy. -
- **Event Generators** (Showers): consider all physical processes Universal solutions, applicable to any/all processes Accurate in strongly ordered (soft/collinear) limits (=bulk of radiation) Note: most showers only formally accurate to (N)LL = LL + important corrections Maximum generality **Process-dependence** = subleading corrections, large for hard resolved jets. \rightarrow merging

How **Not** to Do it ...

A (complete idiot's) solution

Run generator for X + shower

Run generator for X+1 + shower

Run generator for ... + shower

Problem: "double counting" (of terms present in both expansions) X + shower is **inclusive**: X + anything **already produces** some X+n events Adding additional ME X+n events \rightarrow double counting

Example: $H^0 \to b \bar{b}$

Born + Shower

What the first-order shower expansion gives you

+. . . Shower Approximation to Born + I

What you get from firstorder (LO), e.g., Madgraph

Born + Shower (tree-level expansion)

Born + 1 @ LO

+
$$g_s^2 2C_F \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{ij}}{s_{jk}} \right) \right]$$

Example of shower kernel (here, used "antenna function" for coherent gluon emission from a massless quark pair)

$$g_s^2 2C_F \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{ij}}{s_{jk}} + 2 \right) \right]$$

Example of matrix element; (what MadGraph would give you)

Total Overkill to add these two. All we need is just that +2 (& cover any difference between Θ_{PS} and Θ_{ME})

Exploit freedom to choose non-singular terms Bengtsson, Sjöstrand, PLB 185 (1987) 435 **Modify parton shower** to use radiation functions \propto full matrix element for 1st emission:

Parton Shower
$$\frac{P(z)}{Q^2} \rightarrow \frac{P'(z)}{Q^2} = \frac{P(z)}{Q^2} \underbrace{\frac{|M_{n+1}|^2}{\sum_i P_i(z)/Q_i^2|A}}_{\text{MEC}}$$

Process-dependent MEC \rightarrow P' different for each process

Done in PYTHIA for all SM decays and many BSM ones Norrbin, Sjöstrand, NPB 603 (2001) 297 Based on systematic classification of spin/colour structures (Also used to account for mass effects, and for a few simple hard processes like Drell-Yan.)

Difficult to generalise beyond one emission

Parton-shower expansions complicated & can have "dead zones" Achieved in VINCIA (by devising showers that have simple expansions) Giele, Kosower, Skands, PRD 84 (2011) 054003 Fischer et al, arXiv:1605.06142

(suppressing a_s and Jacobian $\overline{M_n|^2}$ factors)

MECs with Loops: POWHEG

Acronym stands for: **Po**sitive Weight Hardest Emission Generator.

Method is widely applied/available, can be used with PYTHIA, HERWIG, SHERPA

Subtlety 1: Connecting with parton shower

Truncated Showers & Vetoed Showers

Subtlety 2: Avoiding (over)exponentiation of hard radiation

Controlled by "hFact" parameter (POWHEG)

Note: still LO for X+1

2: Slicing (MLM & CKKW-L)

First emission: "the HERWIG correction"

Use the fact that the angular-ordered HERWIG parton shower has a "dead zone" for hard wide-angle radiation (Seymour, 1995)

Many emissions: the MLM & CKKW-L prescriptions

QCD and Event Generator F and F + 1 are set to zero above a specific "matching scale". (The number of coefficients

F @ $LO_2 \times LL$ (MLM & (L)-CKKW)

The Gain

3: Subtraction

LO × Shower

NLO

QCD and Event Generators

Examples: MC@NLO, aMC@NLO

Matching 3: Subtraction

LO × Shower

NLO - Shower_{NLO}

X(2) X+ (2)		X(2)	X+ (2)	
X(I) X+I(I) X+2(I) X+3(I)	•••	X (I)	X+I (I)	X+2(I)
Born X+I) X+2 ⁽⁰⁾ X+3 ⁽⁰⁾	•••	Born	X+ (0)	X+2 ⁽⁰⁾

	Fixed-Order Matrix Element	Expan NLO a	d shower appro nalytically, then
	Shower Approximation		Fixed-Order ME Approximation (

Examples: MC@NLO, aMC@NLO

X+3(I) • • • X+3(0) . . .

ximation to subtract:

```
minus Shower
(NOTE: can be < 0!)
```

Matching 3: Subtraction

LO × Shower

(NLO - Shower_{NLO}) × Shower

Examples: MC@NLO, aMC@NLO

Matching 3: Subtraction

Combine > MC@NLO

Examples: MC@NLO, aMC@NLO

Frixione, Webber, JHEP 0206 (2002) 029

Consistent NLO + parton shower (though correction events can have w<0)

Recently, has been fully automated in **aMC@NLO**

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

Note: negative weights w < 0 are a problem because they kill efficiency: Extreme example: 1000 w(+1) ÷ 999 w(-1) events \rightarrow statistical precision of 1 event, for 2000 generated. [For comparison, standard MC@NLO typically has O(10%) w = -1 events.]

POWHEG vs MC@NLO

Both methods include the complete first-order (NLO) matrix elements.

Difference is in whether **only** the shower kernels are exponentiated (MC@NLO) or whether part of the matrix-element corrections are too (POWHEG)

In POWHEG, how much of the MEC you exponentiate can be controlled by the "hFact" parameter

Variations basically span range between MC@NLO-like case, and original (hFact=1) POWHEG case (~ PYTHIA-style MECs)

 $D_h =$

$$= \frac{h^2}{h^2 + (p_\perp^H)^2}$$

$$R^f = (1 - D_h) R_{\mathrm{div}}$$
not exponentiated

Merging — Summary

The Problem:

Showers generate singular parts of (all) higher-order matrix elements Those terms are of course also present in X + jet(s) matrix elements To combine, must be careful not to count them twice! (double counting)

3 Main Methods

1. Matrix-Element Corrections (MECs): multiplicative correction factors Pioneered in PYTHIA (mainly for real radiation **IDEN** LO MECs) Similar method used in POWHEG (with virtual corrections MLO) Generalised to multiple branchings: VINCIA

2. Slicing: **separate phase space** into two regions: ME populates high-Q region, shower populates low-Q region (and calculates Sudakov factors)

CKKW-L (pioneered by SHERPA) & **MLM** (pioneered by ALPGEN)

3. Subtraction: MC@NLO, now automated: aMC@NLO

State-of-the-art > Multi-Leg NLO (UNLOPS, MiNLO, FxFx)

Quiz: Connect the Boxes

?

?

*?

Ambiguity about how much of the nonsingular parts of the ME that get exponentiated; controlled by: hFact

Procedure can lead to a fraction of events having: Negative Weights

Ambiguity about definition of which events "count" as hard N-jet events; controlled by: Merging Scale

2

3

Monash U

POWHEG

CKKW-L & MLM

MC@NLO

Extra Slides

Encouraged to start using those, and provide feedback

Evolution Equations

What we need is a **differential equation**

- Boundary condition: a few partons defined at a high scale (Q_F)
- Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff ~ 1 GeV) \rightarrow It's an evolution equation in Q_F

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.

Decay constantProbability to remain undecayed in
$$[t_1, t_2]$$
 $\frac{dP(t)}{dt} = c_N$ $\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} c_N dt\right) =$ Decay probability per unit time $\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} c_N dt\right) =$ $\frac{dP_{res}(t)}{dt} = -\frac{-d\Delta}{dt} = c_N \Delta(t_1, t)$
(respects that each of the original nuclei can
only decay if not decayed already) $\Delta(t_1, t_2) = \frac{\Delta(t_1, t_2)}{t_1} =$

the time interval

 $= \exp\left(-c_N \Delta t\right)$

 $= 1 - c_N \Delta t + \mathcal{O}(c_N^2)$

Sudakov Factor"

The Sudakov Factor

In nuclear decay, the Sudakov factor counts: How many nuclei remain undecayed after a time t

Probability to remain undecayed in the time interval $[t_1, t_2]$

$$\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} c_N \,\mathrm{d}t\right) = \exp\left(-c_N\right)$$

The Sudakov factor for a parton system "counts": The probability that the parton system doesn't evolve (branch) when we run the factorization scale (~1/time) from a high to a low scale (i.e., that there is no state change) Evolution probability per unit "time" $\frac{\mathrm{d}P_{\mathrm{res}}(t)}{\mathrm{d}t} = \frac{-\mathrm{d}\Delta}{\mathrm{d}t} = c_N \,\Delta(t_1, t)$ (replace t by shower evolution scale) (replace c_N by proper shower evolution kernels)

Nuclear Decay

A Shower Algorithm

1. For each evolver, generate a random number $R \in [0,1]$

Solve equation $R = \Delta(t_1, t)$ for t (with starting scale t_l) Analytically for simple splitting kernels, else numerically and/or by trial+veto

 \rightarrow t scale for next (trial) branching

2. Generate another Random Number, $R_z \in [0,1]$

To find second (linearly independent) phase-space invariant Solve equation $R_z = \frac{I_z(z,t)}{I_z(z_{\max}(t),t)}$ for z (at scale t) With the "primitive function" $I_z(z,t) = \int_{z_{\min}(t)}^{z} dx$

3. Generate a third Random Number, $R_{\Phi} \in [0,1]$ Solve equation $R_{\varphi} = \varphi/2\pi$ for $\phi \rightarrow$ Can now do 3D branching Accept/Reject based on full kinematics. Update $t_1 = t$. Repeat.

$$\mathrm{d}z \left. \frac{\mathrm{d}\Delta(t')}{\mathrm{d}t'} \right|_{t'=t}$$

DGLAP: from collinear limit of MEs $(p_b+p_c)^2 \rightarrow 0$

+ evolution equation from invariance with respect to $Q_F \rightarrow RGE$

$$DGLAP$$
(E.g., PYTHIA)
$$P_{q \to qg}(z) = C_F \frac{1}{1}$$

$$d\mathcal{P}_a = \sum_{b,c} \frac{\alpha_{abc}}{2\pi} P_{a \to bc}(z) dt dz .$$

$$P_{g \to q\overline{q}}(z) = N_C \frac{1}{2\pi}$$

$$P_{g \to q\overline{q}}(z) = T_R(z)$$

$$P_{q \to q\gamma}(z) = e_q^2 \frac{1}{1} + \frac{1}{1} +$$

$${
m d}t={
m d}Q^2\over Q^2}={
m d}\ln Q^2$$
 ... with Q² some measure of "hat = event/jet resolution measuring parton virtualities / formation measuring parton virtualities / formation defined on the second seco

NB: dipoles, antennae, also have DGLAP kernels as their collinear limits

ardness"

tion time / ...

Coherence

QED: Chudakov effect (mid-fifties)

37

DGLAP and Coherence: Angular ordering

Physics: (applies to any gauge theory)

(More complicated multipole effects beyond leading colour; ignation,

DGLAP kernels, though incoherent a priori, can reproduce this pattern (at least in an azimuthally averaged sense) by angular ordering

Another nice physics example is the SM contribution to the Tevatron top-quark forward-backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

P. Skands 📩 Monash U.

From MS to MC

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes

$$P(\alpha_s, z) = \frac{\alpha_s}{2\pi} C_F \frac{1+z^2}{1-z} + \left(\frac{\alpha_s}{\pi}\right)^2 \frac{1}{1-z}$$

Eg Analytic resummation (in Mellin space): General Structure

$$\propto \exp\left[\int_{0}^{1} dz \frac{z^{N-1} - 1}{1 - z} \left[\int \frac{dp_{\perp}^{2}}{p_{\perp}^{2}} \left(A(\alpha_{s}) + B^{(1)}\right) \right] \right] + \frac{B^{(1)}}{\pi} + A^{(2)} \left(\frac{\alpha_{s}}{\pi}\right)^{2} + \frac{B^{(1)}}{A^{(2)}} = \frac{1}{2}C_{F} \left(C_{A} \left(\frac{67}{18} - \frac{1}{6}\pi^{2}\right)\right) \right)$$

Replace (for $z \rightarrow 1$: soft gluon limit):

 $A^{(2)}$

 $\overline{-z}$

$\left| \begin{array}{c} \mathbf{A} \\ \mathbf{B}(\alpha_s) \end{array} \right| \right|$ $-3C_{F}/2$

$$-\frac{5}{9}N_F\right) = \frac{1}{2}C_F K_{\rm CMW}$$

 $P_i(\alpha_s, z) = \frac{C_i \frac{\alpha_s}{\pi} \left(1 + K_{\rm CMW} \frac{\alpha_s}{2\pi}\right)}{1 - \gamma}$

From MS to MC

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes

$$P(\alpha_s, z) = \frac{\alpha_s}{2\pi} C_F \frac{1+z^2}{1-z} + \left(\frac{\alpha_s}{\pi}\right)^2 \frac{1}{1-z}$$
Replace
(for z \to 1: soft gluon limit):
$$P_i(\alpha_s, z) = \frac{C_i \frac{\alpha_s}{\pi} \left(1+\frac{1}{1-z}\right)}{1-z}$$

$$\alpha_s^{(MC)} = \alpha_s^{(\overline{MS})} \left(1+K_{CMW} \frac{\alpha_s^{(\overline{MS})}}{2\pi}\right)$$

$$\Lambda_{MC} = \Lambda_{\overline{MS}} \exp\left(\frac{K_{CMW}}{4\pi\beta_0}\right) \sim 1.57\Lambda_{\overline{MS}}$$
(for nF=5)

Note also: used $mu^2 = p_T^2 = (1-z)Q^2$ Amati, Bassetto, Ciafaloni, Marchesini, Veneziano, 1980

 $A^{(2)}$

 $\overline{1-z}$

-z

 $+ K_{\rm CMW} \frac{\alpha_s}{2\pi})$

Main Point: Doing an uncompensated scale variation actually ruins this result

The Shower Operator

Born
$$\left. \frac{\mathrm{d}\sigma_H}{\mathrm{d}\mathcal{O}} \right|_{\text{Born}} = \int \mathrm{d}\Phi_H \ |M_H^{(0)}|^2 \ \delta(\mathcal{O} - \mathcal{O}(\{p\}_H))$$

But instead of evaluating O directly on the Born final state, first insert a showering operator

Born
$$\frac{\mathrm{d}\sigma_H}{\mathrm{d}\mathcal{O}}\Big|_{\mathcal{S}} = \int \mathrm{d}\Phi_H |M_H^{(0)}|^2 \mathcal{S}(\{p\}_H, \mathcal{O})$$
 s:

Unitarity: to first order, S does nothing

 $\mathcal{S}(\{p\}_H, \mathcal{O}) = \delta\left(\mathcal{O} - \mathcal{O}(\{p\}_H)\right) + \mathcal{O}(\alpha_s)$

H = Hard process

{p}: partons

{p}: partons

showering operator

The Shower Operator

To ALL Orders

$$\begin{split} S(\{p\}_X, \mathcal{O}) &= \Delta(t_{\text{start}}, t_{\text{had}}) \delta(\mathcal{O} - \mathcal{O}(\{p\}_X)) \\ \text{"Nothing Happens"} \rightarrow \text{"Evaluate Observable"} \\ &- \int_{t_{\text{start}}}^{t_{\text{had}}} \mathrm{d}t \frac{\mathrm{d}\Delta(t_{\text{start}}, t)}{\mathrm{d}t} S(\{p\}_{X+1}, \mathcal{O}_{x+1}, \mathcal$$

All-orders Probability that nothing happens

$$\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} \mathrm{d}t \; \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}t}\right) \quad A$$

(Exponentiation) Analogous to nuclear decay $N(t) \approx N(0) \exp(-ct)$

(Multi-Leg Merging at NLO)

Currently, much activity on how to combine several NLO matrix elements for the same process: NLO for X, X+1, X+2, ...

Unitarity is a common main ingredient for all of them

Most also employ **slicing** (separating phase space into regions defined by one particular underlying process)

Methods

UNLOPS, generalising CKKW-L/UMEPS: Lonnblad, Prestel, arXiv:1211.7278

MiNLO, based on POWHEG: Hamilton, Nason, Zanderighi (+more) arXiv:1206.3572, arXiv:1512.02663

FxFx, based on MC@NLO: Frederix & Frixione, arXiv:1209.6215

(VINCIA, based on NLO MECs): Hartgring, Laenen, Skands, arXiv:1303.4974

Most (all?) of these also allow NNLO on total inclusive cross section Will soon define the state-of-the-art for SM processes For BSM, the state-of-the-art is generally one order less than SM

44