
๏To start with, consider what a charged particle really looks like  
•If it is charged, it has a Coulomb field

Lecture 2: Beyond Fixed Order - Showers & Merging
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Weiszäcker (1934) & Williams (1935) noted 
that the EM fields of an electron in uniform 
relativistic motion are predominantly 
transverse, with  

Just like (a superposition of) plane waves!  

➤ Fast electrically charged particles carry 
with them clouds of virtual photons  

a.k.a. “the method of virtual quanta” (e.g., Jackson, Classical 
Electrodynamics) or “the equivalent photon approximation” (EPA)

|E | ≈ |B |



The Structure of (Charged) Quantum Fields
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๏What does a charged particle look like in 
Quantum Field Theory? (in the interaction picture) 

•If it has a (conserved) gauge charge, it has a 
Coulomb field; made of massless gauge bosons. 
•➜ An ever-repeating self-similar pattern                        
of quantum fluctuations inside fluctuations inside fluctuations  
•At increasingly smaller distances : scaling               
(modulo running couplings)



The Structure of (Charged) Quantum Fields
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๏What does a charged particle look like in 
Quantum Field Theory? (in the interaction picture) 

•If it has a (conserved) gauge charge, it has a 
Coulomb field; made of massless gauge bosons. 
•➜ An ever-repeating self-similar pattern                        
of quantum fluctuations inside fluctuations inside fluctuations  
•At increasingly smaller distances : scaling               
(modulo running couplings) 

๏Nature makes copious use of such structures 
— Fractals
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Mathematicians 
also like them
Infinitely complex self-

similar patterns Mandelbrot set



OK, that’s pretty … but so what?
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๏Naively, QCD radiation suppressed by αs≈0.1 
•➙ Truncate at fixed order = LO, NLO, … 

๏   But beware the jet-within-a-jet-within-a-jet …
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Example: SUSY pair production at LHC14, with MSUSY ≈ 600 GeV 

 100 GeV can be “soft” at the LHC⟹

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for X + jets much larger than 
naive factor-αs estimate

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for 50 GeV jets ≈ larger than 
total cross section  
→ what is going on?

All the scales are high,  GeV, so perturbation theory should be OKQ ≫ 1



•F.O. QCD also requires No hierarchies  

•Bremsstrahlung propagators  
integrated over phase space      
→ logarithms 

•   

•→ cannot truncate at any fixed order  if 
upper and lower integration limits are 
hierarchically different

∝ 1/Q2

∝ dQ2

αn
s lnm (Q2

Hard/Q2
Brems) ; m ≤ 2n

n

10.1
QBREMS

QHARD

๏F.O. QCD requires Large scales (αs small enough to be perturbative 
→ high-scale processes)

Why is fixed-order QCD not enough?
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QHARD [GeV]

1

ΛQCD

F.O. 
ME

10

100

non-perturbative

large 
logs

perturbative



Harder Processes are accompanied by Harder Jets
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๏The hard process “kicks off” a shower of successively softer radiation 
•Fractal structure: if you look at QJET/QHARD << 1, you will resolve substructure. 
•So it’s not like you can put a cut at X (e.g., 50, or even 100) GeV and say: “Ok, now 
fixed-order matrix elements will be OK” 

๏Extra radiation:  
•Will generate corrections to your kinematics 
•Extra jets from bremsstrahlung can be important combinatorial background 
especially if you are looking for decay jets of similar pT scales (often, ) 
•Is an unavoidable aspect of the quantum description of quarks and gluons          
(no such thing as a “bare” quark or gluon; they depend on how you look at them)

ΔM ≪ M
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This is what parton showers are for 



i

j

k

a

b

hard processPartons ab 
→ 

“collinear”
|MF+1(. . . , a, b, . . . )|2

a||b! g2sC
P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

 = DGLAP splitting kernels, with  = energy fraction = P(z) z Ea /(Ea + Eb)

/ 1

2(pa · pb)

+ scaling violation: gs2 → 4παs(Q2)

Gluon j 
→ 

“soft”:
|MF+1(. . . , i, j, k. . . )|2

jg!0! g2sC
(pi · pk)

(pi · pj)(pj · pk)
|MF (. . . , i, k, . . . )|2

Coherence → Parton  really emitted by  colour dipole: eikonal j (i, k)

Apply this many times for successively softer / more collinear emissions ➜ QCD fractal

The QCD Fractal
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Most bremsstrahlung is driven by 
divergent propagators → simple universal 
structure, independent of process details  

Amplitudes factorise in singular limits 
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Bremsstrahlung



Types of Showers
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Pq→qg(zi)
sqg

+
Pq→qg(zk)

sgq̄

Not a priori coherent. 

+ Angular ordering restores 
azimuthally averaged eikonal

One term for each parton

Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon parents, initial-state partons, and mass terms) not shown.

2 2

-co
llin

ear
 lim

it

ij -c
ol

lin
ea

r l
im

it

jk
DGLAP

Two terms for each 
colour connection

Coherent by 
construction

𝒦qg,q̄(zq)
sqg

+
𝒦q̄g,q(zq̄)

sgq̄

partitioning of eikonal

Dipole (CS/Partitioned)

2sqq̄

sqgsgq̄
+

1
s (

sgq̄

sqg
+

sqg

sgq̄ )
One term for each 
colour connection

Coherent by 
construction

eikonal term collinear terms

Antenna

Factorisation of 
(squared) amplitudes 

in IR singular limits 
(leading colour)

Full ME (modulo nonsingular terms)



๏Great, starting from an arbitrary Born ME, we can now: 
•Obtain tree-level ME with any number of legs (in soft/collinear approximation) 

๏Doesn’t look very “all-orders” though, does it? What about the loops?

Is that “All Orders” ?
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

Universality (scaling)

Jet-within-a-jet-
within-a-jet-...



๏Showers impose Detailed Balance (a.k.a. Probability Conservation  Unitarity) 

•When X branches to X+1 : Gain one X+1, Lose one X ➜ Virtual Corrections 

๏

↔

Detailed Balance
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

Universality (scaling)

+

÷

+

÷

+

÷
Unitarity

Virtual = - RealJet-within-a-jet-
within-a-jet-...

+

÷

➜ Showers do “Bootstrapped Perturbation Theory”
Imposed via differential event evolution



On Probability Conservation a.k.a. Unitarity
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In Showers: Imposed by Event evolution:  “detailed balance”

When (X) branches to (X+1): Gain one (X+1). Lose one (X). ➜ A “gain-loss” differential equation. 

Cast as iterative (Markov-Chain Monte-Carlo) evolution algorithm, based on universality and unitarity. 

With evolution kernel ~  (typically a soft/collinear approx thereof) 

Evolve in some measure of resolution ~ hardness, 1/time … ~ fractal scale

|Mn+1 |2

|Mn |2

p⊥, Q2, Eθ, …

๏Probability Conservation: P(something happens) + P(nothing happens) = 1

Compare with NLO (e.g., in previous lecture)

P.  S k a n d s

From Legs to Loops

๏Parton Showers: reformulation of pQCD corrections as gain-loss diff eq. 
•Iterative (Markov-Chain) evolution algorithm, based on universality and unitarity 

•With evolution kernel ~            (or soft/collinear approx thereof) 

•Generate explicit fractal structure across all scales (via Monte Carlo Simulation) 
•Evolve in some measure of resolution ~ hardness, virtuality, 1/time … ~ fractal scale 
•+ account for scaling violation via quark masses and gs

2 → 4παs(Q
2
)

12

Kinoshita-Lee-Nauenberg:  
(sum over degenerate quantum states = finite: infinities must cancel!) 

!

Neglect non-singular piece, F → “Leading-Logarithmic” (LL) Approximation

Unitarity: sum(probability) = 1

→ Can also include loops-within-loops-within-loops … 
→ Bootstrap for approximate All-Orders Quantum Corrections!

Z � 3 jets:

qk

qi

qi

gjk
a

qk

qi

qi

gik
a

8

Z � 2 1-loop:

qk

qi

qk

gik
a

qi

qk

qk

16

Loop = �
Z

Tree + F

|Mn+1|2

|Mn|2

2Re[M(1)M(0)⇤]
���M(0)

+1

���
2

2Re
h
M(1)M(0)⇤

i ���M(0)
+1

���
2

     

KLN:  sum over degenerate quantum 
states = finite; infinities must cancel)

Showers neglect  → “Leading-Logarithmic” (LL) ApproximationF

“Nothing happens” “something happens”

Typical choices

 for “finite”F



Evolution ~ Fine-Graining the Description of the Event
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๏(E.g., starting from QCD 2→2 hard process)
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At most inclusive level 
“Everything is 2 jets”

At (slightly) finer resolutions, 
some events have 3, or 4 jets

At high resolution, most events 
have >2 jets

Q ⇠ QHARD

Fixed order:  
σinclusive

QHARD/Q < “A few”

Fixed order:  
σX+n ~ αsn σX

Q ⌧ QHARD

Scale Hierarchy!

    Fixed order diverges:  
σX+n ~ αsn ln2n(Q/QHARD)σX

Unitarity ➜ number of splittings diverges 
while cross section remains σinclusive

Resolution 
Scale

Cross 
sections



A Subtlety: Initial vs Final State Showers
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Separation meaningful for collinear radiation, but not for soft …

Who emitted that gluon?
QFT = sum over amplitudes, then square → interference quantum ≠ classical (IF coherence)  
Respected by antenna and dipole languages (and by angular ordering, azimuthally averaged), 
but not by collinear DGLAP (e.g., PDF evolution but also PYTHIA without MECs.)

+
ISR 

  

 “spacelike”

q2 < 0
FSR 

  

 “timelike”

q2 > 0



6

where λ(a, b, c) = a2+b2+c2−2ab−2bc−2ca is the Källén function, s[i] is the invariant mass squared
of the branching dipole, and mâ,b̂ are the rest masses of the original endpoint partons. The second line
represents the massless case, with the two orientation angles θ and ψ fixed as discussed above.

Immediately following the phase space in eq. (2) is a δ function requiring that the integration variable
tn+1 should be equal to the ordering variable t evaluated on the set of n+1 partons, {p}n+1, i.e. that the
configuration after branching indeed corresponds to a resolution scale of tn+1. We leave the possibility
open that different mappings will be associated with different functional forms for the post-branching
resolution scale, and retain a superscript on t[i] to denote this.

Finally, there are the evolution or showering kernels Ai({p}n→{p}n+1), representing the differen-
tial probability of branching, which we take to have the following form,

Ai({p}n→{p}n+1) = 4παs(µR({p}n+1)) Ci ai({p}n→{p}n+1) , (11)

where 4παs = g2
s is the strong coupling evaluated at a renormalization scale defined by the function

µR, Ci is the color factor (e.g. Ci = Nc = 3 for gg → ggg), and ai is a radiation function, giving a
leading-logarithmic approximation to the corresponding squared evolution amplitude (that is, a parton
or dipole-antenna splitting kernel). When summed over possible overlapping phase-space regions, the
combined result should contain exactly the correct leading soft and collinear logarithms with no over- or
under-counting. Non-logarithmic (‘finite’) terms are in constrast arbitrary. They correspond to moving
around inside the leading-logarithmic uncertainty envelope. The renormalization scale µR could in
principle be a constant (fixed coupling) or running. Again, the point here is not to impose a specific
choice but just to ensure that the language is sufficiently general to explore the ambiguity.

Together, eqs. (2), (4), and (11) can be used as a framework for defining more concrete parton
showers. An explicit evolution algorithm (whether based on partons, dipoles, or other objects) must
specify:

1. The choice of perturbative evolution variable(s) t[i].

2. The choice of phase-space mapping dΦ[i]
n+1/dΦn.

3. The choice of radiation functions ai, as a function of the phase-space variables.

4. The choice of renormalization scale function µR.

5. Choices of starting and ending scales.

The definitions above are already sufficient to describe how such an algorithm can be matched to
fixed order perturbation theory. We shall later present several explicit implementations of these ideas, in
the form of the VINCIA code, see section 5.

Let us begin by seeing what contributions the pure parton shower gives at each order in perturbation
theory. Since∆ is the probability of no branching between two scales, 1−∆ is the integrated branching
probability Pbranch. Its rate of change gives the instantaneous branching probability over a differential

Perturbative Ambiguities
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๏The final states generated by a shower algorithm will depend on
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→ gives us additional handles for uncertainty estimates, beyond just  

(+ ambiguities can be reduced by including more pQCD → merging!)

μR

Ordering & Evolution-
scale choices

Recoils, kinematics

Non-singular terms, 
Coherence,  Subleading Colour

Phase-space limits / suppressions for hard 
radiation and choice of hadronization scale 



Fixed Order  vs  Showers
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๏Fixed Order Paradigm: consider a single physical process 
•Explicit solutions, process-by-process (to some extent automated) 

๏ Standard-Model: typically NLO or NNLO 
๏ Beyond-SM: typically LO or NLO 

•Accurate for hard process, to given perturbative order  
•Limited generality 
•Multi-scale problems ➜ logs of scale hierarchies, not resummed ➜ loss of accuracy. 

๏Event Generators (Showers): consider all physical processes 
•Universal solutions, applicable to any/all processes 
•Accurate in strongly ordered (soft/collinear) limits (=bulk of radiation)  

๏ Note: most showers only formally accurate to (N)LL = LL + important corrections 
•Maximum generality  
•Process-dependence = subleading corrections, large for hard resolved jets.   

QCD and Event Generators Monash U.P.  Skands

•→ merging

plus
×

Note: can also be cured 
via (non-shower) 

resummation methods. 
Not covered here.



๏A (complete idiot’s) solution 
•Run generator for X + shower 
•Run generator for X+1 + shower 
•Run generator for …  + shower 

๏Problem: “double counting” (of terms present in both expansions) 
•X + shower is inclusive: X + anything already produces some X+n events 
•Adding additional ME X+n events ➜ double counting

How Not to Do it …
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P.  S k a n d s

Interpretation

35

► A (Complete Idiot’s) Solution – Combine 
1. [X]ME + showering 
2. [X + 1 jet]ME + showering 

3. … 

► Doesn’t work 
•  [X] + shower is inclusive 

•  [X+1] + shower is also inclusive 

≠ 

Run generator for X (+ shower) 

Run generator for X+1 (+ shower) 

Run generator for … (+ shower) 

Combine everything into one sample 

What you 
get 

What you 
want 

Overlapping “bins” One sample 

P.  S k a n d s

Interpretation

35

► A (Complete Idiot’s) Solution – Combine 
1. [X]ME + showering 
2. [X + 1 jet]ME + showering 

3. … 

► Doesn’t work 
•  [X] + shower is inclusive 

•  [X+1] + shower is also inclusive 

≠ 

Run generator for X (+ shower) 

Run generator for X+1 (+ shower) 

Run generator for … (+ shower) 

Combine everything into one sample 

What you 
get 

What you 
want 

Overlapping “bins” One sample 

≠

} … and just add all these samples together



Example:                      .
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๏Born + Shower 

๏Born + 1 @ LO 
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+

2

22

+

Shower Approximation
to Born + 1

+ … 

What you get from first-
order (LO), e.g., Madgraph

What the first-order shower 
expansion gives you



๏Born + Shower (tree-level expansion) 

๏Born + 1 @ LO 

1

Rewrite that as Born x [ … ]
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2

+

Total Overkill to add these two.  All we need is just that +2 (& cover any difference between  and ) ΘPS ΘME

2

+ …

Example of shower kernel 
(here, used “antenna function” for coherent 
gluon emission from a massless quark pair)

Example of matrix element;  
(what MadGraph would give you)

g2
s 2CF [ 2sik

sijsjk
+

1
sIK (

sij

sjk
+

sij

sjk )] ΘPS

g2
s 2CF [ 2sik

sijsjk
+

1
sIK (

sij

sjk
+

sij

sjk
+ 2)] ΘME

Phase-space region 
covered by shower

Phase-space region 
covered by ME



1. Matrix-Element Corrections
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๏Exploit freedom to choose non-singular terms 
•Modify parton shower to use radiation functions  full matrix element for 1st emission:  

๏ Process-dependent MEC → P’ different for each process 

๏Done in PYTHIA for all SM decays and many BSM ones 
•Based on systematic classification of spin/colour structures 
•(Also used to account for mass effects, and for a few simple hard processes like Drell-Yan.) 

๏Difficult to generalise beyond one emission 
•Parton-shower expansions complicated & can have “dead zones” 
•Achieved in VINCIA (by devising showers that have simple expansions)

∝
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Bengtsson, Sjöstrand, PLB 185 (1987) 435

Norrbin, Sjöstrand, NPB 603 (2001) 297

Parton Shower
P (z)

Q2
! P 0(z)

Q2
=

P (z)

Q2

|Mn+1|2P
i Pi(z)/Q2

i |Mn|2| {z }
MEC

Giele, Kosower, Skands, PRD 84 (2011) 054003

(suppressing αs 
and Jacobian 
factors)

Fischer et al, arXiv:1605.06142

http://arxiv.org/abs/arXiv:1605.06142


MECs with Loops: POWHEG
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Legs

Lo
op
s

+0 +1 +2

+0

+1

+2

+3

|MF |2

1

Generate “shower” emission
|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

a! |MF+1|2

|MF |2

1

Correct to Matrix Element

Unitarity of Shower

|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

ai !
|MF+1|2P
ai|MF |2

Virtual = �
Z

Real

1

Correct to Matrix Element

|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

ai !
|MF+1|2P
ai|MF |2

Virtual = �
Z

Real

|MF |2 ! |MF |2 + 2Re[M1
F M0

F ] +

Z
Real

1

|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

ai !
|MF+1|2P
ai|MF |2

1

|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

ai !
|MF+1|2P
ai|MF |2

1
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ep
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rt
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 s

ho
w

er

Start at Born level
Nason, JHEP 0411 (2004) 040

Frixione, Nason, Oleari JHEP 0711 (2007) 070
+ POWHEG Box JHEP 1006 (2010) 043

Acronym stands for: Positive Weight Hardest Emission Generator. 

Note: still LO for X+1

Shower for X+2, … 

๏Method is widely applied/available, can be used with 
PYTHIA, HERWIG, SHERPA 
๏Subtlety 1: Connecting with parton shower 

•Truncated Showers & Vetoed Showers 

๏Subtlety 2: Avoiding (over)exponentiation of hard 
radiation 

•Controlled by “hFact” parameter (POWHEG)
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2: Slicing (MLM & CKKW-L)
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P.  S k a n d s

Matching 1: Slicing

First emission: “the HERWIG correction” 
Use the fact that the angular-ordered HERWIG parton shower has a “dead 
zone” for hard wide-angle radiation (Seymour, 1995) 

!

!

Many emissions: the MLM & CKKW-L prescriptions 

33

P. Skands Introduction to QCD

F @ LO⇥LL-Soft (HERWIG Shower)
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F @ LO1⇥LL (HERWIG Matched)
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Figure 23: HERWIG’s original matching scheme [112, 113], in which the dead zone of the
HERWIG shower was used as an effective “matching scale” for one emission beyond a basic
hard process.

since been generalized by several independent groups to include arbitrary numbers of addi-
tional legs, the most well-known of these being the CKKW [114], CKKW-L [115, 116], and
MLM [117, 118] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the
presence of explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions
above a certain matching scale, as in the (L)-CKKW and MLM approaches. The empty part of
phase space can then be filled by separate events generated according to higher-multiplicity
tree-level matrix elements (MEs). In the (L)-CKKW and MLM schemes, this process can be
iterated to include arbitrary numbers of additional hard legs (the practical limit being around
3 or 4, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity matrix ele-
ments must be associated with Sudakov form factors (representing the virtual corrections that
would have been generated if a shower had produced the same phase-space configuration),
and their ↵s factors must be chosen so that, at least at the matching scale, they become identi-
cal to the choices made on the shower side [119]. The CKKW and MLM approaches do this by
constructing “fake parton-shower histories” for the higher-multiplicity matrix elements. By ap-
plying a sequential jet clustering algorithm, a tree-like branching structure can be created that
at least has the same dominant structure as that of a parton shower. Given the fake shower
tree, ↵s factors can be chosen for each vertex with argument ↵s(p?) and Sudakov factors can
be computed for each internal line in the tree. In the CKKW method, these Sudakov factors
are estimated analytically, while the MLM and CKKW-L methods compute them numerically,
from the actual shower evolution.

Thus, the matched result is identical to the matrix element (ME) in the region above the
matching scale, modulo higher-order (Sudakov and ↵s) corrections. We may sketch this as

Matched (above matching scale) =

MEz }| {
Exact ⇥

correctionsz }| {
(1 + O(↵s)) , (67)

where the “shower-corrections” include the approximate Sudakov factors and ↵s reweighting
factors applied to the matrix elements in order to obtain a smooth transition to the shower-
dominated region.

Below the matching scale, the small difference between the matrix elements and the
shower approximation can be dropped (since their leading singularities are identical and this
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Examples: MLM, CKKW, CKKW-L

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)

P.  S k a n d s

Matching 1: Slicing

First emission: “the HERWIG correction” 
Use the fact that the angular-ordered HERWIG parton shower has a “dead 
zone” for hard wide-angle radiation (Seymour, 1995) 

!

!

Many emissions: the MLM & CKKW-L prescriptions 

33

P. Skands Introduction to QCD

F @ LO⇥LL-Soft (HERWIG Shower)

`
(l

oo
ps

)

2 �
(2)

0
�
(2)

1
. . .

1 �
(1)

0
�
(1)

1
�
(1)

2
. . .

0 �
(0)

0
�
(0)

1
�
(0)

2
�
(0)

3
. . .

0 1 2 3 . . .
k (legs)

+

F+1 @ LO⇥LL (HERWIG Corrections)

`
(l

oo
ps

)

2 �
(2)

0
�
(2)

1
. . .

1 �
(1)

0
�
(1)

1
�
(1)

2
. . .

0 �
(0)

0
�
(0)

1
�
(0)

2
�
(0)

3
. . .

0 1 2 3 . . .
k (legs)

=

F @ LO1⇥LL (HERWIG Matched)

`
(l

oo
ps

)

2 �
(2)

0
�
(2)

1
. . .

1 �
(1)

0
�
(1)

1
�
(1)

2
. . .

0 �
(0)

0
�
(0)

1
�
(0)

2
�
(0)

3
. . .

0 1 2 3 . . .
k (legs)

Figure 23: HERWIG’s original matching scheme [112, 113], in which the dead zone of the
HERWIG shower was used as an effective “matching scale” for one emission beyond a basic
hard process.

since been generalized by several independent groups to include arbitrary numbers of addi-
tional legs, the most well-known of these being the CKKW [114], CKKW-L [115, 116], and
MLM [117, 118] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the
presence of explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions
above a certain matching scale, as in the (L)-CKKW and MLM approaches. The empty part of
phase space can then be filled by separate events generated according to higher-multiplicity
tree-level matrix elements (MEs). In the (L)-CKKW and MLM schemes, this process can be
iterated to include arbitrary numbers of additional hard legs (the practical limit being around
3 or 4, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity matrix ele-
ments must be associated with Sudakov form factors (representing the virtual corrections that
would have been generated if a shower had produced the same phase-space configuration),
and their ↵s factors must be chosen so that, at least at the matching scale, they become identi-
cal to the choices made on the shower side [119]. The CKKW and MLM approaches do this by
constructing “fake parton-shower histories” for the higher-multiplicity matrix elements. By ap-
plying a sequential jet clustering algorithm, a tree-like branching structure can be created that
at least has the same dominant structure as that of a parton shower. Given the fake shower
tree, ↵s factors can be chosen for each vertex with argument ↵s(p?) and Sudakov factors can
be computed for each internal line in the tree. In the CKKW method, these Sudakov factors
are estimated analytically, while the MLM and CKKW-L methods compute them numerically,
from the actual shower evolution.

Thus, the matched result is identical to the matrix element (ME) in the region above the
matching scale, modulo higher-order (Sudakov and ↵s) corrections. We may sketch this as

Matched (above matching scale) =

MEz }| {
Exact ⇥

correctionsz }| {
(1 + O(↵s)) , (67)

where the “shower-corrections” include the approximate Sudakov factors and ↵s reweighting
factors applied to the matrix elements in order to obtain a smooth transition to the shower-
dominated region.

Below the matching scale, the small difference between the matrix elements and the
shower approximation can be dropped (since their leading singularities are identical and this
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Examples: MLM, CKKW, CKKW-L

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)



The Gain The Cost

22QCD and Event Generators Monash U.P.  Skands

W + N jets 

R
A

T
IO

Plot from mcplots.cern.ch; see arXiv:1306.3436 

Shower (w 1 st order MECs)

MLM w 3 rd order Matrix Elements

NJETS1 2 30

Example: LHC7 : W + 20-GeV Jets

P.  S k a n d s

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV!
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; !

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

S l ic ing :  The  Cos t

35
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Z→n : Number of Matched Emissions

2 3 4 5 6
1s
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100s
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10000s

Z→n : Number of Matched Emissions

2 3 4 5 6

1. Initialization time 
(to pre-compute cross sections 

and warm up phase-space grids)

SHERPA+COMIX

SHERPA (C
KKW-L)

2. Time to generate 1000 events 
(Z → partons, fully showered & 
matched. No hadronization.)

1000 SHOWERS

(example of sta
te of th

e art)

See e.g. Lopez-Villarejo & Skands, arXiv:1109.3608

Time

Matching Order

Example: e+e- → Z → Jets

http://mcplots.cern.ch
http://arxiv.org/abs/arXiv:1306.3436


3: Subtraction
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๏LO × Shower ๏NLO

QCD and Event Generators Monash U.P.  Skands

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Examples: MC@NLO, aMC@NLO



Matching 3: Subtraction
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๏LO × Shower ๏NLO - ShowerNLO

QCD and Event Generators Monash U.P.  Skands

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation … Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Expand shower approximation to 
NLO analytically, then subtract:

Examples: MC@NLO, aMC@NLO



Matching 3: Subtraction

25

๏LO × Shower ๏(NLO - ShowerNLO) × Shower

QCD and Event Generators Monash U.P.  Skands

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(1) X(1) …

X(1) X(1) X(1) X(1) …

Born X+1(0) X(1) X(1) …

… Subleading corrections generated by 
shower off subtracted ME 

Examples: MC@NLO, aMC@NLO
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๏Combine ➤ MC@NLO 
•Consistent NLO + parton shower (though correction events can have w<0) 

•Recently, has been fully automated in aMC@NLO

QCD and Event Generators Monash U.P.  Skands

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Note: negative weights w < 0 are a problem because they kill efficiency:   
Extreme example: 1000 w(+1)  999 w(-1) events → statistical precision of 1 event, for 
2000 generated.  [For comparison, standard MC@NLO typically has O(10%) w = -1 events.]

÷

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

Frixione, Webber, JHEP 0206 (2002) 029

Examples: MC@NLO, aMC@NLO



POWHEG vs MC@NLO
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๏Both methods include the complete 
first-order (NLO) matrix elements.  

•Difference is in whether only the shower 
kernels are exponentiated (MC@NLO) or 
whether part of the matrix-element 
corrections are too (POWHEG) 

๏In POWHEG, how much of the MEC 
you exponentiate can be controlled by 
the “hFact” parameter 

•Variations basically span range between 
MC@NLO-like case, and original (hFact=1) 
POWHEG case (~ PYTHIA-style MECs)

QCD and Event Generators Monash U.P.  Skands
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Figure 1: Left: e↵ect of the damping factor Dh for di↵erent values of the scale h on the transverse
momentum distribution of a SM Higgs of mass equal to 125 GeV. The red dashed line is obtained
with h = mH/1.2 GeV, the green dot-dashed one with h = mH/2 GeV and the indigo dashed one
with h = 30 GeV. The blue continuous line corresponds to no damping. For the no damping case and
for h = 30 GeV we also show the results at the level of Les Houches Event File (LHEF). For reference
we show the NLO curve in gray. Right: ratio of the POWHEG prediction for the transverse momentum
over the NLO result. The color coding is the same as in left figure.

variation of the scale µres in the interval [µ̄res/2, 2µ̄res] is customarily adopted.
The matching procedure requires to fix the integral of the Higgs transverse momentum distribution

to a constant, which is conventionally set to the value of the fixed order total cross section [56]. This
constraint holds exactly for any choice of µres, so that any variation of the resummation scale modifies
the shape of the distribution but not its integral and yields thus a correlation between low- and
intermediate-pH? regions.

2.2 Numerical resummation in the NLO+PS framework

Another approach to the resummation of terms enhanced by the factor log(pH?/mH) is the one obtained
in the context of PS Monte Carlo, where the multiple emission of partons is numerically simulated
via the PS algorithm. The matching between the fixed order NLO-QCD results and the PS has been
discussed in refs. [63, 91, 92] and it is implemented in several tools regularly used in the experimental
analyses.

In a su�ciently general way we can write the matching formula as

d� = B̄
s(�B)d�B

⇢
�s

t0
+�s

t

R
s(�)

B(�B)
d�r

�
+R

f
d�+Rregd�. (1)

The phase space is factorized into the product of the Born and the real emission components, d� =
d�Bd�r. The Born squared matrix element is denoted by B while B̄ is the NLO normalization factor.

5

Plot from Bagnashi, Vicini, 
JHEP 1601 (2016) 056

The latter is defined as

B̄
s(�B) = B(�B) + V̂fin(�B) +

Z
R̂

s(�B,�r)d�r . (2)

In this formula V̂fin represents the UV- and IR-regularized virtual contribution. We use the hat to
indicate that an amplitude has been IR-regularized. The partonic subprocesses with the emission
of an additional real parton can be split into two groups: those that are divergent in the limit of
collinear emission, called Rdiv, and the ones that are instead regular, Rreg. We can further subdivide
the squared matrix elements of the divergent subprocesses in two parts:

Rdiv = R
s +R

f
. (3)

The term R
s contains the collinear singularity of Rdiv, while R

f is a finite remainder. Finally, we use
the symbol �s

t for the Sudakov form factor, with t as the shower ordering variable:

�s

t = e
�

R
dt

0
t0

R
s

B
d�r✓(t0�t)

. (4)

The splitting of Rdiv in eq. (3) is defined up to a finite part which can be reabsorbed in R
s. In the

literature two di↵erent choices have been adopted: in POWHEG R
s = Rdiv, while in MC@NLO R

s
/ ↵sPijB

is proportional to the product of the Born matrix elements times the relevant Altarelli-Parisi splitting
functions.

It is interesting to observe that di↵erent definitions for R
s generate higher-order e↵ects in the

matched di↵erential cross section. The possibility of defining the finite part R
f in an arbitrary way

can be exploited to parameterize the uncertainties related to the matching procedure.

2.2.1 The role of the damping factor Dh in the POWHEG-BOX framework

In the POWHEG-BOX framework, the separation between R
s and R

f can be achieved in a dynamical way
using the damping factor Dh, defined as

Dh =
h
2

h2 + (pH? )2
. (5)

The divergent and the regular part of Rdiv = R
s +R

f are then defined as:

R
s = Dh Rdiv , R

f = (1�Dh) Rdiv . (6)

The role of the scale h is to separate the low and the high transverse-momentum regions and it
therefore specifies the range of momenta for which the Sudakov form factor is possibly di↵erent from
1. In the limit p

H

? ⌧ h we obtain R
s
! Rdiv and R

f
! 0. In this limit the Higgs p

H

? distribution
is suppressed by the Sudakov form factor. On the other hand, when p

H

? � h we have R
s
! 0 and

Rf ! Rdiv and the Sudakov form factor tends to 1. In this latter regime the emission of a real parton
is described at fixed order by the matrix elements Rf = Rdiv.

The di↵erential distribution generated according to eq. (1) contains higher order terms, beyond
the claimed accuracy of the calculation, due to the product of B̄ ⇥R

s. Indeed in the large p
H

? region
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literature two di↵erent choices have been adopted: in POWHEG R
s = Rdiv, while in MC@NLO R

s
/ ↵sPijB

is proportional to the product of the Born matrix elements times the relevant Altarelli-Parisi splitting
functions.

It is interesting to observe that di↵erent definitions for R
s generate higher-order e↵ects in the

matched di↵erential cross section. The possibility of defining the finite part R
f in an arbitrary way

can be exploited to parameterize the uncertainties related to the matching procedure.

2.2.1 The role of the damping factor Dh in the POWHEG-BOX framework

In the POWHEG-BOX framework, the separation between R
s and R

f can be achieved in a dynamical way
using the damping factor Dh, defined as

Dh =
h
2

h2 + (pH? )2
. (5)

The divergent and the regular part of Rdiv = R
s +R

f are then defined as:

R
s = Dh Rdiv , R

f = (1�Dh) Rdiv . (6)

The role of the scale h is to separate the low and the high transverse-momentum regions and it
therefore specifies the range of momenta for which the Sudakov form factor is possibly di↵erent from
1. In the limit p

H

? ⌧ h we obtain R
s
! Rdiv and R

f
! 0. In this limit the Higgs p

H

? distribution
is suppressed by the Sudakov form factor. On the other hand, when p

H

? � h we have R
s
! 0 and

Rf ! Rdiv and the Sudakov form factor tends to 1. In this latter regime the emission of a real parton
is described at fixed order by the matrix elements Rf = Rdiv.

The di↵erential distribution generated according to eq. (1) contains higher order terms, beyond
the claimed accuracy of the calculation, due to the product of B̄ ⇥R

s. Indeed in the large p
H

? region

6

Example: Higgs Production

exponentiated not exponentiated

No Damping
Pure NLO
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๏The Problem: 
•Showers generate singular parts of (all) higher-order matrix elements 
•Those terms are of course also present in X + jet(s) matrix elements  
•To combine, must be careful not to count them twice! (double counting) 

๏3 Main Methods 
•1. Matrix-Element Corrections (MECs): multiplicative correction factors 

๏ Pioneered in PYTHIA (mainly for real radiation ➠ LO MECs) 
๏ Similar method used in POWHEG (with virtual corrections ➠ NLO) 
๏ Generalised to multiple branchings: VINCIA  

•2. Slicing: separate phase space into two regions: ME populates high-Q region, shower populates 
low-Q region (and calculates Sudakov factors) 

๏ CKKW-L (pioneered by SHERPA) & MLM (pioneered by ALPGEN) 
•3. Subtraction: MC@NLO, now automated: aMC@NLO  

๏State-of-the-art ➤ Multi-Leg NLO (UNLOPS, MiNLO, FxFx)

QCD and Event Generators Monash U.P.  Skands
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POWHEG

CKKW-L & MLM

MC@NLO

A

B

C

Ambiguity about how much of the 
nonsingular parts of the ME that get 

exponentiated; controlled by: 

hFact

Procedure can lead to a fraction of 
events having: 

Negative Weights

Ambiguity about definition of which 
events “count” as hard N-jet events; 

controlled by: 

Merging Scale

1

2

3

?

?
?
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(Advertisement: Uncertainties in Parton Showers)
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๏Recently, HERWIG, PYTHIA & SHERPA all published papers on automated 
calculations of shower uncertainties (based on tricks with the Sudakov algorithm) 

•Weight of event = { 1 , 0.7, 1.2, … } 

QCD and Event Generators Monash U.P.  Skands

Encouraged to start using those, and provide feedback
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Fig. V.16: Predictions for jet resolutions for W -boson productions at the LHC at LO+PS.
Results from reweighting runs CT14 æ MMHT2014 PDF are compared to the dedicated result for
direct use of the MMHT2014 PDF.
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3 Ntuples for NNLO events produced by EERAD3 7

We study the production of Ntuples based on the program EERAD3 which produces parton-level
QCD events to calculate event shapes and jet rates in electron-positron annihilation through to
order –3

s. The aim of this study is to assess the viability of Ntuples as a general way to have
NNLO results stored and made available to the experimental community.

3.1 Introduction
High precision calculations will be vital in the next phase(s) of the LHC in order to be able
profit from the high quality data being collected. In order to further explore the Higgs sector
and distinguish BSM e�ects from higher order e�ects within the Standard model, next-to-next-
to leading order (NNLO) predicitions are necessary for a number of proccesses. However, such
predictions are the results of complex calculations, which may take a considerable amount of time
and computing resources. Running such programs for various scale choices, parton distribution
functions and sets of cuts is a tedious, time consuming task.

For processes with multi-particle final states at NLO, one is faced with similar problems.
A possible solution, described in detail in Ref. [344], is to store the phase space points and
the corresponding matrix elememt weights, together with other relevant information, in Root
Ntuple files. This has the following advantages:

1. the results are flexible for (tighter) cuts to be applied at a later stage,
7 G. Heinrich, D. Maître
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SHERPA: Bothmann, 
Schönherr, Schumann; in 
arXiv:1605.04692
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Figure 4: Illustration of the default nonsingular variations for ISR splitting kernels, corresponding to cNS =
±2 (shown in red with \\\ hashing), compared with the default renormalisation-scale variations by a factor
of 2 with the NLO compensation term switched on (shown in blue with /// hashing). Left: matrix-element
corrections OFF. Right: matrix-element corrections ON. Distribution of the p? spectrum of the lepton pair in
pp ! Z ! e

+
e
�
/µ

+
µ
� at the Z pole (66 < m``/GeV < 116), for leptons in the phase-space window

|⌘`| < 2.4, p?` > 20 GeV; data from the ATLAS experiment [27].
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See also HERWIG++ : 
Bellm et al., arXiv:1605.08256 

VINCIA:   
Giele, Kosower PS; arXiv:1102.2126 

PYTHIA 8: Mrenna & PS; 
arXiv:1605.08352 

Example 2: 
Renormalisation
-scale and  
Non-Singular 
Term Variations

http://arxiv.org/abs/arXiv:1605.08256
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1605.08352
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๏What we need is a differential equation 
•Boundary condition: a few partons defined at a high scale (QF) 
•Then evolves (or “runs”) that parton system down to a low scale (the hadronization cutoff ~ 1 
GeV) → It’s an evolution equation in QF 

๏Close analogue: nuclear decay 
•Evolve an unstable nucleus. Check if it decays + follow chains of decays.

QCD and Event Generators Monash U.P.  Skands

In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (�)

d�
= g

2

s C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
Q1 and Q2,

�(Q2

1, Q
2

2) = exp

 
�

Z Q2
2

Q2
1

dP (�)

d�
d�

!
= exp

 
�

Z Q2
2

Q2
1

g
2

s C A(�) d�

!
, (10)

where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.

This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,

dP (t)

dt
= cN . (11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is

�(t1, t2) = exp

✓
�

Z t2

t1

cN dt

◆
= exp (�cN �t) . (12)

This case is especially simple, since the decay probability per unit time, cN , is constant. By conservation
of the total number of nuclei (unitarity), the activity per nucleon at time t, equivalent to the “resummed”
decay probability per unit time, is minus the derivative of �,

dPres(t)

dt
=

�d�

dt
= cN �(t1, t) . (13)

In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,

dPres(�)

d�
= g

2

s C A(�) �(Q2

1, Q
2(�)) , (14)

where Q
2(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2

1, Q
2) , (15)
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(respects that each of the original nuclei can 
only decay if not decayed already)

= 1� cN�t+O(c2N )

∆(t1,t2) : “Sudakov Factor”
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33

๏In nuclear decay, the Sudakov factor counts:  
•How many nuclei remain undecayed after a time t 

๏The Sudakov factor for a parton system “counts”: 
•The probability that the parton system doesn’t evolve (branch) when we run the 
factorization scale (~1/time) from a high to a low scale  

๏ (i.e., that there is no state change) 

QCD and Event Generators Monash U.P.  Skands
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(replace cN by proper shower evolution kernels)
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2. Generate another Random Number, Rz ∈ [0,1] 

To find second (linearly independent) phase-space invariant 

Solve equation                                       for z (at scale t) 

With the “primitive function” Iz(z, t) =

Z z

zmin(t)
dz

d�(t0)

dt0

����
t0=t

Rz =
Iz(z, t)

Iz(zmax(t), t)

A Shower Algorithm
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๏1. For each evolver, generate a random number R ∈ [0,1] 
•Solve equation                            for t (with starting scale t1) 

๏ Analytically for simple splitting kernels,  
๏ else numerically and/or by trial+veto 
๏ → t scale for next (trial) branching
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R = �(t1, t)
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Figure 1: Contours of constant value of the antenna function, ā0ijk for qq̄ → qgq̄ derived from Z decay
as function of the two phase-space invariants, with an arbitrary normalization and a logarithmic color
scale. Larger values are shown in lighter shades. The (single) collinear divergences sit on the axes,
while the (double) soft divergence sits at the origin.

factor, and ā0ijk is a generic color- and coupling-stripped dipole-antenna function, with superscript 0 to
denote a tree-level quantity. The three-particle matrix element is averaged azimuthally (over φ). Note
that our use of lower-case letters for the antenna function is intended to signify that it corresponds to
what is called a sub-antenna in ref. [36] for which lower-case letters are likewise used2.

For illustration, contours of constant value of ā0qgq̄(s, sqg, sgq̄) as derived from Z decay are shown
in fig. 1, over the 2 → 3 phase space, with an arbitrary normalization and a logarithmic color scale.
This function is called A0

3 in ref. [36] and is identical to the radiation function used for qq̄ → qgq̄
splittings in ARIADNE. One clearly sees the large enhancements towards the edges of phase space,
with a double pole (the overlap of two singularities, usually called soft and collinear) sitting at the
origin, and single singularities (soft or collinear) localized on the axes.

Writing the coupling factor as g2 = 4παs and combining it with the phase space factor, eq. (12),
we have the following antenna function normalization

a0IK→ijk(s, sij, sjk) ≡
1

√
λ
(
s,m2

I ,m
2
K

)
αs

4π
Cijk ā0ijk(s, sij , sjk) . (15)

That is, we use the notation ā for the coupling- and color-stripped antenna function, and the notation
a for the “dressed” antenna function, i.e., including its coupling, color, and phase-space prefactors.

Note that g2×(phase-space normalization) leads to a factor αs/(4π) independently of the type of
branching. As we believe that the formalism becomes more transparent if the origin of each factor
is kept clear throughout, we shall therefore use this factor for all branchings, instead of the more
traditional convention of using αs/(2π) for some branchings and αs/(4π) for others. Obviously, this
convention choice will be compensated by our conventions for the color factors and antenna-function
normalizations, such that the final result remains independent of this choice.

2Thus, in the notation of ref. [36], our dipole-antenna functions would be ā0
3 = A0

3, d̄03 = d03, ē03 =
1
2E

0
3 , f̄0

3 = f0
3 , and

ḡ03 =
1
2G

0
3.
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t

t1

(t,z)

3. Generate a third Random Number, Rφ ∈ [0,1] 
Solve equation                     for φ → Can now do 3D branching 

Accept/Reject based on full kinematics. Update t1 = t. Repeat.

R' = '/2⇡
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๏DGLAP: from collinear limit of MEs (pb+pc)2→0 
•+ evolution equation from invariance with respect to QF → RGE

QCD and Event Generators Monash U.P.  Skands

DGLAP 
(E.g., PYTHIA)

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability
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a

c
b

pb = z pa

pc = (1-z) pa

NB: dipoles, antennae, also have DGLAP kernels as their collinear limits

dt =
dQ2

Q2
= d lnQ2

… with Q2 some measure of “hardness” 
= event/jet resolution 

measuring parton virtualities / formation time / …
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Coherence

QED: Chudakov effect (mid-fifties)
e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Illustration by T. Sjöstrand
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● Radiation function can be separated into two parts containing collinear singularities along
lines i and j. Consider for simplicity massless particles, vi,j = 1. Then Wij = W i

ij + W j
ij

where

W i
ij =

1

2

„

Wij +
1

1 − cos θiq
−

1

1 − cos θjq

«

.

● This function has remarkable property of angular ordering. Write angular integration in polar
coordinates w.r.t. direction of i, dΩ = d cos θiq dφiq. Performing azimuthal integration,
we find

Z 2π

0

dφiq

2π
W i

ij =
1

1 − cos θiq
if θiq < θij, otherwise 0.

i

j

Thus, after azimuthal averaging,
contribution from W i

ij is confined to
cone, centred on direction of i, extending
in angle to direction of j. Similarly, W j

ij,
averaged over φjq, is confined to cone
centred on line j extending to direction of
i.

29

i

k

! 1

1� cos ✓ij
➾ Soft radiation 
averaged over φij : 

if θij < θik ; otherwise 0

what you get from a DGLAP kernel
kill radiation outside ik 

opening angle

DGLAP and Coherence: Angular ordering

38

๏Physics: (applies to any gauge theory) 
•Interference between emissions from colour-connected partons (e.g. i and k) 
→ coherent dipole patterns 

๏ (More complicated multipole effects beyond leading colour; ignored here) 
•DGLAP kernels, though incoherent a priori, can reproduce this pattern (at least in an azimuthally 
averaged sense) by angular ordering 

๏

QCD and Event Generators Monash U.P.  Skands

Note: Dipole & antenna showers include this effect point by point in φ (without averaging)

E2
j (pi · pk)

(pi · pj)(pj · pk)
=

1� cos ✓ik
(1� cos ✓ij)(1� cos ✓jk)

=
1� cos ✓ik

(1� cos ✓ij)(1� cos ✓jk)
± 1

2(1� cos ✓ij)
⌥ 1

2(1� cos ✓jk)

Z 2⇡

0

d'ij

4⇡

✓
1� cos ✓ik

(1� cos ✓ij)(1� cos ✓jk)
+

1

1� cos ✓ij
� 1

1� cos ✓jk

◆
=

1

2(1� cos ✓ij)

✓
1 +

cos ✓ij � cos ✓ik
| cos ✓ij � cos ✓ik|

◆

Soft Eikonal Factor (write out 4-products) Add and subtract 1/(1-cosθij) and 1/(1-cosθjk) to isolate ij and jk collinear pieces

Take the ij piece and integrate over azimuthal angle dφij (using explicit momentum representations)

๏Start from the M.E. factorisation formula in the soft limit 

P. Skands Introduction to QCD

I

K

k

i

j
I

K

k

i

j

Figure 16: Diagrams (squared) giving rise to collinear (left) and soft (right) singularities.

I, goes on shell; the singularity of the associated propagator factor is the origin of the 1/sij

collinear singularities. On the right is shown the interference between a diagram with emission
from parton I and one with emission from parton K. The resulting term has propagator
singularities when both partons I and K go on shell, which can happen simultaneously if
parton j is soft. This generates the 2sik/(sijsjk) soft singularity, also called the soft eikonal
factor or the dipole factor.

We now understand the fundamental origin of the IR singularities, why they are universal,
and why amplitudes factorise in the soft and collinear limits — the singularities are simply
generated by intermediate parton propagators going on shell, which is independent of the
nature of the hard process, and hence can be factorised from it.

Thus, for each pair of (massless) color-connected partons I and K in F , the squared am-
plitude for F + 1 gluon, |MF+1|

2, will include a factor

|MF+1|
2 = g

2

s NC

✓
2sik

sijsjk
+ collinear terms

◆

| {z }
Antenna Function

|MF |
2

, (62)

where g
2
s = 4⇡↵s is the strong coupling, i and k represent partons I and K after the branching

(i.e., they include possible recoil effects) and sij is the invariant between parton i and the
emitted parton, j.

The branching phase space of a color dipole (i.e., a pair of partons connected by a color-
index contraction) is illustrated in figure 17. Expressed in the branching invariants, sij and sjk,
the phase space has a characteristic triangular shape, imposed by the relation s = sij+sjk+sik

(assuming massless partons). Sketchings of the post-branching parton momenta have been
inserted in various places in the figure, for illustration. The soft singularity is located at the
origin of the plot and the collinear regions lie along the axes.

The collinear terms for a qq̄ ! qgq̄ “antenna” are unambiguous and are given in section 2.4.
Since gluons are in the adjoint representation, they carry both a color and an anticolor index
(one corresponding to the rows and the other to the columns of the Gell-Mann matrices),
and there is therefore some ambiguity concerning how to partition collinear radiation among
the two antennae they participate in. This is discussed in more detail in [88]. Differences
are subleading, however, and for our purposes here we shall consider gluon antenna ends as
radiating just like quark ones. The difference between quark and gluon radiation then arise
mainly because gluons participate in two antennae, while quarks only participate in one. This
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Figure 2: The Drell-Yan pT spectrum. The dashed red curve
shows the value computed using Vincia with default antennæ
functions, while the dotted green curve shows the Vincia pre-
dicted with an enhanced antenna function. The solid blue
curve gives the Pythia 8 prediction. The inset shows the high-
pT tail.

certainty due to the shower function and in particu-
lar higher-order terms in the shower. The di↵er-
ence shown here is illustrative only; a more ex-
tensive exploration of possible antenna variations
would be required before taking the spread as a
quantitative estimate of the uncertainty. We may
nonetheless observe that the Pythia 8 reference
calculation di↵ers from the Vincia one (with de-
fault antenna) by roughly the same amount in the
peak region as does the enhanced Vincia predic-
tion. This illustrates a tradeo↵ between a more ac-
tive recoil strategy (Pythia) and a more active radi-
ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the e↵ect
is given in fig. 3, which shows qq ! qq scatter-
ing with two di↵erent color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Di↵erent color flows and corresponding emission
patterns in qq ! qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.
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Figure 4: Angular distribution of the first gluon emission in
qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color
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plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
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Coherence at Work in QCD
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๏Example: quark-quark scattering in hadron collisions   
•Consider, for instance, scattering at 45o 
•  2 possible colour flows :

QCD and Event Generators Monash U.P.  Skands

a) “forward” colour flow

b) “backward” 
colour flow
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at right angles to the beam should be unsuppressed.
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Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Another nice physics example is the SM contribution to the Tevatron top-quark forward-backward 
asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151
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http://arxiv.org/abs/arXiv:1210.6345


αs(MZ)
PDG: 0.119 
ME : 0.127 
PS: 0.138

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes
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↵s

2⇡
CF

1 + z2

1� z
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⇣↵s
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⌘2 A(2)
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Eg Analytic resummation (in Mellin space): General Structure
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(for z→1: soft gluon limit):
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Born
{p} :  partons

But instead of evaluating O directly on the Born final state,  
first insert a showering operator

Most showers, with the exception of ARIADNE and the Winter–Krauss shower [32], are based on
collinear factorization, which is to say 1 → 2 branching in shower evolution. (PYTHIA 8 combines
a 1 → 2 splitting probability with a 2 → 3 phase-space mapping.) In the present paper, we continue
the development of a leading-log (LL) parton shower [33] based on dipole antennæ, that is 2 → 3
branching. We choose a simpler context than hadron collisions, that of electron–positron collisions.
This allows us to set aside the questions of initial-state emission as well as those of the underlying
event.

In sec. 2, we describe in greater detail the ingredients needed for such a shower, as well as our
normalization conventions, and compare the origins of different singularities and corresponding log-
arithms in different shower formalisms. We also discuss the different matching approaches in more
detail. In sec. 3, we discuss the evolution integral, and show how to cast it in a general form whose
specializations correspond to a wide variety of interesting evolution variables. We then solve the re-
sulting evolution equation. In sec. 4, we discuss the shower algorithm, as well as improvements that
can be made to its logarithmic accuracy. In sec. 5, we discuss the details of matching the dipole-
antenna shower to tree-level matrix elements, at both leading and subleading color. The procedure
we use to evaluate the remaining perturbative uncertainties is described in sec. 6, and in sec. 7, we
comment on hadronization; in sec. 8, we compare the results of running the unitarity-based approach
implemented in VINCIA to LEP data and to PYTHIA 8. We make some concluding remarks in sec. 9.

2 Nomenclature and Conventions

In this section, we introduce the basic elements of our perturbative formalism, which is largely based
on ref. [33]. First, in sec. 2.1, we illustrate how the KLN theorem may be used to rewrite the coeffi-
cients of perturbation theory as the expansion of an all-orders Markov chain, using NLO as an explicit
example. Then, in sec. 2.2, we briefly describe each of the ingredients that enter our dipole-antenna
shower formalism.

2.1 Perturbation Theory with Markov Chains

Consider the Born-level cross section for an arbitrary hard process, H , differentially in an arbitrary
infrared-safe observable O,

dσH
dO

∣∣∣∣Born
=
∫

dΦH |M (0)
H |2 δ(O −O({p}H)) , (1)

where the integration runs over the full final-state on-shell phase space of H (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and the δ function projects out a 1-dimensional slice defined
by O evaluated on the set of final-state momenta which we denote {p}H (without the δ function, the
integration over phase space would just give the total cross section, not the differential one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator, S , that acts on the Born-level final state before the observable is evaluated,
i.e.,

dσH
dO

∣∣∣∣S
=
∫

dΦH |M (0)
H |2 S({p}H ,O) . (2)

Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. The measurement δ function appear-

3

Born 
+ shower S : showering operator

{p} :  partons
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H = Hard process

Unitarity: to first order, S does nothing

S({p}H ,O) = � (O �O({p}H)) + O(↵s)



(Markov Chain)
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๏To ALL Orders 

•All-orders Probability that nothing happens

QCD and Event Generators Monash U.P.  Skands

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

“Nothing Happens”

“Something Happens”

(Exponentiation) 
Analogous to nuclear decay 

N(t) ≈ N(0) exp(-ct)

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

∆(t1, t2) = exp

(

−
∫ t2

t1

dt
dP
dt

)

“Evaluate Observable”→ 

“Continue Shower”→ 
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๏Currently, much activity on how to combine several NLO matrix elements for the same 
process: NLO for X, X+1, X+2, …  

•Unitarity is a common main ingredient for all of them 
•Most also employ slicing (separating phase space into regions defined by one particular 
underlying process) 

๏Methods 
•UNLOPS, generalising CKKW-L/UMEPS: Lonnblad, Prestel, arXiv:1211.7278

•MiNLO, based on POWHEG: Hamilton, Nason, Zanderighi (+more)  

•FxFx, based on MC@NLO: Frederix & Frixione, arXiv:1209.6215

•(VINCIA, based on NLO MECs): Hartgring, Laenen, Skands, arXiv:1303.4974  

๏Most (all?) of these also allow NNLO on total inclusive cross section 
•Will soon define the state-of-the-art for SM processes 
•For BSM, the state-of-the-art is generally one order less than SM
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•arXiv:1206.3572,  arXiv:1512.02663

http://arxiv.org/abs/arXiv:1303.4974
http://arxiv.org/abs/arXiv:1512.02663

