Lecture 2: Beyond Fixed Order - Showers \& Merging

To start with, consider what a charged particle really looks like If it is charged, it has a Coulomb field

Weiszäcker (1934) \& Williams (1935) noted that the EM fields of an electron in uniform relativistic motion are predominantly transverse, with $|E| \approx|B|$

Just like (a superposition of) plane waves!

- Fast electrically charged particles carry with them clouds of virtual photons
a.k.a. "the method of virtual quanta" (e.g., Jackson, Classical Electrodynamics) or "the equivalent photon approximation" (EPA)

The Structure of (Charged) Quantum Fields

What does a charged particle look like in Quantum Field Theory? (in the interaction picture)
If it has a (conserved) gauge charge, it has a Coulomb field; made of massless gauge bosons.
\rightarrow An ever-repeating self-similar pattern of quantum fluctuations inside fluctuations inside fluctuations At increasingly smaller distances : scaling (modulo running couplings)

The Structure of (Charged) Quantum Fields

What does a charged particle look like in Quantum Field Theory? (in the interaction picture)

 If it has a (conserved) gauge charge, it has a Coulomb field; made of massless gauge bosons.\rightarrow An ever-repeating self-similar pattern of quantum fluctuations inside fluctuations inside fluctuations At increasingly smaller distances : scaling (modulo running couplings)

Nature makes copious use of such structures - Fractals

Mathematicians also like them Infinitely complex self-
similar patterns

OK, that's pretty ... but so what?

Naively, QCD radiation suppressed by $a_{s} \approx 0.1$
\rightarrow Truncate at fixed order $=$ LO, NLO, \ldots But beware the jet-within-a-jet-within-a-jet ...

Example: SUSY pair production at LHC_{14}, with $\mathrm{M}_{\text {susy }} \approx 600 \mathrm{GeV}$

LHC - spsla - $\mathrm{m} \sim 600 \mathrm{GeV}$

FIXED ORDER pQCD	$\sigma_{\text {tot }}[\mathrm{pb}]$	$\tilde{g} \tilde{g}$	$\tilde{u}_{L} \tilde{g}$	$\tilde{u}_{L} \tilde{u}_{L}^{*}$	$\tilde{u}_{L} \tilde{u}_{L}$	$T T$
$p_{T, j}>100 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
inclusive $\mathbf{x}+1$ "jet"	$\rightarrow \sigma_{1 j}$	2.89	2.74	0.136	0.145	0.73
inclusive $\mathbf{x}+2$ "jets"	$\sigma_{2 j}$	1.09	0.85	0.049	0.039	0.26

$\left.p_{T, j}\right\rangle 50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

σ for $X+$ jets much larger than naive factor- a_{s} estimate
σ for 50 GeV jets \approx larger than total cross section
\rightarrow what is going on?
All the scales are high, $Q \gg 1 \mathrm{GeV}$, so perturbation theory should be OK

Why is fixed-order QCD not enough?

F.O. QCD requires Large scales (a_{s} small enough to be perturbative \rightarrow high-scale processes)

F.O. OCD also requires No hierarchies

Bremsstrahlung propagators $\propto 1 / Q^{2}$ integrated over phase space $\propto d Q^{2}$ \rightarrow logarithms

$$
\alpha_{s}^{n} \ln ^{m}\left(Q_{\text {Hard }}^{2} / Q_{\text {Brems }}^{2}\right) \quad ; m \leq 2 n
$$

\rightarrow cannot truncate at any fixed order n if upper and lower integration limits are hierarchically different

Harder Processes are accompanied by Harder Jets

The hard process "kicks off" a shower of successively softer radiation Fractal structure: if you look at $\mathrm{Q}_{\text {Jet }} / \mathrm{Q}_{\text {HaRD }} \ll 1$, you will resolve substructure. So it's not like you can put a cut at X (e.g., 50 , or even 100) GeV and say: " Ok , now fixed-order matrix elements will be OK"

Extra radiation:

Will generate corrections to your kinematics
Extra jets from bremsstrahlung can be important combinatorial background especially if you are looking for decay jets of similar p_{T} scales (often, $\Delta M \ll M$) Is an unavoidable aspect of the quantum description of quarks and gluons (no such thing as a "bare" quark or gluon; they depend on how you look at them)

This is what parton showers are for

The QCD Fractal

Most bremsstrahlung is driven by divergent propagators \rightarrow simple universal structure, independent of process details

Amplitudes factorise in singular limits

Bremsstrahlung

$$
\begin{array}{ll}
\text { Partons ab } & P(z)=\text { DGLAP splitting kernels, with } z=\text { energy fraction }=E_{a} /\left(E_{a}+E_{b}\right) \\
\rightarrow \\
\text { "collinear" } & \left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{array}
$$

$$
\begin{array}{lr}
\text { Gluon } \mathrm{j} & \text { Coherence } \rightarrow \text { Parton } j \text { really emitted by }(i, k) \text { colour dipole: eikonal } \\
\xrightarrow{\rightarrow} \text { "soft": } & \left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
\end{array}
$$

Apply this many times for successively softer / more collinear emissions \rightarrow OCD fractal

$$
+ \text { scaling violation: } g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(\mathrm{Q}^{2}\right)
$$

Types of Showers

Factorisation of (squared) amplitudes in IR singular limits
(leading colour)

One term for each parton
Not a priori coherent.

+ Angular ordering restores azimuthally averaged eikonal

Full ME (modulo nonsingular terms)

One term for each colour connection

Coherent by construction

Two terms for each colour connection

Coherent by construction

Is that "All Orders" ?

Great, starting from an arbitrary Born ME, we can now:
Obtain tree-level ME with any number of legs (in soft/collinear approximation)

Doesn't look very "all-orders" though, does it? What about the loops?

Detailed Balance

Showers impose Detailed Balance (a.k.a. Probability Conservation \leftrightarrow Unitarity) When X branches to $X+1$: Gain one $X+1$, Lose one $X \rightarrow$ Virtual Corrections

\rightarrow Showers do "Bootstrapped Perturbation Theory" Imposed via differential event evolution

On Probability Conservation a.k.a. Unitarity

Probability Conservation: P (something happens) $+P$ (nothing happens) $=1$

In Showers: Imposed by Event evolution: "detailed balance"
When (X) branches to $(X+1)$: Gain one $(X+1)$. Lose one $(X) . \rightarrow A$ "gain-loss" differential equation. Cast as iterative (Markov-Chain Monte-Carlo) evolution algorithm, based on universality and unitarity. With evolution kernel $\sim \frac{\left|M_{n+1}\right|^{2}}{\left|M_{n}\right|^{2}}$ (typically a soft/collinear approx thereof)

Typical choices Evolve in some measure of resolution \sim hardness, $1 /$ time $\ldots \sim$ fractal scale
$p_{\perp}, Q^{2}, E \theta, \ldots$

Compare with NLO (e.g., in previous lecture)

Evolution ~ Fine-Graining the Description of the Event

(E.g., starting from QCD $2 \rightarrow 2$ hard process)

Resolution Scale

Cross sections

At most inclusive level
"Everything is 2 jets"
$Q \sim Q_{\text {HARD }}$

Fixed order:

Oinclusive
$Q_{\mathrm{HARD}} / Q<$ "A few"

$Q \ll Q_{\text {HARD }}$
Scale Hierarchy!

At (slightly) finer resolutions, At high resolution, most events some events have 3 , or 4 jets

```
Fixed order:
\sigmax+n}~\mp@subsup{a}{s}{n}\mp@subsup{\sigma}{x}{
```

have >2 jets
Fixed order diverges:
$\sigma_{X+n} \sim a_{s}^{n} \ln 2 n\left(O / Q_{\text {HARD }}\right) \sigma_{X}$

Unitarity \rightarrow number of splittings diverges
while cross section remains $\sigma_{\text {inclusive }}$

A Subtlety: Initial vs Final State Showers

Separation meaningful for collinear radiation, but not for soft

Who emitted that gluon?

QFT $=$ sum over amplitudes, then square \rightarrow interference quantum \neq classical (IF coherence) Respected by antenna and dipole languages (and by angular ordering, azimuthally averaged), but not by collinear DGLAP (e.g., PDF evolution but also PYTHIA without MECs.)

Perturbative Ambiguities

The final states generated by a shower algorithm will depend on

1. The choice of perturbative evolution variable(s) $t^{[i]}$. \qquad Ordering \& Evolutionscale choices
2. The choice of phase-space mapping $\mathrm{d} \Phi_{n+1}^{[i]} / \mathrm{d} \Phi_{n}$.
\longleftarrow Recoils, kinematics
3. The choice of radiation functions a_{i}, as a function of the phase-space variables.
4. The choice of renormalization scale function μ_{R}.
5. Choices of starting and ending scales. $\longleftarrow \quad \begin{aligned} & \text { Phase-space limits / suppressions for hard } \\ & \text { radiation and choice of hadronization scale }\end{aligned}$
\rightarrow gives us additional handles for uncertainty estimates, beyond just μ_{R} (+ ambiguities can be reduced by including more pQCD \rightarrow merging!)

Fixed Order in Showers
 plus

Fixed Order Paradigm: consider a single physical process
Explicit solutions, process-by-process (to some extent automated) Standard-Model: typically NLO or NNLO Beyond-SM: typically LO or NLO

Accurate for hard process, to given perturbative order Limited generality

Note: can also be cured via (non-shower)
resummation methods.
Not covered here.

Multi-scale problems \rightarrow logs of scale hierarchies, not resummed \rightarrow loss of accuracy.
Event Generators (Showers): consider all physical processes
Universal solutions, applicable to any/all processes
Accurate in strongly ordered (soft/collinear) limits (=bulk of radiation)
Note: most showers only formally accurate to (N)LL = LL + important corrections
Maximum generality
Process-dependence $=$ subleading corrections, large for hard resolved jets. \rightarrow merging

How Not to Do it ...

A (complete idiot's) solution
Run generator for $\mathrm{X}+$ shower
Run generator for $\mathrm{X}+1+$ shower
Run generator for ... + shower
... and just add all these samples together

Problem: "double counting" (of terms present in both expansions)
$X+$ shower is inclusive: $X+$ anything already produces some $X+n$ events Adding additional ME $X+n$ events \rightarrow double counting

Example: $\mathbf{H}^{\mathbf{0}}$
 $\rightarrow \mathrm{b} \overline{\mathrm{b}}$

Born + Shower

What the first-order shower

$$
+\quad . .
$$

Born + 1 @ LO

What you get from firstorder (LO), e.g., Madgraph

Rewrite that as Born $\times[\ldots$]

Born + Shower (tree-level expansion)

$$
\left(\begin{array}{rl}
\frac{\mathcal{T}_{s}}{g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{i j}}{s_{j k}}\right)\right]} \Theta_{\mathrm{PS}} & +\ldots \\
\begin{array}{c}
\text { Example of shower kernel } \\
\text { (here, used "antenna function" for coherent } \\
\text { gluon emission from a massless quark pair) }
\end{array} & \begin{array}{c}
\text { Phase-space region } \\
\text { covered by shower }
\end{array}
\end{array}\right.
$$

$$
\text { Born + } 1 \text { @ LO }
$$

Total Overkill to add these two. All we need is just that $\boldsymbol{+} \mathbf{2}$ (\& cover any difference between Θ_{PS} and Θ_{ME})

1. Matrix-Element Corrections

Exploit freedom to choose non-singular terms Bengtson, Sijstrand, PLB 185 (1987) 435
Modify parton shower to use radiation functions \propto full matrix element for 1 st emission:

$$
\text { Parton Shower } \frac{P(z)}{Q^{2}} \rightarrow \frac{P^{\prime}(z)}{Q^{2}}=\frac{P(z)}{Q^{2}} \underbrace{\frac{\left|M_{n+1}\right|^{2}}{\sum_{i} P_{i}(z) / Q_{i}^{2}\left|M_{n}\right|^{2}}}_{\mathrm{MEC}}
$$

Process-dependent MEC $\rightarrow \mathrm{P}^{\prime}$ different for each process
Done in PYTHIA for all SM decays and many BSM ones Norrbin, Sjastrand, NPB 603 (2001) 297
Based on systematic classification of spin/colour structures
(Also used to account for mass effects, and for a few simple hard processes like Drell-Yan.)
Difficult to generalise beyond one emission
Parton-shower expansions complicated \& can have "dead zones"
Achieved in VINCIA (by devising showers that have simple expansions)

MECs with Loops: POWHEG

Acronym stands for: Positive Weight Hardest Emission Generator.

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element

$\rightarrow\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

Method is widely applied/available, can be used with PYTHIA, HERWIG, SHERPA

Subtlety 1: Connecting with parton shower
Truncated Showers \& Vetoed Showers
Subtlety 2: Avoiding (over)exponentiation of hard radiation
Controlled by "hFact" parameter (POWHEG)

2: Slicing (MLM \& CKKW-L)

First emission: "the HERWIG correction"

Use the fact that the angular-ordered HERWIG parton shower has a "dead zone" for hard wide-angle radiation (Seymour, 1995)

F@ LO \times LL-Soft (HERWIG Shower)

F+1@ LO $\times \mathbf{L L}$ (HERWIG Corrections)

	$\sigma_{0}^{(2)}$	$\sigma_{1}^{(2)}$		\ldots
	$\sigma_{0}^{(1)}$	$\sigma_{1}^{(1)}$	$\sigma_{2}^{(1)}$	
	$\sigma_{0}^{(0)}$	$\sigma_{1}{ }^{(0)}$	$\sigma_{2}^{(0)}$	$\sigma_{3}^{(0)}$
. .	0	1	2	3

$\mathbf{F} @ \mathbf{L O}_{1} \times \mathbf{L L}$ (HERWIG Matched)

Many emissions: the MLM \& CKKW-L prescriptions

The Gain

The Cost

Example: LHC_{7} : W + 20-GeV Jets

Plot from meplots.cern.ch; see arXiv: I 306.3436

Example: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{Z} \rightarrow$ Jets
2. Time to generate 1000 events
($Z \rightarrow$ partons, fully showered \& matched. No hadronization.)

1000 SHOWERS

See e.g. Lopez-Villarejo \& Skands, arXiv:I I 09.3608

3: Subtraction

Examples: MC@NLO, aMC@NLO

LO \times Shower

NLO

Fixed-Order Matrix Element
\square Shower Approximation

Matching 3: Subtraction

Examples: MC@NLO, aMC@NLO

LO \times Shower

Fixed-Order Matrix Element

Shower Approximation

NLO - Showernlo

Expand shower approximation to NLO analytically, then subtract:
\square Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

Matching 3: Subtraction

Examples: MC@NLO, aMC@NLO

LO \times Shower

Fixed-Order Matrix Element

Shower Approximation
(NLO - Showernlo) \times Shower

Matching 3: Subtraction

Combine - MC@NLO

Examples: MC@NLO, aMC@NLO

Frixione,Webber, JHEP 0206 (2002) 029
Consistent NLO + parton shower (though correction events can have w<0)
Recently, has been fully automated in aMC@NLO
Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP I202 (2012) 048

Note: negative weights $\mathbf{w}<0$ are a problem because they kill efficiency:
Extreme example: $1000 w(+1) \div 999 w(-1)$ events \rightarrow statistical precision of 1 event, for 2000 generated. [For comparison, standard MC@NLO typically has O(10\%) w=-1 events.]

POWHEG vs MC@NLO

Both methods include the complete first-order (NLO) matrix elements.
Difference is in whether only the shower kernels are exponentiated (MC@NLO) or whether part of the matrix-element corrections are too (POWHEG)

In POWHEG, how much of the MEC you exponentiate can be controlled by the "hFact" parameter
Variations basically span range between MC@NLO-like case, and original (hFact=1) POWHEG case (\sim PYTHIA-style MECs)

$$
\begin{array}{lc}
R^{s}=D_{h} R_{\mathrm{div}} & R^{f}=\left(1-D_{h}\right) R_{\text {div }} \\
\text { exponentiated } & \text { not exponentiated }
\end{array}
$$

Merging — Summary

The Problem:

Showers generate singular parts of (all) higher-order matrix elements
Those terms are of course also present in $\mathrm{X}+\mathrm{jet}(\mathrm{s})$ matrix elements
To combine, must be careful not to count them twice! (double counting)

3 Main Methods

1. Matrix-Element Corrections (MECs): multiplicative correction factors

Pioneered in PYTHIA (mainly for real radiation $m \neq$ LO MECs)
Similar method used in POWHEG (with virtual corrections
Generalised to multiple branchings: VINCIA
2. Slicing: separate phase space into two regions: ME populates high-Q region, shower populates low-Q region (and calculates Sudakov factors)
CKKW-L (pioneered by SHERPA) \& MLM (pioneered by ALPGEN)
3. Subtraction: MC@NLO, now automated: aMC@NLO

State-of-the-art > Multi-Leg NLO (UNLOPS, MiNLO, FxFx)

Quiz: Connect the Boxes

1

Ambiguity about how much of the nonsingular parts of the ME that get exponentiated; controlled by: hFact

Extra Slides

(Advertisement: Uncertainties in Parton Showers)

Recently, HERWIG, PYTHIA \& SHERPA all published papers on automated

 calculations of shower uncertainties (based on tricks with the Sudakov algorithm)Weight of event $=\{1,0.7,1.2, \ldots\}$

See also HERWIG++ :
Bellm et al., arXiv:1605.08256

VINCIA: Giele, Kosower PS; arXiv:1102.2126

Encouraged to start using those, and provide feedback

Evolution Equations

What we need is a differential equation

Boundary condition: a few partons defined at a high scale (C_{F})
Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff ~ 1 GeV) \rightarrow It's an evolution equation in Q_{F}

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.

$$
\begin{aligned}
& \text { Decay constant } \\
& \qquad \frac{\mathrm{d} P(t)}{\mathrm{d} t}=c_{N}
\end{aligned}
$$

Probability to remain undecayed in the time interval $\left[t_{1}, t_{2}\right]$

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

Decay probability per unit time

$$
=1-c_{N} \Delta t+\mathcal{O}\left(c_{N}^{2}\right)
$$

$$
\frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{~d} t}=c_{N} \Delta\left(t_{1}, t\right)
$$

(respects that each of the original nuclei can

$$
\Delta\left(t_{1}, t_{2}\right) \text { : "Sudakov Factor" }
$$ only decay if not decayed already)

The Sudakov Factor

In nuclear decay, the Sudakov factor counts:
How many nuclei remain undecayed after a time t
Probability to remain undecayed in the time interval $\left[t_{1}, t_{2}\right]$

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

The Sudakov factor for a parton system "counts":
The probability that the parton system doesn't evolve (branch) when we run the factorization scale (~ 1 /time) from a high to a low scale (i.e., that there is no state change)

Evolution probability per unit "time"

$$
\frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{~d} t}=c_{N} \Delta\left(t_{1}, t\right)
$$

Nuclear Decay

Nuclei remaining undecayed after time t

A Shower Algorithm

\rightarrow 1. For each evolver, generate a random number $R \in[0,1]$
Solve equation $R=\Delta\left(t_{1}, t\right)$ for t (with starting scale $\left.t_{1}\right)$
Analytically for simple splitting kernels,
else numerically and/or by trial+veto
\rightarrow t scale for next (trial) branching
2. Generate another Random Number, $\mathrm{R}_{\mathrm{z}} \in[0,1]$

To find second (linearly independent) phase-space invariant
Solve equation $\quad R_{z}=\frac{I_{z}(z, t)}{I_{z}\left(z_{\max }(t), t\right)}$ for z (at scale t)

$$
\text { With the "primitive function" } \quad I_{z}(z, t)=\left.\int_{z_{\min }(t)}^{z} \mathrm{~d} z \frac{\mathrm{~d} \Delta\left(t^{\prime}\right)}{\mathrm{d} t^{\prime}}\right|_{t^{\prime}=t}
$$

3. Generate a third Random Number, $\mathrm{R}_{\phi} \in[0,1]$

Solve equation $R_{\varphi}=\varphi / 2 \pi$ for $\phi \rightarrow$ Can now do 3D branching
Accept/Reject based on full kinematics. Update $\mathrm{t}_{1}=\mathrm{t}$. Repeat.

Example: DGLAP Kernels

DGLAP: from collinear limit of MEs $\left(p_{b}+p_{c}\right)^{2} \rightarrow 0$

+ evolution equation from invariance with respect to $\mathrm{Q}_{\mathrm{F}} \rightarrow \mathrm{RGE}$

$$
\begin{aligned}
& \text { DGLAP } \\
& \text { (E.g., PYTHIA) } \\
& P_{\mathrm{q} \rightarrow \mathrm{qg}}(z)=C_{F} \frac{1+z^{2}}{1-z}, \\
& \mathrm{~d} \mathcal{P}_{a}=\sum_{b, c} \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} t \mathrm{~d} z . \\
& P_{\mathrm{g} \rightarrow \mathrm{gg}}(z)=N_{C} \frac{(1-z(1-z))^{2}}{z(1-z)}, \\
& P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}(z)=T_{R}\left(z^{2}+(1-z)^{2}\right) \text {, } \\
& P_{\mathrm{q} \rightarrow \mathrm{q} \gamma}(z)=e_{\mathrm{q}}^{2} \frac{1+z^{2}}{1-z}, \\
& p_{b}=z p_{a} \\
& p_{c}=(1-z) p_{a} \\
& P_{\ell \rightarrow \ell \gamma}(z)=e_{\ell}^{2} \frac{1+z^{2}}{1-z},
\end{aligned}
$$

$$
\mathrm{d} t=\frac{\mathrm{d} Q^{2}}{Q^{2}}=\mathrm{d} \ln Q^{2}
$$

Coherence

QED: Chudakov effect (mid-fifties)

emulsion plate \begin{tabular}{cc}
reduced

ionization

normal

ionization
\end{tabular}

DGLAP and Coherence: Angular ordering

Physics: (applies to any gauge theory)
Interference between emissions from colour-connected partons (e.g. i and k)
\rightarrow coherent dipole patterns
(More complicated multipole effects beyond leading colour; ignored here)
DGLAP kernels, though incoherent a priori, can reproduce this pattern (at least in an azimuthally averaged sense) by angular ordering

Start from the M.E. factorisation formula in the soft limit

$\frac{E_{j}^{2}\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}$
Soft Ekonal Factor
(wite out 4-products)$\frac{1-\cos \theta_{i k}}{\left(1-\cos \theta_{i j}\right)\left(1-\cos \theta_{j k}\right)}$

$$
\int_{0}^{2 \pi} \frac{d \varphi_{i j}}{4 \pi}\left(\frac{1-\cos \theta_{i k}}{\left(1-\cos \theta_{i j}\right)\left(1-\cos \theta_{j k}\right)}+\frac{1}{1-\cos \theta_{i j}}-\frac{1}{1-\cos \theta_{j k}}\right)=\frac{1}{2\left(1-\cos \theta_{i j}\right)}\left(1+\frac{\cos \theta_{i j}-\cos \theta_{i k}}{\left|\cos \theta_{i j}-\cos \theta_{i k}\right|}\right)
$$

Take the ij piece and integrate over azimuthal angle $\mathrm{d} \Phi_{\mathrm{i}}$ (using explicit momentum representations)
\Rightarrow Soft radiation

$$
\rightarrow \frac{1}{1-\cos \theta_{i j}}
$$

if $\theta_{\mathrm{ij}}<\theta_{\mathrm{ik}} ;$ otherwise 0 kill radiation outside ik opening angle
Note: Dipole \& antenna showers include this effect point by point in ϕ (without averaging)

Coherence at Work in OCD

Example: quark-quark scattering in hadron collisions

Consider, for instance, scattering at 45*

2 possible colour flows :

Figure 4: Angular distribution of the first gluon emission in $q q \rightarrow q q$ scattering at 45°, for the two different color flows. The light (red) histogram shows the emission density for the forward flow, and the dark (blue) histogram shows the emission density for the backward flow.

Another nice physics example is the SM contribution to the Tevatron top-quark forward-backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

From $\overline{\mathrm{MS}}$ to MC

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes

$$
P\left(\alpha_{s}, z\right)=\frac{\alpha_{s}}{2 \pi} \stackrel{A}{ل}_{F}^{(1)} \frac{1+z^{2}}{1-z}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \frac{A^{(2)}}{1-z}
$$

Eg Analytic resummation (in Mellin space): General Structure

$$
\left.\begin{array}{rl}
\propto \exp \left[\int_{0}^{1} d z \frac{z^{N-1}-1}{1-z}\left[\int \frac{d p_{\perp}^{2}}{p_{\perp}^{2}}\left(A\left(\alpha_{s}\right)+B\left(\alpha_{s}\right)\right)\right]\right. \\
A\left(\alpha_{s}\right) & =A^{(1)} \frac{\alpha_{s}}{\pi}+A^{(2)}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+\ldots \\
A^{(1)}=-3 C_{F} / 2
\end{array}\right] \frac{1}{2} C_{F}\left(C_{A}\left(\frac{67}{18}-\frac{1}{6} \pi^{2}\right)-\frac{5}{9} N_{F}\right)=\frac{1}{2} C_{F} K_{\mathrm{CMW}} \quad .
$$

Replace (for $z \rightarrow 1$: soft gluon limit):

$$
P_{i}\left(\alpha_{s}, z\right)=\frac{C_{i} \frac{\alpha_{s}}{\pi}\left(1+K_{\mathrm{CMW}} \frac{\alpha_{s}}{2 \pi}\right)}{1-z}
$$

From $\overline{\mathrm{MS}}$ to MC

$$
P\left(\alpha_{s}, z\right)=\frac{\alpha_{s}}{2 \pi} \stackrel{A}{ل}_{F}^{(1)} \frac{1+z^{2}}{1-z}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \frac{A^{(2)}}{1-z}
$$

Replace
(for $z \rightarrow 1$: soft gluon limit):

$$
P_{i}\left(\alpha_{s}, z\right)=\frac{C_{i} \frac{\alpha_{s}}{\pi}\left(1+K_{\mathrm{CMW}} \frac{\alpha_{s}}{2 \pi}\right)}{1-z}
$$

$$
\begin{array}{cc}
\alpha_{s}^{(\mathrm{MC})}=\alpha_{s}^{(\overline{\mathrm{MS}})}\left(1+K_{\mathrm{CMW}} \frac{\alpha_{s}^{(\overline{\mathrm{MS}})}}{2 \pi}\right) & \text { Main Point: } \\
\text { Doing an } \\
\Lambda_{\mathrm{MC}}=\Lambda_{\overline{\mathrm{MS}}} \exp \left(\frac{K_{\mathrm{CMW}}}{4 \pi \beta_{0}}\right) \sim 1.57 \Lambda_{\overline{\mathrm{MS}}} & \text { uncompensated } \\
\text { scale variation } \\
\text { (for } \mathrm{nF}=5) & \text { actually ruins this } \\
\text { Note also: used } \mathrm{mu}^{2}=\mathrm{pT}^{2}=(1-\mathrm{z}) \mathrm{Q}^{2} \\
\text { Amati, Bassetto, Ciafaloni, Marchesini, Veneziano, } 1980 & \text { result }
\end{array}
$$

The Shower Operator

$$
\text { Born }\left.\quad \frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\text {Born }}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right) \quad \mathrm{H}=\text { Hard proc }
$$

But instead of evaluating O directly on the Born final state, first insert a showering operator

$$
\begin{gathered}
\quad \begin{array}{l}
\text { Born } \\
+ \text { shower }
\end{array} \\
\left.\frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\mathcal{S}}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right) \quad \text { s: sh\} : partons } \\
\hline
\end{gathered}
$$

Unitarity: to first order, S does nothing

$$
\mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right)=\delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right)+\mathcal{O}\left(\alpha_{s}\right)
$$

The Shower Operator

To ALL Orders

$$
\begin{aligned}
& S\left(\{p\}_{X}, \mathcal{O}\right)= \underset{\text { "Nothing Happens" } \rightarrow \text { "Evaluate Observable" }}{\Delta\left(t_{\text {start }}, t_{\text {had }}\right) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{X}\right)\right)} \\
&-\int_{t_{\text {start }}}^{t_{\text {had }}} \mathrm{d} t \frac{\mathrm{~d} \Delta\left(t_{\text {start }}, t\right)}{\mathrm{d} t} S\left(\{p\}_{X+1}, \mathcal{O}\right) \\
& \text { "Something Happens" } \rightarrow \text { "Continue Shower" }
\end{aligned}
$$

All-orders Probability that nothing happens

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} \mathrm{~d} t \frac{\mathrm{~d} \mathcal{P}}{\mathrm{~d} t}\right)
$$

(Multi-Leg Merging at NLO)

Currently, much activity on how to combine several NLO matrix elements for the same process: NLO for $\mathrm{X}, \mathrm{X}+1, \mathrm{X}+2, \ldots$
Unitarity is a common main ingredient for all of them
Most also employ slicing (separating phase space into regions defined by one particular underlying process)

Methods
UNLOPS, generalising CKKW-L/UMEPS: Lonnblad, Prestel, arXiv: 121 I. 7278
MiNLO, based on POWHEG: Hamilton, Nason, Zanderighi (+more) arXiv:I206.3572, arXiv:15I2.02663
FxFx, based on MC@NLO: Frederix \& Frixione, arXiv: 1209.6215
(VINCIA, based on NLO MECs): Hartgring, Laenen, Skands, arXiv:1303.4974
Most (all?) of these also allow NNLO on total inclusive cross section
Will soon define the state-of-the-art for SM processes
For BSM, the state-of-the-art is generally one order less than SM

