## QCD and Event Generators

Lecture 1 of 3

Peter Skands
Monash University
(Melbourne, Australia)


## Disclaimer

## This course covers:

## Lecture 1: QCD at Fixed Order

Lecture 2: Beyond Fixed Order - Showers and Merging
Lecture 3: Beyond Perturbations - Hadronization and Underlying Event

Supporting Lecture Notes ( $\sim 80$ pages): "Introduction to QCD", arXiv:1207.2389

+ MCnet Review: "General-Purpose Event Generators", Phys.Rept.504(2011)145
It does not cover:
Jet Physics $\rightarrow$ Lectures by A. Larkoski
Resummation techniques other than showers
Simulation of BSM physics
Event Generator Tuning
Monte Carlo (sampling) techniques
Heavy lons and Cosmic Rays
+ many other (more specialised) topics such as: heavy quarks, hadron and $\tau$ decays, exotic hadrons, lattice
QCD, loop amplitude calculations, spin/polarisation, non-global logs, subleading colour, factorisation caveats, PDF uncertainties, DIS, low-x, low-energy, higher twist, pomerons, rescattering, coalescence, neutrino beams, ...

$$
\mathscr{L}=\bar{q}_{\alpha}^{i}\left(i \gamma^{\mu}\right)_{\alpha \beta}\left(D_{\mu}\right)_{\beta \delta}^{i j} q_{\delta}^{j}-m_{q} \bar{q}_{\alpha}^{i} q_{\alpha}^{i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Quark fields
with the Gell-Mann Matrices $\left(t^{a}=1 / 2 \lambda a\right)$

$$
\begin{aligned}
& \lambda^{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \lambda^{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \lambda^{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \lambda^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda^{8}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & 0 \\
0 & 0 & \frac{-2}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

## Interactions in Colour Space

## A quark-gluon interaction

(= one term in sum over colours)

$$
\mathscr{C}^{\bullet} \quad \bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}
$$

$$
\propto-\frac{i}{2} g_{s} \quad \bar{\psi}_{q R} \quad \lambda^{1} \quad \psi_{q G}
$$

$$
=-\frac{i}{2} g_{s} \quad\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Gluon (adjoint) colour index $\in[1,8]$ Gluon Lorentz-vector index $\in[0,3]$

$$
-i g_{s} t_{i j}^{1} \gamma_{\alpha \beta}^{\mu} A_{\mu}^{1} \quad-i g_{s} t_{i j}^{2} \gamma_{\alpha \beta}^{\mu} A_{\mu}^{2}-\ldots
$$

Quark colour indices $\in[1,3]$

Amplitudes Squared summed over colours $\rightarrow$ traces over products of $t$ matrices $\rightarrow$ Colour Factors (see e.g. lecture notes \& backup slides)

## The colour of gluons

## Gluons are (colour) charged

This is a signature of any non-Abelian gauge theory
Non-commuting generators; matrix-valued vertices
Gluons represent (matrix) transformations in colour space, which "repaint" quarks
One way of representing the octet is via $\mathbf{3} \otimes \overline{\mathbf{3}}=\mathbf{8} \oplus \mathbf{1}$.
Under SU(3) transformations, these states transform into each other, but never go "outside" the multiplet.
(Like the $S_{z}$ value of a particle with a certain spin changes under rotations, but its total spin does not.)
Note in the standard rep, the GM matrices are cast as linear combinations of these e.g. $\lambda^{1}=(R \bar{G}+G \bar{R})$
(The two states in the middle correspond to " $\mathrm{m}=0$ " components) (We say they generate the $\mathrm{U}(1)^{2}$ "Cartan subalgebra" of $\mathrm{SU}(3)$ )

$$
\begin{gathered}
g_{7}=\frac{1}{\sqrt{2}}(R \bar{R}-G \bar{G}) \\
g_{8}=\frac{1}{\sqrt{6}}(R \bar{R}+G \bar{G}-2 B \bar{B}) .
\end{gathered}
$$



## Interactions in Colour Space: Gluon Self-Interactions

A gluon-gluon interaction (no equivalent in QED)

(Note there is also a 4-gluon vertex $\propto g_{s}^{2}$ with more complicated vertex factor

$$
\begin{gathered}
-i g_{s}^{2} f^{X A C}{ }_{f} X B D\left[g^{\mu \nu} g^{\rho \sigma}-\right. \\
\left.g^{\mu \sigma} g^{\nu \gamma}\right]+(C, \gamma \leftrightarrow \\
(D, \rho)+(B, \nu) \leftrightarrow(C, \gamma)
\end{gathered}
$$



$$
i f^{a b c}=2 \operatorname{Tr}\left\{t^{c}\left[t^{a}, t^{b}\right]\right\}
$$

$$
\begin{aligned}
\propto-g_{s} f^{246} & {\left[\left(k_{3}-k_{2}\right)^{\rho} g^{\mu \nu}\right.} \\
& +\left(k_{2}-k_{1}\right)^{\mu} g^{\nu \rho} \\
& \left.+\left(k_{1}-k_{3}\right)^{\nu} g^{\rho \mu}\right]
\end{aligned}
$$

## Structure Constants of SU(3)

$$
\begin{gathered}
f_{123}=1 \\
f_{147}=f_{246}=f_{257}=f_{345}=\frac{1}{2} \\
f_{156}=f_{367}=-\frac{1}{2} \\
f_{458}=f_{678}=\frac{\sqrt{3}}{2}
\end{gathered}
$$

Antisymmetric in all indices
All other $f_{a b c}=0$

## Note on Colour Vertices in Event Generators

MC generators use a simple set of rules for "colour flow"

## Based on "Leading Colour" (LC)



LC: gluons = outer products of colour and anticolour.
$\Rightarrow$ valid to $\sim 1 / N_{C}^{2} \sim 10 \%$ (exact in limit $N_{C} \rightarrow \infty$ ).

$$
\xrightarrow[\rightarrow]{q \rightarrow q g} \text { Eec } \rightarrow \gg
$$

Illustrations from PDG Review on MC Event Generators

$$
\begin{aligned}
g \rightarrow & g g \\
& \text { enC } \rightarrow \longrightarrow \rightarrow
\end{aligned}
$$

$\mathrm{MCs}: N_{C} \rightarrow \infty$ limit formalised by letting each
"colour line" be represented by a unique Les
Houches colour tag ${ }^{\dagger}$ (no interference
between different colour lines in this limit)
LC also used to assign Les Houches colour flows ${ }^{\dagger}$ in hard processes: $P_{i}=\frac{\left|M_{i}\right|^{2}}{\sum_{j \in L C}\left|M_{j}\right|^{2}}$

## Can we calculate LHC processes now?

## What are we really colliding?

Take a look at the quantum level


Describe this mess statistically $\rightarrow$ parton distribution functions (PDFs)
PDFs: $\boldsymbol{f}_{\boldsymbol{i}}\left(x, \mathrm{QF}^{2}\right) \quad i \in[g, u, d, s, c,(b),(t),(y)]$
Probability to find parton of flavour $i$ with momentum fraction $x$, as function of "resolution scale" $Q_{F} \sim$ virtuality / inverse lifetime of fluctuation

## Why PDFs work 1: heuristic explanation

Lifetime of typical fluctuation $\sim r_{p} / C$ (=time it takes light to cross a proton)
$\sim 10^{-23}$; Corresponds to a frequency of $\sim 500$ billion THz
To the LHC, that's slow! (reaches "shutter speeds" thousands of times faster)
Planck-Einstein: $\mathrm{E}=h \mathrm{v} \boldsymbol{\rightarrow} \mathrm{v}_{\mathrm{LH}}=13 \mathrm{TeV} / \mathrm{h}=3.14$ million billion THz
$\rightarrow$ Protons look "frozen" at moment of collision
But they have a lot more than just two " $u$ " quarks and a " $d$ " inside
Difficult/impossible to calculate, so use statistics to parametrise the structure: parton distribution functions (PDFs)
Every so often I will pick a gluon, every so often a quark (antiquark)
Measured at previous colliders (+ increasingly also at LHC)
Expressed as functions of energy fractions, $x$, and resolution scale, $\mathrm{Q}^{2}$

+ obey known scaling laws df/ dQ2: "DGLAP equations".


## Why PDFs work 2: Deep Inelastic Scattering

"Inelastic" = proton breaks up

## Scattered electron

"Deep" = invariant mass of final hadronic system > M proton

> Hard (i.e. high-energy) photon

## ueəp ~ ~ed э!uołdə7

Incoming relativistic electron (or positron)

$$
2 \begin{aligned}
& q \\
& \Longrightarrow \text { often use } Q^{2} \equiv-q^{2}>0 \text { instead }
\end{aligned}
$$



## Why PDFs work 2: factorisation in DIS

## Collins, Soper (1987): Factorisation in Deep Inelastic Scattering



```
We assume \({ }^{\star}\) that
an analogous
factorisation works
for pp
*caveats are beyond the
scope of this course
```

$\rightarrow$ The cross section can be written in factorised form :

$$
\begin{aligned}
& \sigma^{\ell h}=\sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}} \\
& \text { Sum over } \\
& \text { Initial (i) } \\
& \text { and final (f) } \\
& \text { parton flavors } \\
& \text { Differential partonic } \\
& \text { Hard-scattering } \\
& \text { Matrix Element(s) } \\
& \text { "hard" scale ~ Q2 }
\end{aligned}
$$

## Factorisation $\Longrightarrow$ we can still calculate!

## We're colliding, and observing, hadrons, but can still do pOCD

$\mathrm{pQCD}=$ perturbative QCD
PDFs: connect incoming hadrons with the high-scale process
Fragmentation Functions: connect high-scale process with final-state hadrons
Both combine non-perturbative input + all-orders (perturbative) bremsstrahlung resummations

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

| PDFs: needed to compute | Hard Process | FFs: needed to compute |
| :---: | :---: | :---: |
| inclusive cross sections | Fixed-Order QFT | (semi-)exclusive cross sections |

```
In MCs }->\mathrm{ initial-state radiation
    + non-perturbative hadron
    (beam-remnant) structure
    + multi-parton interactions
```

In MCs: resonance decays + final-state radiation + hadronisation + hadron decays (+ final-state interactions?)

## The Strong Coupling

## Bjorken scaling:



If the strong coupling did not "run", QCD would be SCALE INVARIANT (a.k.a. conformal, e.g., $\mathrm{N}=4$ Supersymmetric QCD)

Jets inside jets inside jets
Loops inside loops inside loops ...

Since $a_{s}$ only runs slowly (logarithmically) $\Longrightarrow$ can still gain allorders insight from scale-invariant properties $\rightarrow$ fractal analogy for $Q \gg 1 \mathrm{GeV}(\rightarrow$ lecture 2 on showers)

$$
\begin{aligned}
Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}} & =\beta\left(\alpha_{s}\right) \quad \text { Asympotoic Freedom } \\
& =-\alpha_{s}^{2}\left(b_{0}+b_{1} \alpha_{s}+b_{2} \alpha_{s}^{2}+\ldots\right)
\end{aligned}
$$



Note: I use the terms "conformal" and "scale invariant" interchangeably
Strictly speaking, conformal (angle-preserving) symmetry is more restrictive than just scale invariance

## The Strong Coupling

$$
\Longrightarrow \alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)} \quad b_{0}=\frac{11 N_{C}-2 n_{f}}{12 \pi}
$$

The strong coupling is the main parameter of perturbative OCD calculations. It controls:

- The size of OCD cross sections (\& QCD partial widths for decays).
- The overall amount of QCD radiation (extra jets + recoil effects + jet substructure).
- Sizeable OCD "K Factors" to essentially all processes at LHC, and ditto uncertainties.

Would like to have reliable (i.e., foolproof \& exhaustive) way to estimate OCD uncertainties
In the absence of such a method, variations of the renormalisation-scale argument in $\alpha_{s}$ are widely used to estimate perturbative uncertainties; why?

$$
\alpha_{s}\left(Q_{1}^{2}\right)-\alpha_{s}\left(Q_{2}^{2}\right)=\alpha_{s}^{2} b_{0} \ln \left(Q_{2}^{2} / Q_{1}^{2}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)
$$

$\rightarrow$ Generates terms one order higher, proportional to what you already have ( $\mathrm{IM}^{2}$ )
The (would-be) all-orders answer must be independent of our choice $\Longrightarrow$ uncalculated terms must at least contain same terms with opposite signs, to compensate
$\Longrightarrow$ a first naive way to estimate (lower bound on) uncertainty (more than beta function in rest of series).

## Warning: Multi-Scale Problems

## Example: pp $\rightarrow \mathrm{W}+3$ jets

|  |
| :---: |

1: $m_{W}$
2: $m_{W}+\sum\left|p_{\perp}\right|$
3: as for $\mathbf{2}$ but summed quadratically
4: Geometric mean $p_{\perp}$ (~shower)
5: Arithmetic mean $p_{\perp}$




Also consider functional dependence on each scale in the problem (+N(n)LO $\rightarrow$ some compensation)

## Cross Sections at Fixed Order in $\alpha_{s}$

Now want to compute the distribution of some observable: 0
In "inclusive X production" (suppressing PDF factors)


Fixed Order (All Orders)


> Truncate at $k=0, \ell=0$,
> $\rightarrow$ Born Level $=$ First Term
> Lowest order at which X happens

## Loops and Legs

## Another representation



## Loops and Legs

## Another representation



Note: (X+1)-jet observables will of course only be correct to LO

## Cross sections at NLO: a closer look

NLO:
(note: not the 1-loop diagram squared)

(from poles of propagators going on shell)
In IR limits, the $X+1$ final state is indistinguishable from the $X+0$ one*
Sum over 'degenerate quantum states' (KLN Theorem) $\rightarrow$ Singularities cancel when we include both (complete order):

$$
=\sigma_{\text {Born }}+\text { Finite }\left\{\int\left|M_{X+1}^{(0)}\right|^{2}\right\}+\text { Finite }\left\{\int 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0) *}\right]\right\}
$$

$$
\left.\sigma_{\mathrm{NLO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=\sigma_{\mathrm{LO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\frac{\alpha_{s}\left(E_{\mathrm{CM}}\right)}{\pi}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

## The Subtraction Idea

## How do I get finite\{Real\} and finite\{Virtual\} ?

First step: classify IR singularities using universal functions
EXAMPLE: factorization of amplitudes in the soft limit

Soft Limit $\left(E_{j} \rightarrow 0\right)$ :


$$
\left|\mathcal{M}_{n+1}(1, \cdots, i, j, k, \cdots, n+1)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C}_{i j k} S_{i j k}\left|\mathcal{M}_{n}(1, \cdots, i, k, \cdots, n+1)\right|^{2}
$$

Universal "Soft Eikonal"

$$
S_{i j k}\left(m_{I}, m_{K}\right)=\frac{2 s_{i k}}{s_{i j} s_{j k}}-\frac{2 m_{I}^{2}}{s_{i j}^{2}}-\frac{2 m_{K}^{2}}{s_{j k}^{2}}
$$

$$
s_{i j} \equiv 2 p_{i} \cdot p_{j}
$$

More about this function on next slide \& in the next lecture

## The Subtraction Idea

## Add and subtract IR limits (SOFT and COLLINEAR)

$$
\mathrm{d} \sigma_{N L O}=\int_{\mathrm{d} \Phi_{m+1}} \underbrace{\left(\mathrm{~d} \sigma_{N L O}^{R}-\mathrm{d} \sigma_{N L O}^{S}\right)}_{\text {Finite by Universality }}+\underbrace{\int_{\mathrm{d} \Phi_{m+1}} \mathrm{~d} \sigma_{N L O}^{S}+\int_{\mathrm{d} \Phi_{m}} \mathrm{~d} \sigma_{N L O}^{V}}_{\text {Finite by KLN }}
$$

Choice of subtraction terms:
Singularities mandated by gauge theory
Non-singular terms: up to you (added and subtracted, so vanish)

$$
\begin{array}{cc}
\frac{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right] \\
\frac{\left|\mathcal{M}\left(H^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(H^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\begin{array}{c}
\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\begin{array}{c}
s_{i j} \\
s_{j k}
\end{array}+\frac{s_{j k}}{s_{i j}}+2\right) \\
\text { COLINEAR +F }
\end{array}\right]
\end{array}
$$

## Not all observables can be computed perturbatively:

## Collinear Safe

Virtual and Real go into same bins!

$\alpha_{s}^{n} \times(-\infty)$

$\alpha_{s}^{n} \times(+\infty)$
Infinities cancel
(KLN: 'degenerate states')

## Collinear Unsafe

Virtual and Real go into different bins!

$\alpha_{s}^{n} \times(-\infty)$


Infinities do not cancel
Invalidates perturbation theory

## Definition: an observable is infrared and collinear safe if it is insensitive to

## SOFT radiation:

Adding any number of infinitely soft particles (zero-energy) should not change the value of the observable

## COLLINEAR radiation:

Splitting an existing particle up into two comoving ones (conserving the total momentum and energy) should not change the value of the observable

More on this in Lecture 2

## Structure of an NNLO calculation

## At Next-to-Next-to-Leading Order (NNLO):



## Outlook: do/d $\Omega$; how hard can it be?

Approximate all contributing amplitudes for this ...
To all orders... then square including interference effects, ...

+ non-perturbative effects

... integrate it over a ~300dimensional phase space
(+ match or exceed statistics of collider that delivers 40 million collisions per second)

Too much for us (today).

## Extra Slides

## Gell-Mann Matrices

The generators of SU(3) are the "Gell-Mann matrices:"
= the analogs of the $\operatorname{SU}(2)$ Pauli matrices

$$
\begin{aligned}
& \lambda^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \bigcirc \lambda^{2}=\left(\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \bigcirc \lambda^{3}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \lambda^{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \lambda^{5}=\left(\begin{array}{rrr}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad \lambda^{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \lambda^{7}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \lambda^{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

(using a pretty "standard" basis choice)

These are (a representation of) the generators of the Non-Abelian group SU(3).
$\rightarrow$ Feynman rules have a Gell-Mann matrix in each quark-gluon vertex. (Normally sum over all.) There are also ggg and gggg self-interaction vertices. (Absent in OED; no photon self-int.)

## Combinations of Colour States

The rules of $\operatorname{SU}(3)$ group theory tells us how to combine colour charges
Quark + Antiquark :

$$
\mathbf{3} \otimes \overline{\mathbf{3}}=\mathbf{8} \oplus \mathbf{1}
$$

## Already discussed the octet

$$
\text { The singlet is } \frac{1}{\sqrt{3}}|R \bar{R}+G \bar{G}+B \bar{B}\rangle \quad \text { What does it mean that it is a singlet? }
$$

Quark + Quark :

$$
\mathbf{3} \otimes \mathbf{3}=\mathbf{6} \oplus \overline{\mathbf{3}}
$$

## The "sextet" includes all the symmetric combinations

$|R R\rangle,|G G\rangle,|B B\rangle,|R G+G R\rangle,|G B+B G\rangle,|B R+R B\rangle$

The antitriplet includes the antisymmetric combinations

$$
|R G-G R\rangle,|G B-\underbrace{B G\rangle},| B R-R B\rangle
$$

[^0]
## Interactions in Colour Space

## Colour Factors

Processes involving coloured particles have a "colour factor".
It counts the enhancement from the sum over colours.
(average over incoming colours $\rightarrow$ can also give suppression)


## Interactions in Colour Space

## Colour Factors

Processes involving coloured particles have a "colour factor".
It counts the enhancement from the sum over colours.
(average over incoming colours $\rightarrow$ can also give suppression)


## Interactions in Colour Space

## Colour Factors

Processes involving coloured particles have a "colour factor".
It counts the enhancement from the sum over colours.
(average over incoming colours $\rightarrow$ can also give suppression)


## "Hard" and "Soft"

## 1) In absolute terms

"Hard" ~"perturbative"
Characteristic scale $\gg 1 \mathrm{GeV} \Longrightarrow \alpha_{s}(Q) \ll 1$
"Soft" ~ "non-perturbative"
Characteristic scale $\lesssim 1 \mathrm{GeV}$

2) In relative terms (more about this tomorrow)
E.g., "the hard subprocess" = "the hardest subprocess"

A jet with $\mathrm{p}_{\mathrm{T}}=30 \mathrm{GeV}$ is hard in absolute terms (perturbative) but also soft relative to processes at higher scales (say, t̄ production)

## Many ways to skin a cat

MCs: get value from: PDG? PDFs? Fits to data (tuning)?

## Example (for Final-State Radiation):

## SHERPA:

Uses PDF or PDG value, with "CMW" translation $\alpha_{s}\left(m_{Z}\right)$ default $=0.118(\mathrm{pp})$ or 0.1188 (LEP) running order: default = 3-loop (pp) or 2-loop (LEP) CMW scheme translation: default use $\sim \alpha_{s}\left(p_{\perp} / 1.6\right)$ $\rightarrow$ roughly $10 \%$ increase in effective value of $a_{s}\left(m_{z}\right)$

Will undershoot LEP 3-jet rate by $\sim 10 \%$ (unless combined with NLO 3-jet ME)

## PYTHIA

Tuning to LEP 3-jet rate; requires ~ 20\% increase
TimeShower:alphaSvalue default $=\mathbf{0 . 1 3 6 5}$
TimeShower:alphaSorder default = 1
TimeShower:alphaSuseCMW default = off

[^1][^2]
## Crossings



Color Factor:
$\operatorname{Tr}\left[\delta_{i j}\right]=N_{C}$
$q \bar{q} \rightarrow \gamma^{*} / Z \rightarrow \ell^{+} \ell^{-}$
(Drell \& Yan, 1970)


Color Factor:
$\frac{1}{N_{C}^{2}} \operatorname{Tr}\left[\delta_{i j}\right]=\frac{1}{N_{C}}$


Color Factor:
$\frac{1}{N_{C}} \operatorname{Tr}\left[\delta_{i j}\right]=1$

## Interactions in Colour Space

## Colour Factors

Processes involving coloured particles have a "colour factor".
It counts the enhancement from the sum over colours.
(average over incoming colours $\rightarrow$ can also give suppression)

## Quick Guide to Colour Algebra

Colour factors squared produce traces

Trace
Relation

## Example Diagram

## $\leftrightarrow$

$$
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}
$$

$$
\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{T_{R}\left(N_{c}^{2}-1\right) / N_{C}}{3} \xrightarrow{a}
$$

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d} \text { (Fierz) }
$$



## Scaling Violation

## Real OCD isn't conformal

The coupling runs logarithmically with the energy scale

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{s}\right) \quad \beta\left(\alpha_{s}\right)=-\alpha_{s}^{2}\left(b_{0}+b_{1} \alpha_{s}+b_{2} \alpha_{s}^{2}+\ldots\right), \\
& b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi} \quad b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}}
\end{aligned}
$$

## Asymptotic freedom

in the ultraviolet
Confinement (IR slavery?) in the infrared

## Multi-Scale Exercise

If needed, can convert from multi-scale to single-scale

$$
\begin{aligned}
\alpha_{s}\left(\mu_{1}\right) \alpha_{s}\left(\mu_{2}\right) \cdots \alpha_{s}\left(\mu_{n}\right) & =\prod_{i=1}^{n} \alpha_{s}(\mu)\left(1+b_{0} \alpha_{s} \ln \left(\frac{\mu^{2}}{\mu_{i}^{2}}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right) \\
& =\alpha_{s}^{n}(\mu)\left(1+b_{0} \alpha_{s} \ln \left(\frac{\mu^{2 n}}{\mu_{1}^{2} \mu_{2}^{2} \cdots \mu_{n}^{2}}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
\end{aligned}
$$

by taking geometric mean of scales


[^0]:    E.g., Green+Blue ~ Cyan = antiRed

[^1]:    Agrees with LEP 3-jet rate "out of the box"; but no guarantee tuning is universal.

[^2]:    (also note: MC definitions of $\mathrm{Q}=\mathrm{p}_{\text {т }}$ not identical)

