Antenna Showers with 2nd-Order Kernels

Peter Skands (Monash University)

- 1. Global Showers with NLO MECs
 - Hartgring, Laenen, PS, arXiv:1303.4974
- 2. Global Showers with NLO Kernels
 - Li, PS, arXiv:1611.00013
 - Iterated $2 \rightarrow 3 + \text{direct } 2 \rightarrow 4 \text{ branchings}$
 - Second-order corrections to the $2 \rightarrow 3$ kernels
- 3. New Developments: Sector Showers
 - ee: Lopez-Villarejo, PS, arXiv:1109.3608
 - pp: Brooks, Preuss, PS, arXiv:2003.00702
 - Sector-Based Merging: From Factorial
 Constant Time (in preparation)
 - Outlook towards 2nd-order sector showers (ongoing work)

Pythia 8.304

(Introduction): DGLAP, Antennae, and Dipoles

Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon parents, initial-state partons, and mass terms) not shown.

Why Antenna Showers?

Note: originally called "dipole showers" [Gustafson & Pettersson, 1988]; now confusing due to advent of new generation of (partitioned) dipole showers.

No need to partition the eikonal

→ easier to ensure **positive definite kernels**.

In dipole showers, two separate terms must be > 0, while in antenna showers only the equivalent of their sum needs to be > 0.

+ **Antenna-style recoils**: both parents absorb transverse recoil, rather than just one (though still not as general as PanGlobal)

Intrinsically coherent

Incorporates the fully differential eikonal (at Leading Colour)

Coherent for any (sensible) choice of evolution variable

DGLAP + angular ordering only reproduces the eikonal in an integrated sense (averaged over azimuth).

Fewer terms:

	$\mid n=1$	n = 2	n = 3	n = 4	n = 5	n = 6	n = 7
CS Dipole	2	8	48	384	3840	46080	645120
Global Antenna	1	2	6	24	120	720	5040

Number of Histories for n Branchings

(starting from a single colour-anticolour pair)

1. Early Proof of Concept

Hartgring, Laenen, PS, JHEP 10 (2013) 127 (arXiv:1303.4974) INVINCIA 1.1 (Apr 2013)

Shower for $Z \rightarrow$ hadrons corrected through $\mathcal{O}(\alpha_s^2)$

- Double-real $(Z \rightarrow q\bar{q}gg \& Z \rightarrow q\bar{q}q'\bar{q}')$ based on iterated tree-level ME corrections [Giele, Kosower, Skands, 2011] through $Z \rightarrow 6$ from MG4, with "smooth ordering" (now abandoned)
- Hardcoded one-loop corrections to $Z \rightarrow q\bar{q}$ and $Z \rightarrow q\bar{q}g$ (massless quarks; LC)
- Double-virtual $Z \rightarrow q\bar{q}$ via unitarity (here just normalised total rate to unity).

Starting from $Z \rightarrow q\bar{q}$:

probability via Unitarity at

Compute NLO exclusive 3-jet cross section (with veto scale Q_4) at **fixed order** and in **shower**; define matching condition in limit $Q_4 \rightarrow 0$ (in dim.reg.)

(Could stop at hadronisation scale \rightarrow power corrections in Q_{had})

term, to be solved for

One

(tree-level with MEC)

With as evaluated at Hps

$$\searrow \left| M_{Z \to q\bar{q}} \right|^2 A_3^0(Q^2) \left(1 + V_3^{q\bar{q}} \right) \Delta_{2 \to 3}(Q_0^2, Q^2) \Delta_{3 \to 4}(Q^2, 0) \xrightarrow{\mathcal{O}(\alpha_s^2)} |M_3^0|^2 \left(1 + \frac{2\text{Re}\left[M_3^0 M_3^{1*}\right]}{|M_3^0|^2} \right) \xrightarrow{\mathcal{O}(\alpha_s^2)} |M_3^0|$$

From starting scale Ooto tesolution

m scale of 3 parton configuration,

Trom Starting Starting Starton Configuration Q

A Sudakov factor no branchings Fixed-Order O(α_s^2) (in dim. reg.) (renormalised at $\mu = \mu_{MF}$)

How it works

→ Differential "K-factor" for 2→3 branchings

2. From MECs → Shower kernels?

Li & PS, PLB 771 (2017) 59 (arXiv:1611.00013)

Possible to base a shower framework on similarly derived "differential K-factors" for all antenna functions?

Elements

Iterated $2 \rightarrow 3$ and new "direct $2 \rightarrow 4$ " branchings (in lieu of "smooth ordering") populate complementary phase-space regions.

Ordered clusterings \Rightarrow iterated $2 \rightarrow 3$

Unordered clusterings \Rightarrow direct $2 \rightarrow 4$ (+ higher, for sequential unordered steps)

Need appropriate scale definitions, $2 \rightarrow 4$ kernels, kinematics maps, and a $2 \rightarrow 4$ Sudakov sampler (with good efficiency in the relevant phase-space regions).

+ Virtual corrections to $2 \rightarrow 3$ kernels

Considerations of Shower Type: Global vs Sector Antennae

Conventional ("Global") antenna functions can be integrated over all of their phase spaces \implies simple one-loop integrals. (But scale definitions are tricky; see later.)

The $2 \rightarrow 4$ Branching Phase Space

Nesting of $2 \rightarrow 3$ Phase Spaces

For a given clustering: $\mathrm{d}\Phi_{n+1} = \mathrm{d}\Phi_n \times \mathrm{d}\Phi_{\mathrm{ant}}$

Generalisation to many possible clusterings: $d\Phi_{n+1} =$

Global showers: $f_i = 1$ multiple cov

~ conventional showers; antenna functions sum to total singularities

Sector showers: f_i = partition of unity (\otimes strong ordering)

~ deterministic jet algorithms (e.g., Lopez-Villarejo & PS: JHEP 1111 (2011) 150)

Either can technically cover all of the multiple-emission PS; but \otimes strong ordering \implies regions with all $f_i = 0$ (no ordered paths) inaccessible to ordered shower based on iteration of n \rightarrow n+1

 $n_{\rm ant}$

Ordering/partitioning function

(global or sector)

 $f_i d \Phi_{ant} : d \Phi^i$

How big are these regions? And what logs live there?

Giele, Kosower, PS: PRD84 (2011) 054003

Flat scans of N-parton phase space (RAMBO)

Peter Skands

9

Getting There: Direct 2→4 Branchings

Li & PS: PLB771 (2017) 59

Redefine the shower resolution scale

For **unordered** $2 \rightarrow 4$ paths: scale of 2^{nd} branching defines resolution

The intermediate on-shell 3-parton state is merely a convenient stepping stone in phase space ⇒ integrate out

Our approach: continue to exploit iterated on-shell $2 \rightarrow 3$ factorisations; but in unordered region let Q_B define evolution scale (integrate over Q_C)

Getting There: Direct 2→4 Branchings

Li & PS: PLB771 (2017) 59

Redefine the shower resolution scale

For **unordered** $2 \rightarrow 4$ paths: scale of 2^{nd} branching defines resolution

The intermediate on-shell 3-parton state is merely a convenient stepping stone in phase space ⇒ integrate out –

4 (AB) branching processes, as a function of the number of emitted partons, n.

Note: this is not a very pedagogical exposition; will try to come up with a better one

Jacobian for dLIPS \rightarrow dQ₃dQ₄d ζ_3 d ζ_3 d ζ_4

Combining $2 \rightarrow 4$ with Iterated $2 \rightarrow 3$

Split the $2 \rightarrow 4$ phase space into non-overlapping sectors

- Pure $2 \rightarrow 4$ sector: inaccessible to iterated $2 \rightarrow 3$ (no ordered paths)
 - ⇒ add new "direct" 2→4 branchings without risk of double-counting

Rest of phase space (accessible to at least one ordered 2→3 path)

- Unitarity (Sudakov exponentials and virtual corrections): want to sum inclusively over the "least resolved" degree of freedom
- Classify according to what a jet algorithm (with shower evolution parameter as clustering measure) would do. E.g., for a (colour-connected) double-emission:

A jet clustering algorithm (ARCLUS) would grab the smallest of these p_T values, and cluster

If the resulting path is **ordered**: populate by iterated 2→3 (with 2→4 MEC factors) If **unordered**, keep clustering; direct 2→n

Clustering terminates when we reach a $Q_n > min(p_{T2}, p_{T3,...})$ \Rightarrow defines point as $2 \rightarrow 2+m$ (so far we only do $2 \rightarrow 3$ and $2 \rightarrow 4!$)

Phase-Space Distributions

Li & PS: PLB771 (2017) 59

Actual shower runs:

Figure 3: Top left: the ratio of sequential clustering scales Q_4/Q_3 for a strongly ordered $2 \rightarrow 3$ shower, for $Z \rightarrow qgg\bar{q}$ (on log-log axes). Top right: closeup of the region around $Q_4/Q_3 \sim 1$, with $2\rightarrow 4$ branchings included. Bottom row: the same for $H \rightarrow gggg$. . Details of trial functions etc, see Li & PZS: PLB771 (2017) 59

Second-Order Evolution Equation (Global Shower)

Li & PS: PLB771 (2017) 59

Putting 2→3 and 2→4 together \Rightarrow evolution equation for dipoleantenna at O(α_s^2):

Note: the equation is formally identical to:

$$\frac{d}{dQ^{2}}\Delta(Q_{0}^{2},Q^{2}) = \int \frac{d\Phi_{3}}{d\Phi_{2}} \,\delta(Q^{2}-Q^{2}(\Phi_{3})) \left(a_{3}^{0}+a_{3}^{1}\right) \Delta(Q_{0}^{2},Q^{2}) \\ + \int \frac{d\Phi_{4}}{d\Phi_{2}} \,\delta(Q^{2}-Q^{2}(\Phi_{4})) \,a_{4}^{0} \,\Delta(Q_{0}^{2},Q^{2}) \,, \quad (3)$$

But on this form, the pole cancellation happens *between* the two integrals

Differential 2nd-Order Corrections (Global Shower) (with direct 2-4 instead of smooth ordering)

Yesterday, Christian Gutschow asked for a magic wand that could speed up MC calculations by a factor 2.

I don't have a factor-2 wand :(

But I **do** have a factorialcomplexity to constantcomplexity wand, for merging!

This requires a different shower paradigm

Which is anyway the one we are now pursuing for our final go at constructing the 2nd-order shower

Pythia 8.304

Figure 1: Number of operations, N vs number of input items, n for algorithms of common complexities, assuming a constant of 1. Polynomial (n^2) or better scaling is usually considered efficient for complex problems, while exponential (2^n) or factorial (n!) scaling are infamous for being highly resource demanding. Plot from Ref. [2].

Test case: $pp \rightarrow Z$ + merging with up to 9 jets + valgrind

Based on HDF5 ME samples [Höche, Prestel, Schulz: PRD 100 (2019) 1, 014024] with 20 GeV merging scale

(Some work to do to optimise the basic shower; so far we focused on the scaling to high n)

What are Sector Showers?

Idea first suggested to me by D. Kosower

- Kosower, PRD 57 (1998) 5410; PRD 71 (2005) 045016
- But also, e.g., Larkoski & Peskin, PRD 81 (2010) 054010; PRD 84 (2011) 034034

In conventional ("global") showers, each branching kernel can populate the full $d\Phi_{n+1}/d\Phi_n$, subject only to the condition of ordering in the evolution variable.

As highlighted earlier, this generates a multiple covering of phase space.

- The overlapping PS regions are not a problem if the shower kernels are defined such that their **sum** reproduces the full singularity structure of the (squared) matrix elements.
- This is how all modern dipole and (global) antenna showers work (to my knowledge).

This is also what produces the proliferation of histories.

In a sector shower, only one kernel is allowed to populate each $d\Phi_{n+1}$ point.

Each kernel must therefore contain the **full** singularity structure of its sector (generally corresponding to a sum over global functions that, at least, includes any singular ones). First implementation, arXiv:1109.3608, later abandoned (for NLO corrections and the move to pp), now resurrected for pp, arXiv:2003.00702, with full mass and helicity dependence.

Sector Showers

Brooks, Preuss, Skands, arXiv:2003.00702

Consider $H \rightarrow gg$ + shower

At $g_i g_j g_k$ level, there are three possible clusterings

Sector shower trial emission (of gluon j) is **vetoed** if $p_{\perp j}$ is **not** the smallest scale in the event **after** the branching. (Recoils not allowed to make any other p_{\perp} smaller than $p_{\perp j}$.)

Scale of $g_i g_j g_k$ is **uniquely defined** (history independent) $\equiv \min(p_{\perp j}, p_{\perp i}, p_{\perp k})$

Creates a unique (bijective) shower history that corresponds exactly to a jet algorithm (anyone remember ARCLUS?) \implies one term per PS point at any *n* (constant complexity)

Outlook Towards 2nd-Order Sector Showers

Full-fledged sector shower (including II, IF, RF, and FF antennae with mass effects) Ready for upcoming Pythia 8.303 or 8.304.

Will **replace** the existing Vincia global antenna-shower model in Pythia 8.

Brooks, Preuss, Skands, arXiv:2003.00702

Full-fledged implementation of sector merging algorithm in final validation stages. Expect public release soon after shower itself (before end of 2020).

2nd order corrections; focus so far on what we can do:

Baseline check: all (LC) single- and double-unresolved limits explicitly reproduced, apart from some confusion remaining for the global case in the triple-collinear limit. (Should be solved by the move to sector showers.)

No work has so far gone into further measuring or testing its log accuracy.

Adapting direct $2 \rightarrow 4$ branchings to sector context relatively straightforward (?) Interested in the PanScales work on recoils and ordering variables.

Current work focuses on the sector integrals for the 2nd-order virtual corrections A rollercoaster of eureka moments and dead ends.

Extra Slides

The Solution that worked at LO: Smooth Ordering

My interpretation is that, in the context of a partonic angular ordering, they neglect the additional rapidity range from the extra origami folds

17

Smooth ordering: An excellent approximation

Even after three sequential shower emissions, the smooth shower approximation is still a very close approximation to the matrix element **over all of phase space**

(Why it works?)

The antenna factorisations are **on shell**

n on-shell partons \rightarrow **n+1** on-shell partons

In the first $2 \rightarrow 3$ branching, final-leg virtualities assumed ~ 0

Good agreement with ME \rightarrow good starting point for $2\rightarrow 4$

The problem with Smooth Ordering

Smooth ordering: nice tree-level expansions (small ME corrections) \Rightarrow good 2 \rightarrow 4 starting point

But we worried the Sudakov factors were "wrong" \Rightarrow not good starting point for 2 \rightarrow 3 virtual corrections? Not good exponentiation?

For unordered branchings (e.g., double-unresolved) effective 2→4 Sudakov factor effectively → LL Sudakov for intermediate (unphysical) 3parton point

 ${n}$

2→4 Trial Generation

$$\frac{1}{(16\pi^2)^2} a_{\text{trial}}^{2 \to 4} = \frac{2}{(16\pi^2)^2} a_{\text{trial}}^{2 \to 3} (Q_3^2) P_{\text{imp}} a_{\text{trial}}^{2 \to 3} (Q_4^2)$$
$$= C \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{128}{(Q_3^2 + Q_4^2)Q_4^2} .$$
(15)

Solution for constant trial α_{s}

Accept

$$\mathcal{A}_{2\to4}^{\text{trial}}(Q_0^2, Q^2) = C I_{\zeta} \frac{\ln(2)\hat{\alpha}_s^2}{8\pi^2} \ln \frac{Q_0^2}{Q^2} \ln \frac{m^4}{Q_0^2 Q^2}$$

$$\implies Q^2 = m^2 \exp\left(-\sqrt{\ln^2(Q_0^2/m^2) + 2f_R/\hat{\alpha}_s^2}\right)$$
where $f_R = -4\pi^2 \ln R/(\ln(2)CI_{\zeta})$. (Same I_{zeta} as in GKS)

In particular, the trial function for sector A (B) is independent of momentum $p_6(p_3)$ which makes it easy to translate the $2 \rightarrow 4$ phase spaces defined in eq. (6) to shower variables. Technically, we generate these phase spaces by oversampling, vetoing configurations which do not fall in the appropriate sector.

Accept ratio:

$$P_{\text{trial}}^{2 \to 4} = \frac{\alpha_s^2}{\hat{\alpha}_s^2} \frac{a_4}{a_{\text{trial}}^{2 \to 4}}$$

Solution for first-order running α_s (also used as overestimate for 2-loop running):

$$Q^{2} = \frac{4\Lambda^{2}}{k_{\mu}^{2}} \left(\frac{k_{\mu}^{2}m^{2}}{4\Lambda^{2}}\right)^{-1/W_{-1}(-y)} \text{Lambert W}$$
(20)

where

$$y = \frac{\ln k_{\mu}^2 m^2 / 4\Lambda^2}{\ln k_{\mu}^2 Q_0^2 / 4\Lambda^2} \exp\left[-f_R b_0^2 - \frac{\ln k_{\mu}^2 m^2 / 4\Lambda^2}{\ln k_{\mu}^2 Q_0^2 / 4\Lambda^2}\right],$$

→ Differential "K-factor" for 2→3 branchings

Hartgring, Laenen, PZS, JHEP 1310 (2013) 127

But not all → split into analytic and numerical parts

Use that smooth-ordering already gave a good approximation, which can be integrated fairly easily

E.g.:
$$\Delta_{3\to4} = 1 - \sum_{a \in 1,2} \int_{\text{ord}} d\Phi_{\text{ant}} a_{3\to4} \frac{a_{2\to4}}{a_{2\to3}a_{3\to4} + a'_{2\to3}a'_{3\to4}} + \mathcal{O}(\alpha_s^2)$$

ordering boundary complicated 2→4 ME-correction factor
 $\pm \sum_{a \in 1,2} \int d\Phi_{\text{ant}} a_{3\to4} P_{\text{imp}}$
Doable analytically; (slow but can be parametrised in terms of two invariants)
contains all single-unresolved poles

Sector Showers

Scale definition

Global showers are not truly Markovian (history independent), in the sense that a generic *n*-parton configuration could have been produced by many different histories (all contributing to one and the same configuration).

Not a problem from the pure (LL) shower point of view. But each history has its own (set of) intermediate (and final) scales. This makes the analytical calculation of, and matching to, deterministic NLO jet rates delicate and difficult on the shower side, and casts doubt on the iteration.

Sector showers, on the other hand, have a single unique history, with a single clearly defined set of scales. Simplifies matching conditions (at the price of harder integrals).

Natural sectorisation in $2 \rightarrow 4$

When separating the $2 \rightarrow 3$ and $2 \rightarrow 4$ phase spaces, we split the $2 \rightarrow 4$ phase space into two sectors. Part of the iterated $2 \rightarrow 3$ phase-space was included in the $2 \rightarrow 4$ sectors.

Awkward to keep global structure for the remaining iterated $2 \rightarrow 3$ part.

Scaling of Histories with Multiplicity: Magic Wand for Merging

For merging applications, the factorial growth in the number of histories can be a computational bottleneck. This would be obviated in a sector shower approach.