Pythia and Colour Reconnections

Peter Skands (Monash University)

Colour Reconnections > increasingly seen as part of broader spectrum of (non-perturbative) 'collective effects'. New models.

Shower Uncertainties in PYTHIA.
Colour Connections: colour flows in tt and coherence in PYTHIA and VINCIA.
$(t \rightarrow) b \rightarrow B$ fragmentation and tuning.

LHC Top WG Meeting
CERN, November 2019

Modelling Top Pair Production and Decay

In limit $\Gamma_{t} \sim 0$, factorise production and decay
These stages are showered independently.

Production ISR + FSR shower preserves Breit-Wigner shape

Interference between production and decay?

Would modify BW shape.
But expect small effects. Cutoff of perturbative shower $Q_{\text {cut }} \sim 1 \mathrm{GeV} ; \Gamma_{\mathrm{t}} \sim 1.5$ GeV (in SM); Interference only from scales $1 \mathrm{GeV}<Q<1.5 \mathrm{GeV}$

> Ignored in PYTHIA.
Production showered to $\mathrm{Q}_{\text {cut, }}$ decay as well.
An $\mathrm{e}^{+} e^{-}$study found $\Delta m_{t}<50 \mathrm{MeV}$ but not repeated for LHC (to my knowledge) Khoze, Sjöstrand, Phys.Lett. B328 (1994) 466

Non-perturbative effects: MPI, CR, etc

Will modify BW shape.
Affects hadronisation in b-jet and may (?) affect $b \rightarrow B$ transition.
May (?) affect hadronic W hadronisation.

Partons from different MPI (or ee \rightarrow WW) can be "close" in phase space.
Nature can make use of non-LC possibilities to minimise the confinement potentials. This motivated the "QCD-inspired" model in PYTHIA, and in various more or less explicit ways informs most other CR models.
NB: momentum transfer happens due to ambiguities in colour space; indirect

New / Emerging Paradigm

LHC has discovered new non-perturbative QCD phenomena in pp, like CMS "ridge" and ALICE strangeness enhancement vs multiplicity These effects do not seem to be explicable solely in terms of CR.
> New paradigm: new non-perturbative dynamics (interactions)

New Models:

Lund/NBI: Collective Strings 1: (Swing) + Colour Ropes + String Shoving
Monash: Collective Strings 2: (QCD CR) + Dynamic String Tensions + Repulsion
Lund: Strings with Spacetime Information + Hadron Rescattering
Herwig: Cluster Model with spacetime CR + Dynamic strangeness enhancement
Epos: Core/Corona picture with QGP-like thermal effects in core component

Expect additional hadron-level effects of order Λ_{ocD}, beyond "conventional" CR.

Good, Bad, or Irrelevant for Top Physics?

Good?

CR is difficult to pin down and constrain directly, with any confidence. That is part of the reason why we still have a plethora of models.

But strangeness and baryon enhancements leave clear smoking-gun traces.

Bad?

Expect additional hadron-level effects of order Λ_{ocD}, beyond "conventional" CR.
E.g., if strings push on each other, that could exchange momenta of order Λ_{QCD} (per unit rapidity!) between top system and MPI.
And/or if $\mathbf{B}_{\mathbf{s}} / \mathbf{B}$ and $\boldsymbol{\Lambda}_{\mathbf{b}} / \mathbf{B}$ rates are affected $\boldsymbol{>}$ modifications to B spectra (+decays)
Irrelevant?
Like CR, effects may primarily affect the "soft bulk" of particle production (~ the UE),
(Tips of) high-pT jets may not be significantly affected. But would need explicit constraints to be sure.

Most models not tested for top physics yet. Get in touch with MC authors.

Shower Uncertainties: Scale Variations

What do parton showers do?

In principle, LO shower kernels proportional to α_{s}
Naively: do factor-2 variations of μ_{PS}.
There are at least 3 reasons this could be too conservative

1. For soft gluon emissions, we know what the NLO term is
\rightarrow even if you do not use explicit NLO kernels, you are effectively NLO (in the soft gluon limit) if you are coherent and use $\mu_{\mathrm{PS}}=\left(\mathrm{k}_{\mathrm{CMW}} \mathrm{P}_{\mathrm{T}}\right)$, with 2-loop running and $\mathrm{k}_{\mathrm{CMW}}$
~ 0.65 (somewhat n_{f}-dependent). [Though there are many ways to skin that cat; see next slides.]
Ignoring this, a brute-force scale variation destroys the NLO-level agreement.
2. Although hard to quantify, showers typically achieve better-than-LL accuracy by accounting for further physical effects like (E, p) conservation
3. We see empirically that (well-tuned) showers tend to stay far inside the envelope spanned by factor-2 variations in comparison to data

Scale Variations: How Big?

Poor man's recipe: Use $\sqrt{2}$?
Sure ... but still rather arbitrary
Instead: add compensation term to preserve soft-gluon limit at $\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)$
Allowing full factor-2 outside that limit.
Several MCs now implement such compensation terms, at least in context of automated uncertainty bands.
Warning: aggressive definitions can lead to overcompensation / extremely optimistic predictions \rightarrow very small uncertainty bands.
For PYTHIA, we chose a rather conservative definition larger bands.

$$
\begin{aligned}
& P^{\prime}(t, z)=\frac{\alpha_{s}\left(k p_{\perp}\right)}{2 \pi}\left(1+(1-\zeta) \frac{\alpha_{s}\left(\mu_{\max }\right)}{2 \pi_{\rho}} \beta_{0} \ln k\right) \frac{P(z)}{t} \\
& \quad \sigma^{\text {Kills the compensation outside the soft limit }} 9
\end{aligned} \quad \begin{array}{cl}
z & \text { for splittings with a } 1 / z \text { singularity } \begin{array}{l}
\text { Small absolute size } \\
\text { of compensation }
\end{array} \\
\quad \zeta=\left\{\begin{array}{cl}
1-z & \text { for splittings with a } 1 /(1-z) \text { singularity } \\
\min (z, 1-z) & \text { for splittings with a } 1 /(z(1-z)) \text { singularity }
\end{array}\right.
\end{array}
$$

ee \rightarrow hadrons
91.2 GeV

1-Thrust (udsc)

Correlated or Uncorrelated?

What I would do: 7-point variation (resources permitting \rightarrow use the automated bands?)

Note: I would also do splitting-kernel variations (see extra slides)

Shower Ambiguities: Coherence

Default PYTHIA showers not fully coherent for "IF" or "RF" flows

All initial-state partons treated as II. (Some coherence by rapidity ~angular vetos)
All final-state partons treated as FF. (MECs > 1st emission in top decay correct; $+b$ mass corrections for all emissions.)

RF not coherent from $\mathbf{2}^{\text {nd }}$ emission onwards. (So eg Powheg does not help.) Issues for soft wide-angle, recoil effects, and some phase-space effects.

Coherence in VINCIA

Explicit IF and (recently) RF antennae

Based on coherent dipole-antenna patterns, with full \mathbf{t} and \mathbf{b} mass effects.
Collective recoils for RF emissions: coherent radiation recoils against "crossed" top

+ VINCIA now integrated within PYTHIA 8.301

+ Under development (with H. Brooks, R. Verheyen, C. Preuss) Interleaved resonance decays > interference between production and decays. Iterated Matrix-element Corrections. (So far it is a pure shower.) Automated uncertainty variations (in the same style as internal Pythia 8 ones).

Prime Motivation: Top Quark Mass

arXiv:1801.03944

A theoretical study of top-mass measurements at the LHC using NLO+PS generators of increasing accuracy

Silvia Ferrario Ravasio, ${ }^{a}$ Tomáš Ježo, ${ }^{b}$ Paolo Nason, ${ }^{c}$ Carlo Oleari ${ }^{a}$
${ }^{a}$ Università di Milano-Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
${ }^{b}$ Physics Institute, Universität Zürich, Zürich, Switzerland
${ }^{c}$ CERN, CH-1211 Geneve 23, Switzerland, and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy

"... the very minimal message that can be drawn from our work is that, in order to assess a meaningful theoretical error in top-mass measurements, the use of different shower models, associated with different $\mathrm{NLO}+\mathrm{PS}$ generators, is mandatory."

Coherence in Top Decay

Plot antenna function in top centre of mass frame (b along z):

Antenna function \rightarrow b-quark DGLAP splitting function in forwards (collienar) direction; coherence results in a suppression in the backwards (wide-angle) direction > narrower b-jets

Matching with POWHEG

- Use POWHEG v2 $(t \bar{t} d e c)^{1}$ (no need for exact finite width effects)
- Very similar setup to matching with PYTHIA in ${ }^{2}$.
- Veto hardest emission in production with

Vincia:QmaxMatch = 1

- Veto hardest emission in decay with UserHooks interface

PYTHIA 8.301 released. Includes VINCIA with new resonance-final showers Not yet recommended for main production runs, but need your feedback.

Comments on b fragmentation

The Monash tune for heavy flavour:
Constrained by LEP event shapes (including b-tagged ones) + jet rates

- Relatively large value of TimeShower:alphaSvalue $=0.1365$ Regarded at least in part as making up for NLO K-factor for ee $\rightarrow 3$ jets (Pythia only accurate to LO for 3 jets).
Consistent with 3 -flavour ^acd $\sim 0.35 \mathrm{GeV}$ (since we use 1-loop running) Not guaranteed to be universal. LHC studies tend to prefer lower values E.g., A14 uses TimeShower:alphaSvalue $=0.129$ (could be reinterpreted via CMW to MSbar alphaS(mZ) ~ 0.12 so consistent with world average.) (but I would then also change to 2-loop running; would preserve Λ_{acD} value)

Non-Perturbative b-fragmentation parameter r_{b} constrained by measured x_{B} spectra of weakly decaying B hadrons.

- StringZ:rFactB $=0.88$.

LEP B Fragmentation

Moments of x_{B} distribution
(easier / clearer to look at than spectrum itself)

Question: possible to do in-situ constraints or at least cross checks in top / inclusive b / ... at LHC?

Lower $\alpha_{S}>B$ spectrum too hard (Monash; deliberately sliqhtly hard for qlobal reasons)
\leftarrow Increasing $r_{b}(0.88 \rightarrow 1.05)$ or changing to 2-loop running. Both reestablish agreement but will scale differently

Also note: lower value of $\alpha_{s}\left(M_{z}\right)>$ lower 3-jet rate wrong 2- vs 3 -jet mixture (relative to data sample)? Do reweighting?

Questions / Discussion?

How to test if "More" ME Corrections needed? (1)

The soft and collinear enhanced (singular) terms in the shower kernels are universal, process-independent Matrix Elements contain the same information, plus process-specific nonsingular terms.
The shower singularities dominate for soft and collinear radiation
The process-specific non-singular terms dominate for hard radiation

Suggestion: add nuisance parameter = arbitrary nonsingular term to shower kernels, and vary
ee \rightarrow hadrons
91.2 GeV

1-Thrust (udsc)

VINCIA: Giele, Kosower \& PS: PRD84(2011)054003; arXiv:1102.2126

PYTHIA 8: S. Mrenna \& PS: PRD94(2016)074005; arXiv:1605.08352 to estimate sensitivity to missing
ME terms Note: by definition, any fit of such a nuisance parameter would be process-specific

NOTE ON DIFFERENT ALPHA(S) CHOICES

Slower pace of 1-loop running allows to have similar ^ocd as PDG

Default PYTHIA uses a large value of
$\alpha_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{z}}\right)$ to agree with NLO 3-jet rate at
LEP

SCALE VARIATIONS: HOW BIG?

Scale variations induce 'artificial' terms beyond truncated order in QFT ~ Allow the calculation to float by $\left(1+\mathrm{O}\left(\alpha_{s}\right)\right.$.

Mainstream view:
Regard scale dependence as unphysical / leftover artefact of our mathematical procedure to perform the calculations.

Dependence on it has to vanish in the 'ultimate solution' to QFT
\rightarrow Terms beyond calculated orders must sum up to at least kill μ dependence
Such variations are thus regarded as a useful indication of the size of uncalculated terms. (Strictly speaking, only a lower bound!)

Typical choice (in fixed-order calculations): $k \sim[0.5,1,2]$

AUTOMATED SHOWER UNCERTAINTY BANDS/WEIGHTS

Mrenna, Skands Phys.Rev. D94 (2016) 074005

Idea: perform a shower with nominal settings
Ask: what would the probability of obtaining this event have been with different choices of μ_{R}, radiation kernels, ... ?
Easy to calculate reweighting factors

Output: vector of weights for each event One for the nominal settings (unity)

+ Alternative weight for each variation

(Note: similar functionality also in Herwig++ and Sherpa; see 1605.08256 1606.08753)

AUTOMATED SHOWER UNCERTAINTY BANDS/WEIGHTS

The benefits: only a single sample needs to be generated, hadronised, passed through detector simulation, etc.

Can add arbitrarily many (combinations of) variations (if supported by code)

The drawback: effective statistical precision of uncertainty bands computed this way (from varying weights) is always less than that of the central sample (which typically has all weights =

HOW MANY PARAMETERS TO VARY?

There is of course only a single α_{s} in nature
But remember we are here just using scale variations as a stand-in for unknown higher-order terms.

ISR and FSR kernels receive different NLO corrections

Physically, ISR also has additional ambiguity tied to the PDF
ISR and FSR have different phase spaces and affect physical observables differently FSR:JET SHAPES, OOC, HEAVY-FLAVOUR PARTON ENERGY LOSS, ...
ISR: RECOILS TO HARD SYSTEM; SOFT ISRINCREASES OVERALL HT. HARD ISR \rightarrow Njets.
I therefore conceive of ISR and FSR variations as separate things
(Yes, there are overlapping cases, most obviously when colour flows from initial to final state, as in ttbar: initial-final antennae, and also for subleading colour effects.)

Not to forget (but not main topics of this talk):
PDFs, functional form of central choices of factorisation and renormalisation scales, nonsingular parameters, subleading colour, local vs global recoils ...

SETTINGS FOR AUTOMATED 7-POINT VARIATION

7-Point scale variations

Based on factor-2 variations with NLO soft compensation term ON

+ some nonsingular-term variations to estimate sensitivity to process-dependent finite terms (signaling need for further ME correcti

```
UncertaintyBands:doVariations = on
UncertaintyBands:muSoftCorr = on
UncertaintyBands:List = {
    radHi fsr:muRfac=0.5 isr:muRfac=0.5,
    fsrHi fsr:muRfac=0.5,
    isrHi isr:muRfac=0.5,
    radLo fsr:muRfac=2.0 isr:muRfac=2.0,
    fsrLo fsr:muRfac=2.0,
    isrLo isr:muRfac=2.0,
    fsrHardHi fsr:cNS=2.0,
    fsrHardLo fsr:cNS=-2.0,
    isrHardHi isr:cNS=2.0,
    isrHardLo isr:cNS=-2.0
}
```


Colour Reconnections: Old Paradigm

LC colour flows are good approx for single system of OCD charges...
For a single shower system, coherence / angular ordering $\boldsymbol{>}$ neighbours in colour space tend to also be neighbours in phase space.
LC connections from perturbative stage will tend to produce the minimal potentials (cluster/string sizes) for non-perturbative stage. Nature will choose those.
... but must be extended (by CR) when multiple systems are present.
In the presence of MPI (or in ee \rightarrow WW), partons from different systems (unrelated in LC colour space) can be "close" in phase space. Nature will attempt to make use of non-LC possibilities to minimise the potential energy.
Motivated the "OCD-inspired" model in PYTHIA, and in various more or less explicit ways informs most other CR models on the market.
Note that we are here talking about ambiguities in colour space, with no explicit interactions; transfer of momentum only happens indirectly.

Using a lower value of $\mathrm{a}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{z}}\right)$: what happens?

Option 1. Keep 1-loop running > lower value of Λ_{ocD}

Different IR limit of shower retune (all) non-perturbative parameters.
Problem: lower value of $\alpha_{s}\left(M_{z}\right)>$ lower 3-jet rate. Cannot tune to data that includes 3-jet events (like inclusive x_{B}) without separate 3-jet correction; do reweighting for 3 -jet rate (or NLO merging).

Or: could use x_{B} from sample of excl 2-jet events (3-jet veto), but I am not aware that such conditional x_{B} spectra were measured? Could they be?

Or: if your new $\alpha_{s}\left(M_{z}\right)$ value describes LHC jet shapes well, could you constrain r_{b} in-situ from $b \rightarrow B$ measurements at LHC?

Option 2. Change to 2-loop running $>$ keep $\Lambda_{\mathrm{OCD}} \sim$ unchanged

- Reduced need to retune (though precision would still require retuning)
(E.g. VINCIA uses CMW with alphaSvalue $=0.118$, 2-loop running, and $\mu_{R}=0.8$ pTT $_{\text {T }}$

Recommendations: $(t \rightarrow) b \rightarrow B$ fragmentation

Perturbative stage is important in the context of (re)tuning. Hard process + showers + merging: $\mathbf{b}\left(\mathbf{Q}_{\mathrm{F}}\right) \rightarrow \mathbf{b}\left(\mathbf{Q}_{\text {cut }}\right)$

Non-perturbative parameters (HAD+MPI+CR): $\mathbf{b}\left(\mathbf{Q}_{\text {cut }}\right) \rightarrow \mathbf{B}$
These two components scale differently. Non-universal to force the latter to make up for shortcomings in the former.

At LEP, amount of perturbative radiation emitted from b can be validated / controlled by 3-jet rate (in b-tagged events)
In top events, presumably b-jet substructure and/or rate of additional jets "near" the b-jet can be used to check if the b is losing the "right" amount of energy from perturbative radiation?

Constrain r_{b} in-situ? x_{B} spectra in inclusive b jets?
Lesson from LEP: process-dependent factors (eg NLO 3-jet rate) can affect precision tuning $>$ larger uncertainties if not carefully controlled.

Effect of Kinematics Map

Consider average recoil $\left|\Delta \vec{p}_{W}\right|$, after first and second emission(s).

Recoil after first:

Recoil after second:

(Coherence In Production)

Well-studied effect in p-pbar collisions Top quark FB asymmetry

PS, Webber, Winter JHEP 1207 (2012) 151
Coherent showers produce a ptdependent asymmetry

Forward-backwards asymmetry:

$$
A_{F B}(\mathcal{O})=\frac{\left.\frac{\mathrm{d} \sigma}{\mathrm{dO}}\right|_{\Delta y>0}-\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} \mathcal{O}}\right|_{\Delta y<0}}{\left.\frac{\mathrm{~d} \sigma}{\mathrm{dO}}\right|_{\Delta y>0}+\left.\frac{\mathrm{d} \sigma}{\mathrm{dO}}\right|_{\Delta y<0}}
$$

Coherent showers include part of the real emission correction that generates a FB asymmetry that becomes negative for large $p_{T}(t \bar{t})$. [1205.1466]

B-Jet Profiles

VINCIA gives narrower b-jets than Pythia 8

Effect survives MPI + hadronisation

Tentative conclusion: more coherence ~ more wide-angle suppression?
*Also agrees with intuition from dipole language where "top dipole" can be negative

Top Mass Profile @ 8 TeV : Parton Level

$$
p \bar{p} \rightarrow t \bar{t} @ 8 \mathrm{TeV}: m_{b_{j} \ell \nu}
$$

Monte-Carlo "truth" (parton-level) analysis:

- Assumes we can reconstruct p_{ν} and match correct ℓ, b_{j} pair.

Pythia has little population in the low tail. Ascribed to an artificially small phase space (due to a noncoloured dipole) from the $2^{\text {nd }}$ emission onwards.

Many subtleties related to this, especially when combined with POWHEG.

Commented on and illustrated extensively in arXiv:1907.08980
"Cured" in VINCIA.

VINCIA

~ HERWIG-like below m_{t}
~ PYTHIA-like above m_{t}

PYTHIA 8.301 released. Includes VINCIA with new resonance-final showers Not yet recommended for main production runs, but need your feedback.

Top Mass Profile @ 8 TeV

$p \bar{p} \rightarrow t \bar{t} @ 8 \mathrm{TeV}: m_{b_{j} \mu} \quad$ (example of a realistic observable)

 Full hadron-level analysis: choose pairing for ℓ, b_{j} that minimise average mass.

Outlook

Finite-width effects

Note: we do not expect these effects to be large for top decays, cf e.g., Khoze \& Sjöstrand Phys.Lett. B328 (1994) 466-476

Shower Architectures

Type	Singularities		Coherence?	No dead zones?	Examples
	soft	collinear		X	X
DGLAP	part.	full	X		
Angular	full+veto	full+veto	\checkmark	X	H7 \tilde{q}
Dipole	part. c-S	part.	X	\checkmark	Pythia 8 part.
part.	\checkmark	\checkmark	Sherpa, H7 dip		
Antenna (global)	full	part.	\checkmark	\checkmark	Vincia
Antenna (sector)	full	full+veto	\checkmark	\checkmark	Vincia

Sum over all dipoles / antennae should reproduce the leading log

