Coherent Showers in Decays of Coloured Resonances Helen Brooks & Peter Skands (Monash University)

STRUCT THE REAL OF

HEP Seminar Lund, June 2019

Cohrence in Resonance Decays

In narrow width approximation, W^-

Factorise production and We ay of resonances;

These stages are showered h_{b}^{t} dependently.

Goal is to shower the resonance-final antenna in decay coherently, without modifying the invariant mass of the resonance, needed for resonance-aware matching.

Note: interference between production and decay will occur at scales $< \Gamma$; not the topic of this talk

arXiv:1801.03944

A theoretical study of top-mass measurements at the LHC using NLO+PS generators of increasing accuracy

Silvia Ferrario Ravasio,^a Tomáš Ježo,^b Paolo Nason,^c Carlo Oleari^a

- ^a Università di Milano-Bicocca and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
- ^bPhysics Institute, Universität Zürich, Zürich, Switzerland
- ^cCERN, CH-1211 Geneve 23, Switzerland, and INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy

"... the very minimal message that can be drawn from our work is that, in order to assess a meaningful theoretical error in top-mass measurements, the use of different shower models, associated with different NLO+PS generators, is mandatory."

Fixed-order accuracy (μ_R) + PDFs (μ_F) + matching/merging (e.g. h_{damp})

Parton shower ambiguities from logarithmic accuracy

- → Estimate by comparing different shower architectures
 - + systematic parametric variations
- → **To reduce**, need systematic improvements:

At LL / LC: coherence & "optimised" choices (for muR, evolution scale, recoil strategies, ...)

Beyond LL / LC: genuine subleading colour (beyond optimised LC) and higher-order corrections to shower kernels (beyond optimised LL)

+ Mass Effects, Finite-Width Effects, Polarisation Effects

+ Non-perturbative: Renormalon pole mass ambiguity $\leq \Lambda_{QCD}$, colour-reconnections, MPI, beam remnant treatment, hadronisation, hadron rescattering, hadron and τ decays, ...

Dipole showers*

Each branching has a well-defined "radiator" and a "recoiler", with distinct kinematics maps.

Neglect contribution from resonance as radiator (partition can even become negative).

In principle free to choose recoiler, e.g. W in t \rightarrow W b

$t \rightarrow b W$:

Top sits at rest (does not radiate) Bottom quark radiates; recoils against the only other final-state parton, W. **More branchings**: ambiguous what recoiler to use for parton colour-connected to top

Antenna Showers

Agnostic as to who is the radiator; smooth transition in kinematics

Interpolates between collinear limits

Coherence built in; cannot neglect resonance's contribution

Recoil strategy relates to antenna factorisation

$t \rightarrow b W$:

Antenna between bottom and crossed top. Kinematics map with $X = W \implies W$ acquires recoil **More branchings:** unambiguous. Parton colourconnected to top participates in the RF antenna; rest = X collectively acquire the recoil.

*Note: the original dipole shower, ARIADNE, is of the type I here call "antenna shower"

Slide from H. Brooks

Shower	Туре	Decay shower?	Coherence?
Pythia 8 [hep-ph/0010012]	Dipole	 Image: A set of the set of the	
[hep-ph/0408302]			[^] via ivie corrections
Sherpa [1412.6478]	Catani-Seymour	×	(✓)
		(production only)	(no RF dipole)
Herwig 7 (\tilde{q})	Angular-ordered		
[1810.06493]			
Herwig 7 (dip)	Catani-Seymour	(✓)	(✓)
[1810.06493]		(on-shell only)	(no RF dipole)
Vincia - NEW!	Antenna		
	I	1	I
Dire?*	Dipole	✔?	✔?

Note: defined for all helicity configurations & all shower states assigned explicit helicities throughout VINCIA; here just showing summed forms for brevity.

*: difference is 1/(s_{AK} + s_{jk}) normalisation and phase-space map

Example: Collinear Limits

Labeling: $A_I K_F \rightarrow a_I j_F k_F$

post-branching pre-branching

N.B.: $s_{\alpha\beta} \equiv 2p_{\alpha} \cdot p_{\beta}$ throughout! $y_{\alpha\beta} = \frac{s_{\alpha\beta}}{s_{AK} + s_{jk}}$

Example: qq antenna limits

Can rewrite antenna as:

$$a_{g/qq}^{RF} = \frac{1}{s_{AK}} \left[\underbrace{\frac{2y_{ak}}{y_{aj}y_{jk}} - \frac{2\mu_a^2}{y_{aj}^2} - \frac{2\mu_k^2}{y_{jk}^2}}_{\text{soft}} + \underbrace{\frac{y_{aj}}{y_{jk}} + \frac{y_{jk}}{y_{aj}}}_{\text{collinear}} + \text{n.s.} \right]$$

Define
$$Q^2 \equiv s_{jk}; \quad y \equiv \frac{Q^2}{s_{AK}}; \quad z \equiv \frac{s_{ak}}{s_{AK}} \quad \Rightarrow \frac{s_{aj}}{s_{AK}} = 1 + y - z$$

$$a_{g/qq}^{RF} = \frac{1}{Q^2} \left[\frac{2z(1+y)}{1+y-z} + (1+y-z) - \frac{2m_k^2}{Q^2} + \mathcal{O}(y) \right] + \text{n.s.}$$

In collinear limit, $y \to 0$

$$\lim_{y \to 0} a_{g/qq}^{RF} = \frac{1}{Q^2} \left[\frac{1+z^2}{1-z} - \frac{2m_k^2}{Q^2} \right] = \frac{1}{Q^2} P_{q \to gq}(z, \tilde{\mu})$$

N.B. Need to sum over neighbouring antennae for gg collinear limit.

IELICITY SUM:
$$a(X_A g_K \to X_a \bar{q}_j q_k) = \frac{1}{2m_{jk}^2} \left[y_{ak}^2 + y_{aj}^2 + \frac{2m_j^2}{m_{jk}^2} \right]$$

Note sum of ++ antennae have same singularities as sum of +- ones => same singular terms obtained when summing over helicity of emitted gluon irrespective of parent helicities

Note sum of ++ antennae have same singularities as sum of +- ones => same singular terms obtained when summing over helicity of emitted gluon irrespective of parent helicities

RF Showers 2: Evolution Variables

2→3 phase-space factorisation: $d\Phi_{n+1} = d\Phi_{ant} \times d\Phi_n$

- Factorisation is exact, not just in soft, collinear limits
- Preserves invariant mass of resonance: $p_A = p_a$
- Preserves invariant mass of system of recoilers:

$$p_A = p_K + p_X \implies m_X^2 = (p_A - p_K)^2 \equiv (p_a - p_j - p_k)^2 = m_{X'}^2$$

RF Showers 4: Kinematics Map (Recoil)

pre-branching

N.B.: $s_{\alpha\beta} \equiv 2p_{\alpha} \cdot p_{\beta}$ throughout!

• Construct in A rest frame, and rotate such that K is along z.

 $\rightarrow a_I j_F k_F$

post-branching

► Specify system X only recoils longitudinally.

Labeling: $A_I K_F$

- Rotate about z by ϕ (flatly sampled).
- Boost back to lab frame.
- For each recoiler i, boost p_i by $p_{X'} p_X$

Note!

If we fix to just one recoiler i.e. $A \to RKX$, $a \to rjkX$ then **CANNOT** simulatenously preserve m_A^2 , m_R^2 and m_{AK}^2 . Replace $A \to A - X$ everywhere.

- Antenna mass is modified!
- Phase space normalisation is modified!
- Mass used everywhere is $(p_A p_X)^2$ not same as propagator!

*Note the prescription defined here is similar to one recently implemented in Herwig7 by Cormier et al., arXiv:1810.06493

Consider average recoil $|\Delta \vec{p}_W|$, after first and second emission(s).

Recoil after first:

Recoil after second:

(Coherence In Production)

Forward-backwards asymmetry:

$$A_{FB}(\mathcal{O}) = \frac{\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}}\Big|_{\Delta y > 0} - \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}}\Big|_{\Delta y < 0}}{\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}}\Big|_{\Delta y > 0} + \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}}\Big|_{\Delta y < 0}}$$

Coherent showers include part of the real emission correction that generates a FB asymmetry that becomes negative for large $p_T(t\bar{t})$. [1205.1466]

Coherence in Decay

Plot antenna function in top centre of mass frame (b along z):

Antenna function is consistent with Altarelli-Parisi splitting function in (quasi-)collinear direction, coherence results in a suppression in the backwards direction.

B-Jet Profiles

VINCIA gives narrower b-jets than Pythia 8

Effect survives MPI + hadronisation

Tentative conclusion: more coherence ~ more wide-angle suppression?

*Also agrees with intuition from dipole language where "top dipole" can be negative

- Use POWHEG v2 (ttdec)¹
 (no need for exact finite width effects)
- Very similar setup to matching with PYTHIA in ².
- Veto hardest emission in production with

Vincia:QmaxMatch = 1

Veto hardest emission in decay with UserHooks interface

³Thanks to S. Ferrario Ravasio for providing an interface to H7

ATLAS dileptonic $t\overline{t}$ @ 8 TeV [1709.09407]

2

¹[1412.1828],[1509.0907] ²[1801.03944]

 $p\bar{p} \rightarrow t\bar{t}$ @ 8 TeV: $m_{b_j\ell\nu}$ (looking under the hood / "cheating") Monte-Carlo "truth" (parton-level) analysis:

► Assumes we can reconstruct p_{ν} and match correct ℓ, b_j pair.

 $p\bar{p} \rightarrow t\bar{t}$ @ 8 TeV: $m_{b_i\mu}$

(example of a realistic observable)

Full hadron-level analysis: choose pairing for ℓ, b_j that minimise average mass.

VINCIA can now do production and decay Coming soon... of top quarks

With full mass and helicity dependence

Based on new "**resonance-final**" antennae

Coherent top+b (& top+g) radiation patterns

Collective recoil kinematics

PYTHIA 8.3 \rightarrow Watch this space!

Finite-width effects

+ some alternatives (with Rob Verheyen)

Note: we do not expect these effects to be large for top decays, cf e.g., Khoze & Sjöstrand Phys.Lett. B328 (1994) 466-476

Table from H. Brooks

Туре	Singularities		Coherence?	No dead	Examples
	soft	collinear		zones?	
DGLAP	part.	full	×	×	
Angular	full+veto	full+veto	 Image: A set of the set of the	×	H7 \tilde{q}
Dipole	part.	part.	×	\	Pythia 8
C-S	part.	part.	\checkmark	\checkmark	Sherpa,
					H7 dip
Antenna	full	part.	✓	√	Vincia
(global)					
Antenna	full	full+veto	\checkmark	\checkmark	Vincia
(sector)					

Sum over all dipoles / antennae should reproduce the leading log

