Parton Showers and Matching/Merging

Lecture 1 of 2: Parton Showers

Peter Skands (Monash University) Feynrules/Madgraph School, Hefei 2018

MAKING PREDICTIONS

Scattering Experiments:

LHC detector Cosmic-Ray detector Neutrino detector X-ray telescope
\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

In particle physics:

Integrate over all quantum histories
(+ interferences)

$d \sigma / d \Omega$; how hard can it be?

Approximate all contributing amplitudes for this ...
To all orders...then square including interference effects, ...

+ non-perturbative effects

... integrate it over a ~300dimensional phase space
... and estimate the detector response

> EVENT GENERATORS

Aim: generate events in as much detail as mother nature
\rightarrow Make stochastic choices \sim as in Nature (Q.M.) \rightarrow Random numbers
Factor complete event probability into separate universal pieces, treated independently and/or sequentially (Markov-Chain MC)

Improve lowest-order (perturbation) theory by including 'most significant' corrections

Resonance decays (e.g., $t \rightarrow b W^{+}, W \rightarrow q^{1}, H^{0} \rightarrow \gamma^{0} \gamma^{0}, z^{0} \rightarrow \mu^{+} \mu^{-}, \ldots$)
Bremsstrahlung (FSR and ISR, exact in collinear and soft* limits)
Hard radiation (matching \& merging; next lecture)
Hadronization (strings / clusters, next lecture)
Additional Soft Physics: multiple parton-parton interactions, Bose-Einstein correlations, colour reconnections, hadron decays, ...

Coherence*
Soft radiation \rightarrow Angular ordering or Coherent Dipoles/Antennae

ORGANISING THE CALCULATION

Divide and Conquer \rightarrow Split the problem into many (nested) pieces

Physics Separation of time scales $>$ Factorisations Maths

$\mathcal{P}_{\text {event }}=\mathcal{P}_{\text {hard }} \otimes \mathcal{P}_{\text {dec }} \otimes \mathcal{P}_{\text {ISR }} \otimes \mathcal{P}_{\text {FSR }} \otimes \mathcal{P}_{\text {MPI }} \otimes \mathcal{P}_{\text {Had }} \otimes \ldots$

Hard Process \& Decays:
Use process-specific (N)LO matrix elements (e.g., gg $\rightarrow \mathrm{H}^{0} \rightarrow \gamma \gamma$)
\rightarrow Sets "hard" resolution scale for process: $\mathrm{Q}_{\text {max }}$
ISR \& FSR (Initial- \& Final-State Radiation):
Driven by differential (e.g., DGLAP) evolution equations, $\mathrm{dP} / \mathrm{dQ}^{2}$, as function of resolution scale; from $\mathrm{Q}_{\text {MAX }}$ to $\mathrm{O}_{\text {HAD }} \sim 1 \mathrm{GeV}$

MPI (Multi-Parton Interactions)
Protons contain lots of partons \rightarrow can have additional (soft) partonparton interactions \rightarrow Additional (soft) "Underlying-Event" activity

Hadronisation

Non-perturbative modeling of partons \rightarrow hadrons transition

THE MAIN WORKHORSES

PYTHIA (begun 1978)

Originated in hadronisation studies: Lund String model
Still significant emphasis on soft/non-perturbative physics
HERWIG (begun 1984)

$\square \square$
Originated in coherence studies: angular-ordered showers Cluster hadronisation as simple complement

SHERPA (begun ~2000)
Originated in Matrix-Element/Parton-Shower matching (CKKW-L)
Own variant of cluster hadronisation

+ Many more specialised:
Matrix-Element Generators, Matching/Merging Packages, Resummation packages, Alternative QCD showers, Soft-OCD MCs, Cosmic-Ray MCs, Heavy-Ion MCs, Neutrino MCs, Hadronic interaction MCs (GEANT/FLUKA; for energies below $\mathrm{E}_{\mathrm{CM}} \sim 10 \mathrm{GeV}$), (BSM) Model Generators, Decay Packages, ...

Most bremsstrahlung is driven by divergent propagators \rightarrow simple structure

Amplitudes factorise in singular limits (\rightarrow universal "scale-invariant" or "conformal" structure)

$$
\begin{aligned}
& \text { Partons ab } \rightarrow \quad \mathrm{P}(z)=\text { DGLAP spliting kernels, with } \mathrm{z}=\text { energy fraction }=\mathrm{E}_{\mathrm{e}}\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right) \\
& \text { "collinear": } \\
& \\
& \left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{aligned}
$$

$$
\text { Gluon } \mathrm{j} \rightarrow \text { "soft": Coherence } \rightarrow \text { Parton } \mathrm{j} \text { really emitted by }(\mathrm{i}, \mathrm{k}) \text { "colour antenna" }
$$

$$
\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

+ scaling violation: $g_{\mathrm{s}}{ }^{2} \rightarrow 4 \pi \alpha_{\mathrm{s}}\left(\mathrm{Q}^{2}\right)$
Can apply this many times \rightarrow nested factorizations

HOW SOFT IS SOFT?

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0.1$
\rightarrow Truncate at fixed order = LO, NLO, ...
But beware the jet-within-a-jet-within-a-jet ...

Example: 100 GeV can be "soft" at the LHC

SUSY pair production at LHC_{14}, with $\mathrm{M}_{\mathrm{SUSY}} \approx 600 \mathrm{GeV}$

LHC - spsla - m~600 GeV						
Plehn, Rainwater, PS PLB645(2007)217						
FIXED ORDER pQCD $\sigma_{\text {tot }}[\mathrm{pb}]$ $\tilde{g} \tilde{g}$ $\tilde{u}_{L} \tilde{g}$ $\tilde{u}_{L} \tilde{u}_{L}^{*}$ $\tilde{u}_{L} \tilde{u}_{L}$ $T T$ $p_{T, j}>100 \mathrm{GeV}$ $\sigma_{0 j}$ 4.83 5.65 0.286 0.502 1.30 inclusive $\mathbf{X}+\mathbf{1}$ "jet" $\longrightarrow \sigma_{1 j}$ 2.89 2.74 0.136 0.145 0.73 inclusive $\mathbf{X}+\mathbf{2}$ "jets" $\sigma_{2 j}$ 1.09 0.85 0.049 0.039 0.26						

```
\sigma for X + jets much larger than
    naive factor- }\mp@subsup{\alpha}{s}{}\mathrm{ estimate
```

$p_{T, j} \ngtr 50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

(Computed with SUSY-MadGraph)
All the scales are high, $\mathrm{Q} \gg 1 \mathrm{GeV}$, so perturbation theory should be OK

APROPOS FACTORISATION

Why are Fixed-Order QCD matrix elements not enough?

F.O. OCD requires Large scales (α_{s} small enough to be perturbative \rightarrow high-scale processes)

PARTON SHOWERS

So it's not like you can put a cut at X (e.g., 50, or even 100) GeV and say: "ok, now fixed-order matrix elements will be OK"

Harder Processes are Accompanied by Harder Jets

The hard process will "kick off" a shower of successively softer radiation If you look at $\mathrm{Q}_{\text {Resolved }} / \mathrm{Q}_{\text {HARD }} \ll 1$, you will resolve shower structure

Extra radiation:

Will generate corrections to your kinematics
Is an unavoidable aspect of the quantum description of quarks and gluons (no such thing as a bare quark or gluon; they depend on how you look at them)
Extra jets from bremsstrahlung can be important combinatorial background especially if you are looking for decay jets of similar P_{T} scales (often, $\Delta M \ll M$)

This is what parton showers are for

BREMSSTRAHLUNG

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \quad \ldots
\end{aligned}
$$

Note: here just iterating a single eikonal emission; should really sum over all emitters.

Could also have built
an approximation
from iterating
collinear emissions (DGLAP)

BREMSSTRAHLUNG

$$
\text { For any basic process } d \sigma_{X}=\checkmark \quad \text { (calculated process by process) }
$$

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \ldots
\end{aligned}
$$

Note: here just iterating a single eikonal emission; should really sum over all emitters.

Could also have built
an approximation from iterating collinear emissions (DGLAP)

Singularities: universal (mandated by gauge theory)
Non-singular terms: process-dependent

$$
\frac{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right]
$$

Note: to get the $P_{\mathrm{q} \rightarrow \mathrm{ag}}(\mathrm{z})$ AltarelliParisi splitting kernel, take the

$$
\frac{\left|\mathcal{M}\left(H^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(H^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}+2\right)\right]
$$ collinear limit ($\mathrm{s}_{\mathrm{ij}} \rightarrow 0$ or $\mathrm{sjk}_{\mathrm{j}} \rightarrow 0$) of these ratios

BREMSSTRAHLUNG

$$
\text { For any basic process } d \sigma_{X}=\checkmark \quad \text { (calculated process by process) }
$$

$$
\begin{aligned}
d \sigma_{X+1} & \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
d \sigma_{X+2} & \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \\
d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} & \ldots
\end{aligned}
$$

Iterated factorization

Gives us a universal approximation to ∞-order tree-level cross sections.
Exact in singular (strongly ordered) limit.
Non-singular terms (non-universal) \rightarrow Uncertainties for hard radiation

$$
\text { But something is not right ... Total } \sigma \text { would be infinite ... }
$$

LOOPS AND LEGS

Coefficients of the Perturbative Series

RECAP: ADDING JETS AT FIXED ORDER

Total cross section for emitting a jet:

$$
\sigma_{\mathrm{X}+1}^{\mathrm{LO}}(R)=\int_{R}\left|M_{\substack{\boldsymbol{\varphi} \\ \hline \boldsymbol{\varphi}}}^{(0)}\right|^{2}
$$

- R
$\mathrm{R}=$ some "Infrared Safe" phase space region (E.g., cut on $p_{\perp}, \Delta R$)
Taking $\mathrm{R} \rightarrow 0$ seems to produce a disaster Logarithms \rightarrow infinities
Can we make any sense of this limit?
Physically? Mathematically?

UNITARITY (AT NLO)

Next-to-Leading Order:

In IR limits, the $\mathbf{X + 1}$ final state is indistinguishable from an $\mathrm{X}+0$ one
\rightarrow singularities must always* sum together (\& they cancel!)

$$
\left.\sigma_{\mathrm{NLO}}^{\text {example: }}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=\sigma_{\mathrm{LO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\frac{\alpha_{s}\left(E_{\mathrm{CM}}\right)}{\pi}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

Sum of real and virtual $O\left(\alpha_{s}\right)$ nonsingular; no IR regulator dependence
*) for Infrared-safe safe observables

UNITARITY \rightarrow EVOLUTION (RESUMMATION)

Probability for nothing to happen (\sim virtual + unresolved-real) + Probability for something to happen (\sim resolved real $)=1$

Unitarity: $\operatorname{sum}($ probability $)=1$

Kinoshita-Lee-Nauenberg (sum over degenerate quantum states = finite; infinities must cancel)

$$
\text { Loop }=-\int \text { Tree }+F
$$

Parton Showers neglect $F \rightarrow$ "Leading-Logarithmic" (LL) Approximation

Imposed by Event evolution: "detailed balance"

When (X) branches to $(X+1)$: Gain one ($\mathrm{X}+1$). Lose one (X).

$$
\begin{aligned}
& \text { Differential equation with evolution kernel } \\
& \text { oically, a soft/collinear approximation thereof) }
\end{aligned}
$$

Evolve in some measure of resolution ~ hardness, 1/time ... ~ fractal scale + account for scaling violation via quark masses and $g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(Q^{2}\right)$
\rightarrow includes both real (tree) and virtual (loop) corrections, to arbitrary order

EVOLUTION ~ FINE-GRAINING

BOOTSTRAPPED PERTURBATION THEORY

Start from an arbitrary lowest-order process (green = OFT amplitude squared) Parton showers generate the (LL) bremsstrahlung terms of the rest of the perturbative series (approximate infinite-order resummation)

Universality (scaling) Jet-within-a-jet-within-a-jet-...

Cancellation of real \& virtual singularities
\uparrow Exponentiation
fluctuations within fluctuations

Note! LL \neq full QCD! $(\rightarrow$ matching, merging, MECs)
(real corrections)

WHAT ARE THE EVOLUTION KERNELS?

Recall: two universal (bremsstrahlung) limits \rightarrow can build different types of parton showers (and, in general, different kinds of resummations)

Collinear (DGLAP) Limit: two partons becoming parallel

$$
\begin{aligned}
& \text { Partons } \mathrm{ab} \rightarrow \\
& \text { "collinear": } \mathrm{P}(\mathrm{z})=\text { DGLAP splitting kernels, with } \mathrm{z}=\text { energy fraction }=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right) \\
& \\
&
\end{aligned}\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
$$

This is the basis of the original PYTHIA and HERWIG showers
Both implement modifications to account for coherence in the soft (eikonal) limit
Soft (eikonal) Limit: an emitted gluon having vanishing energy

$$
\begin{aligned}
& \text { Gluon } \mathrm{j} \rightarrow \text { "soft": Coherence } \rightarrow \text { Parton } \mathrm{j} \text { really emitted by (i,k) "colour antenna" } \\
& \qquad\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
\end{aligned}
$$

This is the basis of most modern showers; called dipole or antenna showers
These implement additional terms to obtain the correct collinear (DGLAP) limits

PERTURBATIVE AMBIGUITIES

The final states generated by a shower algorithm will depend on

\author{

1. The choice of perturbative evolution variable(s) $t^{[i]}$.
 Ordering \& Evolutionscale choices
 2. The choice of phase-space mapping $\mathrm{d} \Phi_{n+1}^{[i]} / \mathrm{d} \Phi_{n}$.
 $\longleftarrow \quad$ Recoils, kinematics
}
2. The choice of radiation functions a_{i}, as a function of the phase-space variables.
3. The choice of renormalization scale function μ_{R}.

Non-singular terms,
Reparametrizations, Subleading Colour
5. Choices of starting and ending scales.

Phase-space limits / suppressions for hard radiation and choice of hadronization scale
\rightarrow gives us additional handles for uncertainty estimates, beyond just μ_{R}
(+ ambiguities can be reduced by including more pQCD \rightarrow matching!)

(ADVERTISEMENT: UNCERTAINTIES IN PARTON SHOWERS)

Recently, HERWIG, PYTHIA \& SHERPA all included automated calculations of shower uncertainties (based on tricks with the Sudakov algorithm)
Weight of event $=\{1,0.7,1.2, \ldots\}$

See also HERWIG++ : Bellm et al., arXiv:1605.08256

VINCIA:
Giele, Kosower PS; arXiv:1102.2126

Example 2:
Renormalisation
-scale and
Non-Singular

7000 GeV

FINAL TOPIC: COHERENCE

QED: Chudakov effect (mid-fifties)

emulsion plate
reduced
ionization ionization

COHERENCE AT WORK IN OCD

Example: quark-quark scattering in hadron collisions

Consider, for instance, scattering at 45°
2 possible colour flows :

Figure 4: Angular distribution of the first gluon emission in $q q \rightarrow q q$ scattering at 45°, for the two different color flows. The light (red) histogram shows the emission density for the forward flow, and the dark (blue) histogram shows the emission density for the backward flow.

DGLAP AND COHERENCE: ANGULAR ORDERING

Physics: (applies to any gauge theory)

Interference between emissions from colour-connected partons (e.g. i and k) \rightarrow coherent dipole patterns
DGLAP kernels, though incoherent a priori, can reproduce this pattern (at least in an azimuthally averaged sense) by angular ordering

Start from the M.E. factorisation formula in the soft limit

Soft Eikonal Facto
(write out 4-products)
Add and subtract $1 /\left(1-\cos \theta_{i j}\right)$ and $1 /\left(1-\cos \theta_{j k}\right)$ to isolate ij and jk collinear pieces

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \varphi_{i j}}{4 \pi}\left(\frac{1-\cos \theta_{i k}}{\left(1-\cos \theta_{i j}\right)\left(1-\cos \theta_{j k}\right)}+\frac{1}{1-\cos \theta_{i j}}-\frac{1}{1-\cos \theta_{j k}}\right)=\frac{1}{2\left(1-\cos \theta_{i j}\right)}\left(1+\frac{\cos \theta_{i j}-\cos \theta_{i k}}{\left|\cos \theta_{i j}-\cos \theta_{i k}\right|}\right)
$$

Take the ij piece and integrate over azimuthal angle $\mathrm{d} \varphi_{\mathrm{ij}}$ (using explicit momentum representations)
\Rightarrow Soft radiation averaged over $\varphi_{i j}$:

$$
\rightarrow \frac{1}{1-\cos \theta_{i j}} \quad \text { if } \theta_{\mathrm{ij}}<\theta_{\mathrm{ik}} ; \text { otherwise } 0
$$ kill radiation outside ik opening angle

mit Angular-ordered showers in HERWIG (\& angular Veto / rapidity-ordering in PYTHIA) Note: Dipole \& antenna showers include this effect point by point in φ (without averaging)

INITIAL-STATE VS FINAL-STATE EVOLUTION

Virtualities are
Timelike: $\mathrm{p}^{2>}>0$
Start at $\mathrm{Q}^{2}=\mathrm{Q}_{\mathrm{F}}{ }^{2}$
"Forwards evolution"

Virtualities are
Spacelike: $\mathrm{p}^{2}<0$
Start at $\mathrm{Q}^{2}=\mathrm{Q}_{\mathrm{F}}{ }^{2}$
Constrained backwards evolution
towards boundary condition = proton

Separation meaningful for collinear radiation, but not for soft ...

INITIAL-FINAL INTERFERENCE

A tricky aspect for many parton showers. Illustrates that quantum \neq classical !

Who emitted that gluon?

Real OFT = sum over amplitudes, then square \rightarrow interference (IF coherence) Respected by dipole/antenna languages (and by angular ordering, azimuthally averaged), but not by conventional DGLAP (\rightarrow all PDFs are "wrong")

> Separation meaningful for collinear radiation, but not for soft ...

TRACING THE COLOUR FLOW

MC generators use a simple set of rules for "colour flow" Based on "Leading Colour" (LC)

LC: gluons = outer products of

$$
8=\sqrt{3 \otimes} \overline{3} \mid
$$ triplet and antitriplet

$$
\left(\Rightarrow \text { valid to } \sim 1 / N_{C}^{2} \sim 10 \%\right)
$$

$g \rightarrow q \bar{q}$

Illustrations from PDG Review on MC Event Generators

$$
\begin{aligned}
& g \rightarrow g g \\
& \quad \text { ever }
\end{aligned} \Rightarrow
$$

COLOUR FLOW EXAMPLE

Showers (can) generate lots of partons, $\mathcal{O}(10-100)$.
Colour Flow used to determine between which partons confining potentials arise

```
Example: Z0 -> qq
```


Coherence of pQCD cascades \rightarrow suppression of "overlapping" systems
\rightarrow Leading-colour approximation pretty good
(LEP measurements in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow$ hadrons confirm this (at least to order $10 \% \sim 1 / \mathbb{N}_{c}{ }^{2}$))
Note: (much) more color getting kicked around in hadron collisions.
Signs that LC approximation is breaking down? \rightarrow Lecture 4

SUMMARY: TWO WAYS TO COMPUTE QUANTUM CORRECTIONS

Fixed Order Paradigm: consider a single physical process
Explicit solutions, process-by-process (often automated, eg MadGraph) Standard Model: typically NLO (+ many NNLO, not automated)
Beyond SM: typically LO or NLO
Accurate for hard process, to given perturbative order Limited generality

Event Generators (Showers): consider all physical processes
Universal solutions, applicable to any/all processes
Process-dependence $=$ subleading correction $(\rightarrow$ matrix-element corrections
/ matching / merging)
Maximum generality
Common property of all processes is, e.g., limits in which they factorise! Accurate in strongly ordered (soft/collinear) limits (=bulk of radiation)

Extra Slides

[^0]
FACTORISATION \Rightarrow WE CAN STILL CALCULATE!

Why is Fixed Order QCD not enough?
 : It requires all resolved scales >> ^ocd AND no large hierarchies

PDFs: connect incoming hadrons with the high-scale process
Fragmentation Functions: connect high-scale process with final-state hadrons
(each is a non-perturbative function modulated by initial- and final-state radiation)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections

In MCs: made exclusive as initial-state radiation + non-perturbative hadron (beam-remnant) structure
(+ multiple parton-parton interactions)

FFs: needed to compute (semi-)exclusive cross sections

In MCs: resonance decays, final-state radiation, hadronisation, hadron decays
(+ final-state interactions?)

Resummed pQCD: All resolved scales >> ^ocd AND X Infrared Safe

 ")pOCD = perturbative OCDWill take a closer look at both PDFs and final-state aspects (jets and showers) in the next lectures

DGLAP KERNELS

DGLAP: from collinear limit of MEs $\left(p_{b}+p_{c}\right)^{2 \rightarrow} \rightarrow 0$

+ evolution equation from invariance with respect to $\mathrm{Q}_{F} \rightarrow \mathrm{RGE}$
DGLAP
(E.g., PYTHIA)
$P_{\mathrm{q} \rightarrow \mathrm{qg}}(z)=C_{F} \frac{1+z^{2}}{1-z}$,
$\mathrm{d} \mathcal{P}_{a}=\sum_{b, c} \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} t \mathrm{~d} z$.
$P_{\mathrm{g} \rightarrow \mathrm{gg}}(z)=N_{C} \frac{(1-z(1-z))^{2}}{z(1-z)}$,
$P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}(z)=T_{R}\left(z^{2}+(1-z)^{2}\right)$,
a
$p_{b}=z p_{a}$
$p_{c}=(1-z) p_{a}$
$P_{\mathrm{q} \rightarrow \mathrm{q} \gamma}(z)=e_{\mathrm{q}}^{2} \frac{1+z^{2}}{1-z}$,
$P_{\ell \rightarrow \ell \gamma}(z)=e_{\ell}^{2} \frac{1+z^{2}}{1-z}$,

$$
\mathrm{d} t=\frac{\mathrm{d} Q^{2}}{Q^{2}}=\mathrm{d} \ln Q^{2}
$$

[^1]NB: dipoles, antennae, also have DGLAP kernels as their collinear limits

THE STRONG COUPLING

Bjorken scaling:

To first approximation, QCD is SCALE INVARIANT (a.k.a. conformal)

Jets inside jets inside jets
Loops (fluctuations) inside loops inside loops ...

If the strong coupling didn't "run", this would be absolutely true (e.g., $\mathrm{N}=4$ Supersymmetric Yang-Mills) Since $\alpha_{\text {s }}$ only runs slowly (logarithmically) \rightarrow can still gain insight from fractal analogy (\rightarrow lecture 2 on showers)

Note: I use the terms "conformal" and "scale invariant" interchangeably
Strictly speaking, conformal (angle-preserving) symmetry is more restrictive than just scale invariance

MANY WAYS TO SKIN A CAT

The strong coupling is (one of) the main perturbative parameter(s) in event generators. It controls:

- The overall amount of QCD initial- and final-state radiation
- Strong-interaction cross sections (and resonance decays)
- The rate of (mini)jets in the underlying event

MCs: get value from: PDG?
PDFs? Fits to
data (tuning)?

Example (for Final-State Radiation):

will undershoot LEP 3-jet rate by ~ 10% (unless combined with NLO 3-jet ME)

PYTHIA : tuning to LEP 3-jet rate; requires ~ 20\% increase
TimeShower:alphaSvalue default $=\mathbf{0 . 1 3 6 5}$
TimeShower:alphaSorder default = 1
TimeShower:alphaSuseCMW default = off

EVOLUTION EQUATIONS

What we need is a differential equation

Boundary condition: a few partons defined at a high scale (Q_{F})
Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff $\sim 1 \mathrm{GeV}$) \rightarrow It's an evolution equation in Q_{F}

Close analogue: nuclear decay
decays $\frac{\mathrm{d} P(t)}{\mathrm{d} t}=c_{N}$

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

Decay probability per unit time

$$
=1-c_{N} \Delta t+\mathcal{O}\left(c_{N}^{2}\right)
$$

$$
\frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{~d} t}=c_{N} \Delta\left(t_{1}, t\right)
$$

(respects that each of the original nuclei
$\Delta\left(t_{1}, t_{2}\right)$: "Sudakov Factor" can only decay if not decayed already)

THE SUDAKOV FACTOR

In nuclear decay, the Sudakov factor counts:
How many nuclei remain undecayed after a time t

Probability to remain undecayed in the time interval [$\left.t_{1}, t_{2}\right]$

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

The Sudakov factor for a parton system "counts":
The probability that the parton system doesn't evolve (branch) when we run the factorization scale ($\sim 1 /$ time) from a high to a low scale Evolution probability per unit "time"

NUCLEAR DECAY

A SHOWER ALGORITHM

$\longrightarrow 1$. For each evolver, generate a random number $R \in[0,1]$
Solve equation $R=\Delta\left(t_{1}, t\right)$ for t (with starting scale $\left.t_{l}\right)$
Analytically for simple splitting kernels, else numerically and/or by trial+veto
\rightarrow t scale for next (trial) branching
2. Generate another Random Number, $\mathrm{R}_{\mathrm{z}} \in[0,1]$

To find second (linearly independent) phase-space invariant
Solve equation $\quad R_{z}=\frac{I_{z}(z, t)}{I_{z}\left(z_{\max }(t), t\right)}$ for z (at scale t)

$$
\text { With the "primitive function" } \quad I_{z}(z, t)=\left.\int_{z_{\min }(t)}^{z} \mathrm{~d} z \frac{\mathrm{~d} \Delta\left(t^{\prime}\right)}{\mathrm{d} t^{\prime}}\right|_{t^{\prime}=t}
$$

3. Generate a third Random Number, $\mathrm{R}_{\varphi} \in[0,1]$

Solve equation $R_{\varphi}=\varphi / 2 \pi$ for $\varphi \rightarrow$ Can now do 3D branching
Accept/Reject based on full kinematics. Update $\mathrm{t}_{1}=\mathrm{t}$. Repeat.

IF YOU WANT TO PLAY WITH RANDOM NUMBERS

I will not tell you how to write a Random-number generator. (For that, see the references in the writeup.)

Instead, I assume that you can write a computer code and link to a random-number generator, from a library
E.g., ROOT includes one that you can use if you like.

PYTHIA also includes one

From the PYTHIA 8 HTML documentation, under "Random Numbers":

Random numbers R uniformly distributed in $0<R<1$ are obtained with Pythia8: :Rndm: :flat();

+ Other methods for exp, x^{\star} exp, 1D Gauss, 2D Gauss.

[^0]: + Supporting Lecture Notes (~80 pages): "Introduction to QCD", arXiv:1207.2389
 + MCnet Review: "General-Purpose Event Generators", Phys.Rept.504(2011)145

[^1]: ... with Q2 some measure of "hardness"
 = event/jet resolution measuring parton virtualities / formation time / ...

