Introduction to Event Generators

Lecture 2: Parton Showers

RECAP: THE STRUCTURE OF QUANTUM FIELDS

What we actually see when we look at a "jet" (or inside a proton)

An ever-repeating self-similar pattern of quantum fluctuations

At increasingly smaller energies or distances: scaling
(modulo $\alpha_{s}(\mathrm{Q})$ scaling violation)
To our best knowledge, this is what a fundamental ('elementary') particle really looks like

RECAP: THE STRUCTURE OF QUANTUM FIELDS

What we actually see when we look at a "jet" (or inside a proton)

An ever-repeating self-similar pattern of quantum fluctuations

At increasingly smaller energies or distances: scaling (modulo $\alpha_{s}(\mathrm{Q})$ scaling violation)

To our best knowledge, this is what a fundamental ('elementary') particle really looks like

Nature makes copious use of such structures - Fractals

THE STRUCTURE OF JETS

Most bremsstrahlung is driven by divergent propagators \rightarrow simple structure

Amplitudes factorise in singular

 limits (\rightarrow universal "scale-invariant" or "conformal" structure)

$$
\begin{aligned}
& \text { Partons ab } \rightarrow \quad \text { P(z) }=\text { DGLAP splitting kernels, with } \mathrm{z}=\text { energy fraction }=\mathrm{E}_{a} /\left(\mathrm{E}_{\mathrm{o}}+\mathrm{E}_{\mathrm{b}}\right) \\
& \text { "collinear": } \\
& \\
& \left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{aligned}
$$

$$
\text { Gluon } \mathrm{j} \rightarrow \text { "soft": Coherence } \rightarrow \text { Parton } \mathrm{j} \text { really emitted by }(\mathrm{i}, \mathrm{k}) \text { "colour antenna" }
$$

$$
\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

$$
+ \text { scaling violation: } g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(\mathrm{Q}^{2}\right)
$$

Can apply this many times \rightarrow nested factorizations

SCALING QCD, IN ACTION

Naively, QCD radiation suppressed by $\alpha_{\mathrm{s}} \approx 0.1$
\rightarrow Truncate at fixed order $=$ LO, NLO, \ldots
But beware the jet-within-a-jet-within-a-jet ...

Example: 100 GeV can be "soft" at the LHC

SUSY pair production at LHC_{14}, with $\mathrm{M}_{\text {SUSY }} \approx 600 \mathrm{GeV}$

LHC - spsla - m~600 GeV						
Plehn, Rainwater, PS PLB645(2007)217						
FIXED ORDER pQCD $\sigma_{\text {tot }}[\mathrm{pb}]$ $\tilde{g} \tilde{g}$ $\tilde{u}_{L} \tilde{g}$ $\tilde{u}_{L} \tilde{u}_{L}^{*}$ $\tilde{u}_{L} \tilde{u}_{L}$ $T T$ $p_{T, j}>100 \mathrm{GeV}$ $\sigma_{0 j}$ 4.83 5.65 0.286 0.502 1.30 inclusive $\mathbf{X}+\mathbf{1}$ "jet" $\rightarrow \sigma_{1 j}$ 2.89 2.74 0.136 0.145 0.73 inclusive $\mathbf{X}+\mathbf{2}$ "jets" $\sigma_{2 j}$ 1.09 0.85 0.049 0.039 0.26						

```
\sigma for X + jets much larger than naive factor- \(\alpha_{s}\) estimate
```

$p_{T, j} \ngtr 50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

(Computed with SUSY-MadGraph)
All the scales are high, $\mathrm{Q} \gg 1 \mathrm{GeV}$, so perturbation theory should be OK

RECAP: APROPOS FACTORISATION

Why are Fixed-Order QCD matrix elements not enough?

F.O. QCD requires Large scales (α_{s} small enough to be perturbative \rightarrow high-scale processes)

PARTON SHOWERS

So it's not like you can put a cut at X (e.g., 50 , or even 100) GeV and say: "ok, now fixed-order matrix elements will be OK"

Harder Processes are Accompanied by Harder Jets

The hard scale $\mathrm{Q}_{\text {HARD }}$ of your process will "start off" the fractal
Sooner or later you will resolve bremsstrahlung structure (when $\mathrm{Q}_{\text {Resolved }} / \mathrm{Q}_{\text {HARD }} \ll 1$)
Extra radiation:
Will generate corrections to your kinematics
Is an unavoidable aspect of the quantum description of quarks and gluons (no such thing as a "bare" quark or gluon; they always depend on how you look at them)
Extra jets from bremsstrahlung can be important combinatorial background especially if you are looking for decay jets of similar p_{T} scales (often, $\Delta M \ll M$)

> This is what parton showers are for

BREMSSTRAHLUNG

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \quad \ldots
\end{aligned}
$$

BREMSSTRAHLUNG

$$
\text { For any basic process } d \sigma_{X}=\checkmark \quad \text { (calculated process by process) }
$$

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2}
\end{aligned}
$$

NB: here just iterating a single eikonal emission; should really sum over all emitters.

Could also have built an approximation from iterating collinear emissions (DGLAP)

Singularities: universal (mandated by gauge theory)
Non-singular terms: process-dependent

> "SOFT" "COLLINEAR"

$$
\begin{array}{r}
\frac{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right] \\
\frac{\left|\mathcal{M}\left(H^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(H^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}+2\right)\right]
\end{array}
$$

"SOFT" "COLLINEAR" +F

BREMSSTRAHLUNG

$$
\text { For any basic process } d \sigma_{X}=\checkmark \quad \text { (calculated process by process) }
$$

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \quad \ldots
\end{aligned}
$$

Iterated factorization

Gives us a universal approximation to ∞-order tree-level cross sections.
Exact in singular (strongly ordered) limit.
Non-singular terms (non-universal) \rightarrow Uncertainties for hard radiation

$$
\text { But something is not right ... Total } \sigma \text { would be infinite ... }
$$

LOOPS AND LEGS

Coefficients of the Perturbative Series

Born @ LO

$$
\sigma_{\text {Born }}=\int\left|M_{X}^{(0)}\right|^{2}
$$

$X^{(2)}$	$X+1^{(2)}$	\ldots
$X^{(1)}$	$X+1^{(1)}$	\ldots
Born	$X+1^{(0)}$	$X+2^{(0)}$

Born + n @ LO

$$
\sigma_{\mathrm{X}+1}^{\mathrm{LO}}(R)=\int_{R}\left|M_{X+1}^{(0)}\right|^{2}
$$

$\mathrm{X}^{(2)}$	$\mathrm{X}+1^{(2)}$	\ldots
$\mathrm{X}^{(1)}$	$\mathrm{X}+1^{(1)}$	\ldots
Born	$\mathrm{X}+1^{(0)}$	$\mathrm{X}+2^{(0)}$

$\frac{\left|M_{X+1}\right|^{2}}{\left|M_{X}\right|^{2}} \propto g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right]$
Divergent (when s_{ij} and/or $\mathrm{s}_{\mathrm{jk}} \rightarrow 0$): Integral \rightarrow Logarithms
$\Rightarrow \mathrm{R}=$ some "Infrared Safe" phase space region (E.g., cut on $p_{\perp}, \Delta R$)
\rightarrow Lecture 3

Careful not to take it too low!

UNITARITY (AT NLO)

NLO:

$$
\begin{aligned}
& q_{q}^{q} \sum_{q}^{q u m m} \\
& \sigma_{\mathrm{X}}^{\mathrm{NLO}}=\int\left|M_{X}^{(0)}\right|^{2}+\int\left|M_{X+1}^{(0)}\right|^{2}+\int 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0) *}\right] \\
& \text { IR singularities } \\
& \text { (from poles of propagators going on } \\
& \text { shell when integrating to } \mathrm{Q}^{2} \rightarrow 0 \text {) } \\
& \text { IR singularities } \\
& \text { (from poles of propagators going on shell } \\
& \text { when integrating over gluon virtuality) }
\end{aligned}
$$

In IR limits, the $X+1$ final state is indistinguishable from an $X+0$ one
\rightarrow singularities must always* sum together ($\&$ they cancel!)

$$
\sigma_{\mathrm{NLO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=\sigma_{\mathrm{LO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\left(\frac{\alpha_{s}\left(E_{\mathrm{CM}}\right)}{\pi}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

Sum of real and virtual $O\left(\alpha_{s}\right)$ nonsingular; *) for so-called IR safe observables; discussed in Lecture 3 no IR regulator dependence

UNITARITY \rightarrow EVOLUTION (RESUMMATION)

Probability for nothing to happen (\sim virtual + unresolved-real) + Probability for something to happen (\sim resolved real) $=1$

Unitarity: sum(probability) $=1$

Kinoshita-Lee-Nauenberg (sum over degenerate quantum states = finite; infinities must cancel)

$$
\text { Loop }=-\int \text { Tree }+F
$$

Parton Showers neglect F \rightarrow "Leading-Logarithmic" (LL) Approximation

Imposed by Event evolution: "detailed balance"

When (X) branches to $(X+1)$: Gain one $(X+1)$. Loose one (X).
Differential equation with evolution kernel $\frac{d \sigma_{X+1}}{d \sigma_{X}}$ (or, typically, a soft/collinear approximation thereof) $d \sigma_{X}$
Evolve in some measure of resolution \sim hardness, 1/time $\ldots \sim$ fractal scale + account for scaling violation via quark masses and $g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(Q^{2}\right)$
\rightarrow includes both real (tree) and virtual (loop) corrections, to arbitrary order

EVOLUTION ~ FINE-GRAINING

(E.g., starting from QCD $2 \rightarrow 2$)

$$
Q \ll Q_{\mathrm{HARD}}
$$

$$
Q \sim Q_{\mathrm{HARD}}
$$

At most inclusive level "Everything is 2 jets"

Fixed order: $\sigma_{\text {inclusive }}$
$Q_{\text {HARD }} / Q<$ "A few"

At (slightly) finer resolutions, some events have 3 , or 4 jets

$$
\begin{aligned}
& \text { Fixed order: } \\
& \sigma_{x+n} \sim \alpha_{s}^{n} \sigma_{x}
\end{aligned}
$$

Scale Hierarchy!

At high resolution, most events have >2 jets

Fixed order diverges:

$$
\sigma_{X+n} \sim \alpha_{s}^{n} \ln ^{2 n}\left(\mathrm{O} / Q_{H A R D}\right) \sigma_{X}
$$

Unitarity: Reinterpret as number of emissions diverging, while cross section remains $\sigma_{\text {inclusive }}$

EVOLUTION EQUATIONS

What we need is a differential equation

Boundary condition: a few partons defined at a high scale (Q_{F})
Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff $\sim 1 \mathrm{GeV}$) \rightarrow It's an evolution equation in Q_{F}

Close analogue: nuclear decay
Evolve an unstable nucleus. Check if it decays + follow chains of decays.

Decay constant

$$
\frac{\mathrm{d} P(t)}{\mathrm{d} t}=c_{N}
$$ interval [$\mathrm{t}_{1}, \mathrm{t}_{2}$]

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

Decay probability per unit time

$$
=1-c_{N} \Delta t+\mathcal{O}\left(c_{N}^{2}\right)
$$

$$
\Delta\left(t_{1}, t_{2}\right) \text { : "Sudakov Factor" }
$$

(respects that each of the original nuclei can only decay if not decayed already)

THE SUDAKOV FACTOR

In nuclear decay, the Sudakov factor counts:
How many nuclei remain undecayed after a time t
Probability to remain undecayed in the time interval $\left[t_{1}, t_{2}\right]$

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

The Sudakov factor for a parton system "counts":
The probability that the parton system doesn't evolve (branch) when we run the factorization scale ($\sim 1 /$ time) from a high to a low scale (i.e., that there is no state change)

Evolution probability per unit "time"

$$
\frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{~d} t}=c_{N} \Delta\left(t_{1}, t\right)
$$

NUCLEAR DECAY

A SHOWER ALGORITHM

$\longrightarrow 1$. For each evolver, generate a random number $R \in[0,1]$
Solve equation $R=\Delta\left(t_{1}, t\right)$ for t (with starting scale t_{l}) Analytically for simple splitting kernels, else numerically and/or by trial+veto
\rightarrow t scale for next (trial) branching
2. Generate another Random Number, $\mathrm{R}_{\mathrm{z}} \in[0,1]$

To find second (linearly independent) phase-space invariant
Solve equation $\quad R_{z}=\frac{I_{z}(z, t)}{I_{z}\left(z_{\max }(t), t\right)}$ for z (at scale t

$$
\text { With the "primitive function" } \quad I_{z}(z, t)=\left.\int_{z_{\min }(t)}^{z} \mathrm{~d} z \frac{\mathrm{~d} \Delta\left(t^{\prime}\right)}{\mathrm{d} t^{\prime}}\right|_{t^{\prime}=t}
$$

3. Generate a third Random Number, $\mathrm{R}_{\varphi} \in[0,1]$

Solve equation $R_{\varphi}=\varphi / 2 \pi$ for $\varphi \rightarrow$ Can now do 3D branching
Accept/Reject based on full kinematics. Update $\mathrm{t}_{1}=\mathrm{t}$. Repeat.

BOOTSTRAPPED PERTURBATION THEORY

Start from an arbitrary lowest-order process (green = OFT amplitude squared)
Parton showers generate the (LL) bremsstrahlung terms of the rest of the perturbative series (approximate infinite-order resummation)

Note! LL \neq full QCD! (\rightarrow matching, merging, MECs)
(real corrections)

WHAT ARE THE EVOLUTION KERNELS?

Recall: two universal (bremsstrahlung) limits:
Collinear (DGLAP) Limit: two partons becoming parallel

$$
\begin{aligned}
& \text { Partons ab } \rightarrow \quad \mathrm{P}(\mathrm{z})=\text { DGLAP splitting kernels, with } \mathrm{z}=\text { energy fraction }=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}\right. \\
& \text { "collinear": } \\
& \\
& \left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{aligned}
$$

Soft (eikonal) Limit: an emitted gluon having vanishing energy

$$
\begin{aligned}
\text { Gluon } \mathrm{j} \rightarrow & \text { "soft": Coherence } \rightarrow \text { Parton } \mathrm{j} \text { really emitted by }(\mathrm{i}, \mathrm{k}) \text { "colour antenna" } \\
& \left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
\end{aligned}
$$

\rightarrow can build different types of parton showers (and, in general, different kinds of resummations)

TYPES OF PARTON SHOWERS

(

Parton Shower (DGLAP)	a_{I}	$a_{I}+a_{K}$
Coherent Parton Shower (HERWIG [12,40], Pythia6 [11])	$\Theta_{I} a_{I}$	$\Theta_{I} a_{I}+\Theta_{K} a_{K}$
Global Dipole-Antenna (ARIADNE [17], GGG [36], WK [32],	$a_{I K}+a_{H I}$	$a_{I K}$
VINCIA)	$\Theta_{I K} a_{I K}+\Theta_{H I} a_{H I}$	$a_{I K}$
Sector Dipole-Antenna (LP [41], VINCIA)	$a_{I, K}+a_{K, I}$	
Partitioned-Dipole Shower (SK [23], NS [42], DTW [24],	$a_{I, K}+a_{I, H}$	
PYtHIA8 [38], SHERPA, DIRE)		

Starting from collinear (parton) limit:

DGLAP evolution, collinear factorisation (MSbar PDFs) "Conventional Parton Showers" : earliest shower models
Modified for correct soft limits: angular ordering* (or vetos), (CS) Dipole showers

Starting from soft (dipole) limit:

DLA (only double-pole piece), eikonal approximations Extended to include DGLAP collinear limits: (Lund) Dipole / Antenna showers

EXAMPLE: DGLAP KERNELS

DGLAP: from collinear limit of MEs $\left(p_{b}+p_{c}\right)^{2} \rightarrow 0$

+ evolution equation from invariance with respect to $\mathrm{Q}_{\mathrm{F}} \rightarrow \mathrm{RGE}$

$$
\xrightarrow[a]{\substack{\text { DGLAP } \\ \text { (E.g., PYTHIA) } \\ \mathcal{P}_{a}=\sum_{b, c} \frac{\alpha_{a b c}}{2 \pi}} \overbrace{\substack{b \\ p_{b}=z p_{a} \\ p_{c}=(1-z) p_{a}}}^{c} P_{a \rightarrow b c}(z) \mathrm{d} t \mathrm{~d} z \text {. }}
$$

$$
P_{\mathrm{q} \rightarrow \mathrm{qg}}(z)=C_{F} \frac{1+z^{2}}{1-z},
$$

$$
P_{\mathrm{g} \rightarrow \mathrm{gg}}(z)=N_{C} \frac{(1-z(1-z))^{2}}{z(1-z)}
$$

$$
P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}(z)=T_{R}\left(z^{2}+(1-z)^{2}\right),
$$

$$
P_{\mathrm{q} \rightarrow \mathrm{q} \gamma}(z)=e_{\mathrm{q}}^{2} \frac{1+z^{2}}{1-z},
$$

$$
P_{\ell \rightarrow \ell \gamma}(z)=e_{\ell}^{2} \frac{1+z^{2}}{1-z}
$$

$$
\mathrm{d} t=\frac{\mathrm{d} Q^{2}}{Q^{2}}=\mathrm{d} \ln Q^{2}
$$

$$
\begin{gathered}
\text {... with } \mathrm{Q}^{2} \text { some measure of "hardness" } \\
\quad=\text { event/jet resolution } \\
\text { measuring parton virtualities / formation time / ... }
\end{gathered}
$$

NB: dipoles, antennae, also have DGLAP kernels as their collinear limits

COHERENCE

QED: Chudakov effect (mid-fifties)

emulsion plate
reduced ionization ionization

DGLAP AND COHERENCE: ANGULAR ORDERING

Physics: (applies to any gauge theory)
Interference between emissions from colour-connected partons (e.g. i and k$) \rightarrow$ coherent dipole patterns
(More complicated multipole effects beyond leading colour; ignored he
 DGLAP kernels, though incoherent a priori, can reproduce this pattern (at least in an azimuthally averaged sense) by angular ordering

Start from the M.E. factorisation formula in the soft limit

$\int_{0}^{2 \pi} \frac{d \varphi_{i j}}{4 \pi}\left(\frac{1-\cos \theta_{i k}}{\left(1-\cos \theta_{i j}\right)\left(1-\cos \theta_{j k}\right)}+\frac{1}{1-\cos \theta_{i j}}-\frac{1}{1-\cos \theta_{j k}}\right)=\frac{1}{2\left(1-\cos \theta_{i j}\right)}\left(1+\frac{\cos \theta_{i j}-\cos \theta_{i k}}{\left|\cos \theta_{i j}-\cos \theta_{i k}\right|}\right)$
Take the ij piece and integrate over azimuthal angle $\mathrm{d} \varphi_{\mathrm{ij}}$ (using explicit momentum representations)
\Rightarrow Soft radiation

$$
\rightarrow \frac{1}{1-\cos \theta_{i j}}
$$

if $\theta_{\mathrm{ij}}<\theta_{\mathrm{ik}}$; otherwise 0
averaged over $\varphi_{i j}$: kill radiation outside ik opening angle

COHERENCE AT WORK IN QCD

Example: quark-quark scattering in hadron collisions

Consider, for instance, scattering at 45°

2 possible colour flows :

Figure 4: Angular distribution of the first gluon emission in $q q \rightarrow q q$ scattering at 45°, for the two different color flows. The light (red) histogram shows the emission density for the forward flow, and the dark (blue) histogram shows the emission density for the backward flow.

Another nice physics example is the SM contribution to the Tevatron top-quark forward-backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

INITIAL-STATE VS FINAL-STATE EVOLUTION

Virtualities are
Timelike: $\mathrm{p}^{2}>0$
Start at $\mathrm{Q}^{2}=\mathrm{Q}_{\mathrm{F}}{ }^{2}$
"Forwards evolution"

Virtualities are
Spacelike: $\mathrm{p}^{2}<0$
Start at $\mathrm{Q}^{2}=\mathrm{Q}_{\mathrm{F}}{ }^{2}$
Constrained backwards evolution
towards boundary condition = proton

> Separation meaningful for collinear radiation, but not for soft ...

INITIAL-FINAL INTERFERENCE

A tricky aspect for many parton showers. Illustrates that quantum \neq classical !

Who emitted that gluon?

Real QFT = sum over amplitudes, then square \rightarrow interference (IF coherence) Respected by dipole/antenna languages (and by angular ordering, azimuthally averaged), but not by conventional DGLAP (\rightarrow all PDFs are "wrong")

> Separation meaningful for collinear radiation, but not for soft ...

PERTURBATIVE AMBIGUITIES

The final states generated by a shower algorithm will depend on

\author{

1. The choice of perturbative evolution variable(s) $t^{[i]}$.
 Ordering \& Evolution-
 scale choices
 2. The choice of phase-space mapping $\mathrm{d} \Phi_{n+1}^{[i]} / \mathrm{d} \Phi_{n}$.
 $\longleftarrow \quad$ Recoils, kinematics
}
2. The choice of radiation functions a_{i}, as a function of the phase-space variables.
3. The choice of renormalization scale function μ_{R}.

Non-singular terms,
Reparametrizations, Subleading Colour
5. Choices of starting and ending scales.

Phase-space limits / suppressions for hard radiation and choice of hadronization scale
\rightarrow gives us additional handles for uncertainty estimates, beyond just μ_{R}
(+ ambiguities can be reduced by including more pQCD \rightarrow matching!)

(ADVERTISEMENT: UNCERTAINTIES IN PARTON SHOWERS)

Recently, HERWIG, PYTHIA \& SHERPA all published papers on automated calculations of shower uncertainties (based on tricks with the Sudakov algorithm) Weight of event $=\{1,0.7,1.2, \ldots\}$

Encouraged to start using those, and provide feedback

SUMMARY: TWO WAYS TO COMPUTE QUANTUM CORRECTIONS

Fixed Order Paradigm: consider a single physical process
Explicit solutions, process-by-process (to some extent automated)
Standard-Model: typically NLO or NNLO
Beyond-SM: typically LO or NLO
Accurate for hard process, to given perturbative order
Limited generality
Event Generators (Showers): consider all physical processes
Universal solutions, applicable to any/all processes
Process-dependence $=$ subleading correction $(\rightarrow$ matrix-element
corrections)
Maximum generality
Common property of all processes is, e.g., limits in which they factorise!
Accurate in strongly ordered (soft/collinear) limits (=bulk of radiation)

From $\overline{\mathrm{MS}}$ to MC

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes

$$
P\left(\alpha_{s}, z\right)=\frac{\alpha_{s}}{2 \pi} \stackrel{A}{\natural}_{F}^{(1)} \frac{1+z^{2}}{1-z}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \frac{A^{(2)}}{1-z}
$$

Eg Analytic resummation (in Mellin space): General Structure

$$
\begin{aligned}
& \propto \exp \left[\int_{0}^{1} d z \frac{z^{N-1}-1}{1-z}\left[\int \frac{d p_{\perp}^{2}}{p_{\perp}^{2}}\left(A\left(\alpha_{s}\right)+B\left(\alpha_{s}\right)\right)\right]\right] \\
& A\left(\alpha_{s}\right)=A^{(1)} \underline{\alpha_{s}}+A^{(2)}\left(\frac{\alpha_{s}}{m}\right)^{2}+\ldots B^{(1)}=-3 C_{F} / 2 \\
& A^{(2)}=\frac{1}{2} C_{F}\left(C_{A}\left(\frac{67}{18}-\frac{1}{6} \pi^{2}\right)-\frac{5}{9} N_{F}\right)=\frac{1}{2} C_{F} K_{\mathrm{CMW}} \\
& \text { Replace } \\
& \text { (for } z \rightarrow 1 \text { : soft gluon limit): } \\
& P_{i}\left(\alpha_{s}, z\right)=\frac{C_{i} \frac{\alpha_{s}}{\pi}\left(1+K_{\mathrm{CMW}} \frac{\alpha_{s}}{2 \pi}\right)}{1-z}
\end{aligned}
$$

From $\overline{\mathrm{MS}}$ to MC

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes

$$
P\left(\alpha_{s}, z\right)=\frac{\alpha_{s}}{2 \pi} \stackrel{A}{\swarrow}_{F}^{(1)} \frac{1+z^{2}}{1-z}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \frac{A^{(2)}}{1-z}
$$

Replace

(for $z \rightarrow 1$: soft gluon limit):

$$
P_{i}\left(\alpha_{s}, z\right)=\frac{C_{i} \frac{\alpha_{s}}{\pi}\left(1+K_{\mathrm{CMW}} \frac{\alpha_{s}}{2 \pi}\right)}{1-z}
$$

$$
\begin{gathered}
\alpha_{s}^{(\mathrm{MC})}=\alpha_{s}^{(\overline{\mathrm{MS}})}\left(1+K_{\mathrm{CMW}} \frac{\alpha_{s}^{(\overline{\mathrm{MS}})}}{2 \pi}\right) \\
\Lambda_{\mathrm{MC}}=\Lambda_{\overline{\mathrm{MS}}} \exp \left(\frac{K_{\mathrm{CMW}}}{4 \pi \beta_{0}}\right) \sim 1.57 \Lambda_{\overline{\mathrm{MS}}} \\
\text { (for } \mathrm{nF}=5 \text {) }
\end{gathered}
$$

Main Point:
 Doing an

 uncompensated scale variation actually ruins this resultAmati, Bassetto, Ciafaloni, Marchesini, Veneziano, 1980

JACK OF ALL ORDERS, MASTER OF NONE?

Nice to have all-orders solution

But it is only exact in the singular (soft \& collinear) limits
\rightarrow gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: visible, extra jets
... which is exactly where fixed-order calculations work!

So combine them!

$Z \rightarrow 3$ Jets

Size of NLO "K" factor over phase space

(a) $\mu_{\mathrm{PS}}=\sqrt{s}$
(b) $\mu_{\mathrm{PS}}=p_{\perp}$

The "CMW" factor
$k_{\mathrm{CMW}}=\exp \left(\frac{67-3 \pi^{2}-10 n_{F} / 3}{2\left(33-2 n_{F}\right)}\right)=\left\{\begin{array}{l}1.513 n_{F}=6 \\ 1.569 n_{F}=5 \\ 1.618 n_{F}=4 \\ 1.661 n_{F}=3\end{array}\right.$
: Constant shift by

$$
\frac{\alpha_{s}}{2 \pi} \frac{\beta_{0}}{2} \ln \left(k_{\mathrm{CMW}}^{2}\right) \sim 0.07
$$

(b) $\mu_{\mathrm{PS}}=p_{\perp}$

$\mu_{\mathrm{PS}}=p_{\perp}$, with CMW

2 Loop: $\quad \alpha_{s}\left(M_{z}\right)=0.12 \quad \Lambda_{3}=0.37 \quad \Lambda_{4}=0.32 \quad \Lambda_{5}=0.23$
1 Loop: $\quad \alpha_{s}\left(M_{z}\right)=0.14 \quad \Lambda_{3}=0.37 \quad \Lambda_{4}=0.33 \quad \Lambda_{5}=0.26$

(INITIAL-STATE EVOLUTION)

DGLAP for Parton Density

$$
\frac{\mathrm{d} f_{b}(x, t)}{\mathrm{d} t}=\sum_{a, c} \int \frac{\mathrm{~d} x^{\prime}}{x^{\prime}} f_{a}\left(x^{\prime}, t\right) \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}\left(\frac{x}{x^{\prime}}\right)
$$

\rightarrow Sudakov for ISR

$$
\begin{aligned}
\Delta\left(x, t_{\max }, t\right) & =\exp \left\{-\int_{t}^{t_{\max }} \mathrm{d} t^{\prime} \sum_{a, c} \int \frac{\mathrm{~d} x^{\prime}}{x^{\prime}} \frac{f_{a}\left(x^{\prime}, t^{\prime}\right)}{f_{b}\left(x, t^{\prime}\right)} \frac{\alpha_{a b c}\left(t^{\prime}\right)}{2 \pi} P_{a \rightarrow b c}\left(\frac{x}{x^{\prime}}\right)\right\} \\
& =\exp \left\{-\int_{t}^{t_{\max }} \mathrm{d} t^{\prime} \sum_{a, c} \int \mathrm{~d} z \frac{\alpha_{a b c}\left(t^{\prime}\right)}{2 \pi} P_{a \rightarrow b c}(z) \frac{x^{\prime} f_{a}\left(x^{\prime}, t^{\prime}\right)}{x f_{b}\left(x, t^{\prime}\right)}\right\}
\end{aligned}
$$

THE SHOWER OPERATOR

$$
\text { Born }\left.\frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\text {Born }}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right) \quad \mathrm{H}=\text { Hard proct }
$$

But instead of evaluating O directly on the Born final state, first insert a showering operator

$$
\left.\begin{gathered}
\quad \text { Born } \\
+ \text { shower }
\end{gathered} \frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\mathcal{S}}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right) \quad \begin{gathered}
\text { s : showering operator }
\end{gathered}
$$

Unitarity: to first order, S does nothing

$$
\mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right)=\delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right)+\mathcal{O}\left(\alpha_{s}\right)
$$

THE SHOWER OPERATOR

To ALL Orders

(Markov Chain)

$$
\begin{aligned}
S\left(\{p\}_{X}, \mathcal{O}\right)= & \underset{\substack{\text { "Nothing Happens" } \rightarrow \text { "Evaluate Observable" }}}{\Delta\left(t_{\text {start }}, t_{\text {had }}\right) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{X}\right)\right)} \\
& -\int_{t_{\text {start }}}^{t_{\text {had }}} \mathrm{d} t \frac{\mathrm{~d} \Delta\left(t_{\text {start }}, t\right)}{\mathrm{d} t} S\left(\{p\}_{X+1}, \mathcal{O}\right) \\
& \text { "Something Happens" } \rightarrow \text { "Continue Shower" }
\end{aligned}
$$

All-orders Probability that nothing happens

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} \mathrm{~d} t \frac{\mathrm{~d} \mathcal{P}}{\mathrm{~d} t}\right)
$$

(Exponentiation)
Analogous to nuclear decay
$N(t) \approx N(0) \exp (-c t)$

