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RECAP: THE STRUCTURE OF QUANTUM FIELDS
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๏What we actually see when we 
look at a “jet” (or inside a proton)  

•An ever-repeating self-similar pattern of 
quantum fluctuations  
•At increasingly smaller energies or 
distances : scaling 
•To our best knowledge, this is what a 
fundamental (‘elementary’) particle 
really looks like 

๏

(modulo αs(Q) scaling violation)
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๏What we actually see when we 
look at a “jet” (or inside a proton)  

•An ever-repeating self-similar pattern of 
quantum fluctuations  
•At increasingly smaller energies or 
distances : scaling 
•To our best knowledge, this is what a 
fundamental (‘elementary’) particle 
really looks like 

๏Nature makes copious use of such 
structures - Fractals 

•

(this is not an 
elementary 
particle, but 
illustrates the 

principle)

(modulo αs(Q) scaling violation)



i

j

k

a

b

Partons ab → 
“collinear”:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

P(z) = DGLAP splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

/ 1

2(pa · pb)

+ scaling violation: gs2 → 4παs(Q2)

Gluon j → “soft”:

|MF+1(. . . , i, j, k. . . )|2
jg!0! g2sC

(pi · pk)
(pi · pj)(pj · pk)

|MF (. . . , i, k, . . . )|2
Coherence → Parton j really emitted by (i,k) “colour antenna” 

Can apply this many times 
→ nested factorizations 

THE STRUCTURE OF JETS
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Most bremsstrahlung is driven by 
divergent propagators → simple 
structure  

Amplitudes factorise in singular 
limits (→ universal “scale-invariant” 
or “conformal” structure)

hard process

Bremsstrahlung



Example:  
SUSY pair production at LHC14, with MSUSY ≈ 600 GeV 

SCALING QCD, IN ACTION
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๏Naively, QCD radiation suppressed by αs≈0.1 
•➙ Truncate at fixed order = LO, NLO, … 

๏   But beware the jet-within-a-jet-within-a-jet …

100 GeV can be “soft” at the LHC

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for X + jets much larger than 
naive factor-αs estimate

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for 50 GeV jets ≈ larger than 
total cross section  
→ what is going on?

All the scales are high, Q >> 1 GeV, so perturbation theory should be OK



•F.O. QCD also requires No hierarchies  
•Bremsstrahlung poles ∝1/Q2 integrated 
over phase space ∝dQ2 → logarithms  
•→ large if upper and lower integration 
limits are hierarchically different

210
QHARD

QBrems

RECAP: APROPOS FACTORISATION
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๏F.O. QCD requires Large scales (αs small enough to be 
perturbative → high-scale processes)

Why are Fixed-Order QCD matrix elements not enough?

QHARD [GeV]

1

ΛQCD

F.O. 
ME

10

100 large 
logs

perturbative

non-perturbative



PARTON SHOWERS
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๏So it’s not like you can put a cut at X (e.g., 50, or even 100) GeV and say: “ok, 
now fixed-order matrix elements will be OK” 

๏The hard scale QHARD of your process will “start off” the fractal 
•Sooner or later you will resolve bremsstrahlung structure (when QResolved/QHARD << 1) 

๏Extra radiation:  
•Will generate corrections to your kinematics 
•Is an unavoidable aspect of the quantum description of quarks and gluons (no 
such thing as a “bare” quark or gluon; they always depend on how you look at them) 
•Extra jets from bremsstrahlung can be important combinatorial background 
especially if you are looking for decay jets of similar pT scales (often, ΔM << M)

Harder Processes are Accompanied by Harder Jets

This is what parton showers are for 



BREMSSTRAHLUNG
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dσ
X$

dσ
X+1 &
dσ

X+2 &
dσ

X+2&

✓d�X =

d�X+1 ⇠ NC2g
2
s
dsi1
si1

ds1j
s1j

d�X ✓

d�X+2 ⇠ NC2g
2
s
dsi2
si2

ds2j
s2j

d�X+1 ✓

d�X+3 ⇠ NC2g
2
s
dsi3
si3

ds3j
s3j

d�X+2 . . .

(calculated process by process)For any basic process

NB: here just iterating 
a single eikonal 
emission; should 
really sum over all 

emitters. 

Could also have built 
an approximation 

from iterating 
collinear emissions 

(DGLAP)
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dσ
X$

dσ
X+1 &
dσ

X+2 &
dσ

X+2&

✓For any basic process (calculated process by process)d�X =

d�X+1 ⇠ NC2g
2
s
dsi1
si1

ds1j
s1j

d�X ✓

d�X+2 ⇠ NC2g
2
s
dsi2
si2

ds2j
s2j

d�X+1 ✓

d�X+3 ⇠ NC2g
2
s
dsi3
si3

ds3j
s3j

d�X+2 . . .

Singularities: universal (mandated by gauge theory) 
Non-singular terms: process-dependent 

|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

+ 2

◆�

|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

◆�“SOFT”

“COLLINEAR”“SOFT” +F

“COLLINEAR”

NB: here just iterating 
a single eikonal 
emission; should 
really sum over all 

emitters. 

Could also have built 
an approximation 

from iterating 
collinear emissions 

(DGLAP)



BREMSSTRAHLUNG
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dσ
X$

dσ
X+1 &
dσ

X+2 &
dσ

X+2&

Iterated factorization 
Gives us a universal approximation to ∞-order tree-level cross sections.  

Exact in singular (strongly ordered) limit. 
Non-singular terms (non-universal) → Uncertainties for hard radiation

But something is not right … Total σ would be infinite … 

✓For any basic process (calculated process by process)d�X =

d�X+1 ⇠ NC2g
2
s
dsi1
si1

ds1j
s1j

d�X ✓

d�X+2 ⇠ NC2g
2
s
dsi2
si2

ds2j
s2j

d�X+1 ✓

d�X+3 ⇠ NC2g
2
s
dsi3
si3

ds3j
s3j

d�X+2 . . .



LOOPS AND LEGS
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๏ Coefficients of the Perturbative Series

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

The corrections from 
Quantum Loops are 

missing

Universality (scaling)

Jet-within-a-jet-within-a-jet-...



RECAP: ADDING JETS AT FIXED ORDER
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๏Born @ LO 

๏Born + n @ LO 

•

LO, NLO, etc

⇥Born =

⇤
|M (0)

X |2

⇥LO
X+1(R) =

⇤

R
|M (0)

X+1|
2

⇥NLO
X = ⇥Born +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X =

⇤
|M (0)

X |2 +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X = ⇥Born+Finite

⌅⇤
|M (0)

X+1|
2

�
+Finite

⌅⇤
2Re[M (1)

X M (0)�
X ]

�

⇥NLO
X = ⇥Born(1 + K)

⇥NNLO
X = ⇥NLO

X +

⇤ ⇥
|M (1)

X |2 + 2Re[M (2)
X M (0)�

X ]
⇧
+

⇤
2Re[M (1)

X+1M
(0)�
X+1]+

⇤
|M (0)

X+2|
2

14

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)
LO, NLO, etc

⇥Born =

⇤
|M (0)

X |2

⇥LO
X+1(R) =

⇤

R
|M (0)

X+1|
2

⇥NLO
X = ⇥Born +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X =

⇤
|M (0)

X |2 +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X = ⇥Born+Finite

⌅⇤
|M (0)

X+1|
2

�
+Finite

⌅⇤
2Re[M (1)

X M (0)�
X ]

�

⇥NLO
X = ⇥Born(1 + K)

⇥NNLO
X = ⇥NLO

X +

⇤ ⇥
|M (1)

X |2 + 2Re[M (2)
X M (0)�

X ]
⇧
+

⇤
2Re[M (1)

X+1M
(0)�
X+1]+

⇤
|M (0)

X+2|
2

14

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)

|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

◆�

๏➾ R = some “Infrared Safe” phase space region (E.g., cut on p⊥ , ΔR) 
๏

๏Careful not to take it too low!

P.  S k a n d s

Cross sections at LO

Born @ LO 
!
!
!
!

Born + n @ LO 
!
!
!

Infrared divergent → Must be regulated 

R = some Infrared Safe phase space region 
(Often a cut on p⊥ > n GeV) 

Careful not to take it too low!
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LO, NLO, etc

⇥Born =

⇤
|M (0)

X |2

⇥LO
X+1(R) =

⇤

R
|M (0)

X+1|
2

⇥NLO
X = ⇥Born +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X =

⇤
|M (0)

X |2 +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X = ⇥Born+Finite

⌅⇤
|M (0)

X+1|
2

�
+Finite

⌅⇤
2Re[M (1)

X M (0)�
X ]

�

⇥NLO
X = ⇥Born(1 + K)

⇥NNLO
X = ⇥NLO

X +

⇤ ⇥
|M (1)

X |2 + 2Re[M (2)
X M (0)�

X ]
⇧
+

⇤
2Re[M (1)

X+1M
(0)�
X+1]+

⇤
|M (0)

X+2|
2

14

LO, NLO, etc

⇥Born =

⇤
|M (0)

X |2

⇥LO
X+1(R) =

⇤

R
|M (0)

X+1|
2

⇥NLO
X = ⇥Born +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X =

⇤
|M (0)

X |2 +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X = ⇥Born+Finite

⌅⇤
|M (0)

X+1|
2

�
+Finite

⌅⇤
2Re[M (1)

X M (0)�
X ]

�

⇥NLO
X = ⇥Born(1 + K)

⇥NNLO
X = ⇥NLO

X +

⇤ ⇥
|M (1)

X |2 + 2Re[M (2)
X M (0)�

X ]
⇧
+

⇤
2Re[M (1)

X+1M
(0)�
X+1]+

⇤
|M (0)

X+2|
2

14

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

Z � 3 jets:

qk

qi

qi

gjk
a

qk

qi

qi

gik
a

8

|MX+1|2

|MX |2 /

•Divergent (when sij and/or sjk → 0): Integral → Logarithms

➜ Lecture 3



UNITARITY (AT NLO)
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๏NLO: 

๏

P.  S k a n d s

�NLO(e
+e� ! qq̄) = �LO(e

+e� ! qq̄)

✓
1 +

↵s(ECM)

⇡
+O(↵2

s)

◆

Cross sections at NLO

NLO: 

!
!

!

KLN Theorem (Kinoshita-Lee-Nauenberg) 
Sum over ‘degenerate quantum states’ :                
Singularities cancel at complete order (only finite terms left over)

30

Z � 2 1-loop:

qk

qi

qk

gik
a

qi

qk

qk

16

(note: this is not the 1-loop diagram squared)

LO, NLO, etc

⇥Born =

⇤
|M (0)

X |2

⇥LO
X+1(R) =

⇤

R
|M (0)

X+1|
2

⇥NLO
X = ⇥Born +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X =

⇤
|M (0)

X |2 +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X = ⇥Born+Finite

⌅⇤
|M (0)

X+1|
2

�
+Finite

⌅⇤
2Re[M (1)

X M (0)�
X ]

�

⇥NLO
X = ⇥Born(1 + K)

⇥NNLO
X = ⇥NLO

X +

⇤ ⇥
|M (1)

X |2 + 2Re[M (2)
X M (0)�

X ]
⇧
+

⇤
2Re[M (1)

X+1M
(0)�
X+1]+

⇤
|M (0)

X+2|
2

14

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

Z � 3 jets:

qk

qi

qi

gjk
a

qk

qi

qi

gik
a

8

LO, NLO, etc

⇥Born =

⇤
|M (0)

X |2

⇥LO
X+1(R) =

⇤

R
|M (0)

X+1|
2

⇥NLO
X = ⇥Born +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X =

⇤
|M (0)

X |2 +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X = ⇥Born+Finite

⌅⇤
|M (0)

X+1|
2

�
+Finite

⌅⇤
2Re[M (1)

X M (0)�
X ]

�

⇥NLO
X = ⇥Born(1 + K)

⇥NNLO
X = ⇥NLO

X +

⇤ ⇥
|M (1)

X |2 + 2Re[M (2)
X M (0)�

X ]
⇧
+

⇤
2Re[M (1)

X+1M
(0)�
X+1]+

⇤
|M (0)

X+2|
2

14

LO, NLO, etc

⇥Born =

⇤
|M (0)

X |2

⇥LO
X+1(R) =

⇤

R
|M (0)

X+1|
2

⇥NLO
X = ⇥Born +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X =

⇤
|M (0)

X |2 +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X = ⇥Born+Finite

⌅⇤
|M (0)

X+1|
2

�
+Finite

⌅⇤
2Re[M (1)

X M (0)�
X ]

�

⇥NLO
X = ⇥Born(1 + K)

⇥NNLO
X = ⇥NLO

X +

⇤ ⇥
|M (1)

X |2 + 2Re[M (2)
X M (0)�

X ]
⇧
+

⇤
2Re[M (1)

X+1M
(0)�
X+1]+

⇤
|M (0)

X+2|
2

14

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)

P.  S k a n d s

Cross sections at LO

Born @ LO 
!
!
!
!

Born + n @ LO 
!
!
!

Infrared divergent → Must be regulated 

R = some Infrared Safe phase space region 
(Often a cut on p⊥ > n GeV) 

Careful not to take it too low!
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LO, NLO, etc

⇥Born =

⇤
|M (0)

X |2

⇥LO
X+1(R) =

⇤

R
|M (0)

X+1|
2

⇥NLO
X = ⇥Born +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X =

⇤
|M (0)

X |2 +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X = ⇥Born+Finite

⌅⇤
|M (0)

X+1|
2

�
+Finite

⌅⇤
2Re[M (1)

X M (0)�
X ]

�

⇥NLO
X = ⇥Born(1 + K)

⇥NNLO
X = ⇥NLO

X +

⇤ ⇥
|M (1)

X |2 + 2Re[M (2)
X M (0)�

X ]
⇧
+

⇤
2Re[M (1)

X+1M
(0)�
X+1]+

⇤
|M (0)

X+2|
2

14

LO, NLO, etc

⇥Born =

⇤
|M (0)

X |2

⇥LO
X+1(R) =

⇤

R
|M (0)

X+1|
2

⇥NLO
X = ⇥Born +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X =

⇤
|M (0)

X |2 +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X = ⇥Born+Finite

⌅⇤
|M (0)

X+1|
2

�
+Finite

⌅⇤
2Re[M (1)

X M (0)�
X ]

�

⇥NLO
X = ⇥Born(1 + K)

⇥NNLO
X = ⇥NLO

X +

⇤ ⇥
|M (1)

X |2 + 2Re[M (2)
X M (0)�

X ]
⇧
+

⇤
2Re[M (1)

X+1M
(0)�
X+1]+

⇤
|M (0)

X+2|
2

14

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

Z � 3 jets:

qk

qi

qi

gjk
a

qk

qi

qi

gik
a

8

IR singularities 
(from poles of propagators going on 

shell when integrating to Q2 → 0)

IR singularities 
(from poles of propagators going on shell 

when integrating over gluon virtuality)

�NLO(e
+e� ! qq̄) = �LO(e

+e� ! qq̄)

✓
1 +

↵s(ECM)

⇡
+O(↵2

s)

◆example:

Sum of real and virtual O(αs) nonsingular;  
no IR regulator dependence

In IR limits, the X+1 final state is indistinguishable from an X+0 one 
→ singularities must always* sum together (& they cancel!)

*) for so-called IR safe observables; discussed in Lecture 3



UNITARITY → EVOLUTION (RESUMMATION)
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Kinoshita-Lee-Nauenberg  
(sum over degenerate quantum states = finite; infinities must cancel) 

Parton Showers neglect F → “Leading-Logarithmic” (LL) Approximation

Unitarity: sum(probability) = 1
Probability for nothing to happen (~virtual + unresolved-real) + Probability for something to happen (~ resolved real) = 1

P.  S k a n d s

From Legs to Loops

๏Parton Showers: reformulation of pQCD corrections as gain-loss diff eq. 
•Iterative (Markov-Chain) evolution algorithm, based on universality and unitarity 

•With evolution kernel ~            (or soft/collinear approx thereof) 

•Generate explicit fractal structure across all scales (via Monte Carlo Simulation) 
•Evolve in some measure of resolution ~ hardness, virtuality, 1/time … ~ fractal scale 
•+ account for scaling violation via quark masses and gs

2 → 4παs(Q
2
)

12

Kinoshita-Lee-Nauenberg:  
(sum over degenerate quantum states = finite: infinities must cancel!) 

!

Neglect non-singular piece, F → “Leading-Logarithmic” (LL) Approximation

Unitarity: sum(probability) = 1

→ Can also include loops-within-loops-within-loops … 
→ Bootstrap for approximate All-Orders Quantum Corrections!
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→ includes both real (tree) and virtual (loop) corrections, to arbitrary order

Imposed by Event evolution:  “detailed balance”

When (X) branches to (X+1): Gain one (X+1). Loose one (X). 

Differential equation with evolution kernel

Evolve in some measure of resolution ~ hardness, 1/time … ~ fractal scale
(or, typically, a soft/collinear approximation thereof)
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•+ account for scaling violation via quark masses and gs
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EVOLUTION ~ FINE-GRAINING
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๏(E.g., starting from QCD 2→2)

Q ⇠ QHARD QHARD/Q < “A few”
Q ⌧ QHARD

Scale Hierarchy!

At most inclusive level 
“Everything is 2 jets”

At (slightly) finer resolutions, 
some events have 3, or 4 jets

At high resolution, most 
events have >2 jets

Fixed order:  
σinclusive

Fixed order:  
σX+n ~ αs

n σX

    Fixed order diverges:  
σX+n ~ αs

n ln2n(Q/QHARD)σX

Unitarity: Reinterpret as number of emissions 
diverging, while cross section remains σinclusive



EVOLUTION EQUATIONS
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๏What we need is a differential equation 
•Boundary condition: a few partons defined at a high scale (QF) 
•Then evolves (or “runs”) that parton system down to a low scale (the 
hadronization cutoff ~ 1 GeV) → It’s an evolution equation in QF 

๏Close analogue: nuclear decay 
•Evolve an unstable nucleus. Check if it decays + follow chains of decays.

In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (�)

d�

= g2
s

C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
Q1 and Q2,
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where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.

This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,

dP (t)

dt
= c

N

. (11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is

�(t1, t2) = exp
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= exp (�c
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�t) . (12)

This case is especially simple, since the decay probability per unit time, c
N

, is constant. By conservation
of the total number of nuclei (unitarity), the activity per nucleon at time t, equivalent to the “resummed”
decay probability per unit time, is minus the derivative of �,

dPres(t)

dt
=

�d�

dt
= c

N

�(t1, t) . (13)

In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,

dPres(�)

d�

= g2
s

C A(�) �(Q2
1, Q

2
(�)) , (14)

where Q2
(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2
1, Q

2
) , (15)
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Decay constant
Probability to remain undecayed in the time 
interval [t1,t2]
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where Q2
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In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,
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6

Decay probability per unit time

(respects that each of the original nuclei 
can only decay if not decayed already)

= 1� cN�t+O(c2N )

∆(t1,t2) : “Sudakov Factor”



THE SUDAKOV FACTOR
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๏In nuclear decay, the Sudakov factor counts:  
•How many nuclei remain undecayed after a time t 

๏The Sudakov factor for a parton system “counts”: 
•The probability that the parton system doesn’t evolve (branch) when 
we run the factorization scale (~1/time) from a high to a low scale  

๏ (i.e., that there is no state change) 

In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (�)

d�

= g2
s

C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
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Evolution probability per unit “time”

(replace cN by proper shower evolution kernels)
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Probability to remain undecayed in the time interval [t1,t2]

(replace t by shower evolution scale)
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S({p}X,O) = δ(O −O({p}X))
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(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

∆(t1, t2) = exp

(

−
∫ t2

t1

dt
dP
dt

)

Nuclei remaining undecayed 
after time t

=

Time

50 %

 0 %

-50 %

-100 %

All Orders 
Exponential



2. Generate another Random Number, Rz ∈ [0,1] 

To find second (linearly independent) phase-space invariant 

Solve equation                                       for z (at scale t) 

With the “primitive function” Iz(z, t) =

Z z

zmin(t)
dz

d�(t0)

dt0

����
t0=t

Rz =
Iz(z, t)

Iz(zmax

(t), t)

A SHOWER ALGORITHM
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๏1. For each evolver, generate a random number R ∈ [0,1] 
•Solve equation                            for t (with starting scale t1) 

๏ Analytically for simple splitting kernels,  
๏ else numerically and/or by trial+veto 
๏ → t scale for next (trial) branching

R = �(t1, t)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

yij ! sij!sijk ! 1"xk

y jk
!
s jk
!s
ijk
!
1"
x i

Figure 1: Contours of constant value of the antenna function, ā0ijk for qq̄ → qgq̄ derived from Z decay
as function of the two phase-space invariants, with an arbitrary normalization and a logarithmic color
scale. Larger values are shown in lighter shades. The (single) collinear divergences sit on the axes,
while the (double) soft divergence sits at the origin.

factor, and ā0ijk is a generic color- and coupling-stripped dipole-antenna function, with superscript 0 to
denote a tree-level quantity. The three-particle matrix element is averaged azimuthally (over φ). Note
that our use of lower-case letters for the antenna function is intended to signify that it corresponds to
what is called a sub-antenna in ref. [36] for which lower-case letters are likewise used2.

For illustration, contours of constant value of ā0qgq̄(s, sqg, sgq̄) as derived from Z decay are shown
in fig. 1, over the 2 → 3 phase space, with an arbitrary normalization and a logarithmic color scale.
This function is called A0

3 in ref. [36] and is identical to the radiation function used for qq̄ → qgq̄
splittings in ARIADNE. One clearly sees the large enhancements towards the edges of phase space,
with a double pole (the overlap of two singularities, usually called soft and collinear) sitting at the
origin, and single singularities (soft or collinear) localized on the axes.

Writing the coupling factor as g2 = 4παs and combining it with the phase space factor, eq. (12),
we have the following antenna function normalization

a0IK→ijk(s, sij, sjk) ≡
1

√
λ
(
s,m2

I ,m
2
K

)
αs

4π
Cijk ā0ijk(s, sij , sjk) . (15)

That is, we use the notation ā for the coupling- and color-stripped antenna function, and the notation
a for the “dressed” antenna function, i.e., including its coupling, color, and phase-space prefactors.

Note that g2×(phase-space normalization) leads to a factor αs/(4π) independently of the type of
branching. As we believe that the formalism becomes more transparent if the origin of each factor
is kept clear throughout, we shall therefore use this factor for all branchings, instead of the more
traditional convention of using αs/(2π) for some branchings and αs/(4π) for others. Obviously, this
convention choice will be compensated by our conventions for the color factors and antenna-function
normalizations, such that the final result remains independent of this choice.

2Thus, in the notation of ref. [36], our dipole-antenna functions would be ā0
3 = A0

3, d̄03 = d03, ē03 =
1
2E

0
3 , f̄0

3 = f0
3 , and

ḡ03 =
1
2G

0
3.

7

t

t1

(t,z)

3. Generate a third Random Number, Rφ ∈ [0,1] 
Solve equation                     for φ → Can now do 3D branching 

Accept/Reject based on full kinematics. Update t1 = t. Repeat.

R' = '/2⇡



BOOTSTRAPPED PERTURBATION THEORY
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๏ Start from an arbitrary lowest-order process (green = QFT amplitude squared) 
๏ Parton showers generate the (LL) bremsstrahlung terms of the rest of 
the perturbative series (approximate infinite-order resummation)

+0(2) +1(2) …

+0(1) +1(1) +2(1) +3(1)

Lowest 
Order +1(0) +2(0) +3(0)N
o.

 o
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re
ct
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)

No. of Bremsstrahlung Emissions 
(real corrections)

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Exponentiation

Unitarity

Cancellation of real & virtual singularities

fluctuations within fluctuations

Note! LL ≠ full QCD! (→ matching, merging, MECs)



WHAT ARE THE EVOLUTION KERNELS?
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๏Recall: two universal (bremsstrahlung) limits: 

๏

Partons ab → 
“collinear”:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

P(z) = DGLAP splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

Gluon j → “soft”:

|MF+1(. . . , i, j, k. . . )|2
jg!0! g2sC

(pi · pk)
(pi · pj)(pj · pk)

|MF (. . . , i, k, . . . )|2
Coherence → Parton j really emitted by (i,k) “colour antenna” 

• → can build different types of  parton showers     
• (and, in general, different kinds of  resummations)

Collinear (DGLAP) Limit: two partons becoming parallel

Soft (eikonal) Limit: an emitted gluon having vanishing energy



Herwig Pythia Herwig CS, Sherpa CS, Dire

*angular ordering → 
coherence only in an averaged 

sense; discussed later

TYPES OF PARTON SHOWERS
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Ariadne Vincia

related to HEJ

HI IK KL

H I K L

Coll(I) Soft(IK)

Parton Shower (DGLAP) aI aI + aK

Coherent Parton Shower (HERWIG [12, 40], PYTHIA6 [11]) ΘIaI ΘIaI +ΘKaK

Global Dipole-Antenna (ARIADNE [17], GGG [36], WK [32],
VINCIA)

aIK + aHI aIK

Sector Dipole-Antenna (LP [41], VINCIA) ΘIKaIK +ΘHIaHI aIK
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Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity
of the IK pair, respectively, originate in different shower types. (ΘI and ΘK represent angular vetos
with respect to partons I andK , respectively, and ΘIK represents a sector phase-space veto, see text.)

where the gluon radiation function has absorbed a factor of 2 on the r.h.s. of the last line, due to the
normalization choice. We note that, although these expressions look quite different from the dipole
formula, eq. (19), they lead to identical singularities. This was shown in ref. [29] by identifying z as
the Lorentz invariant energy fraction taken by the quark, z = xi/(xi + xk), and adding the radiation
from the antiquark, q̄K → gj q̄k.

Shared Singularities: This examination of the different presentations of singularities brings us to
the issue of “shared singularities”. In traditional parton showers, as we have just seen, the full leading-
log radiation pattern can only be obtained after summing over pairs of partons (which each radiate as
independent monopoles), and care must be taken in the construction of the shower to make this sum
approximately coherent to reproduce the correct singular behavior for soft wide-angle radiation. This
dipole singularity is the simplest case of what we shall generally refer to as a shared — or multipole
— singularity below; radiation whose full singularity structure (in a particular phase-space limit) can
only be recovered after summing over two or more radiators.

A chain of such uniquely labeled and color ordered gluons, which could, e.g., represent a shower
“event record” at a given point during its evolution, is illustrated in fig. 2. Below the schematic drawing
we give an overview of how the full collinear singularity of parton I , and the full soft singularity of
the IK pair, would be obtained for five different kinds of parton shower models, as follows.

In a traditional parton shower, the full collinear singularity of each parton is contained in the
DGLAP splitting kernel, P (z), that generates radiation off that parton. Since no other radiators share
that collinear direction, there is no double counting at the LL level. (The kernel P (z) constitutes
a complete subtraction term for the collinear singularities in real-emission contributions to an NLO
calculation.) However, in this approach, the soft (eikonal) singularity between the IK pair must be
obtained by summing the radiation functions of partons I andK together, and therefore it is essential
in this type of approach that both the radiation functions and the shower phase-space factorization
represent a correct partitioning of the soft region, with no so-called dead or double-counted zones.

In the early eighties it was shown [40] that additional coherence effects can also be taken into
account in this language, albeit approximately, by imposing angular ordering during shower evolu-
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๏Starting from collinear (parton) limit: 
•DGLAP evolution, collinear factorisation (MSbar PDFs) 
•“Conventional Parton Showers” : earliest shower models  
•Modified for correct soft limits: angular ordering* (or vetos), (CS) Dipole showers 

๏Starting from soft (dipole) limit: 
•DLA (only double-pole piece), eikonal approximations 
•Extended to include DGLAP collinear limits: (Lund) Dipole / Antenna showers 



EXAMPLE: DGLAP KERNELS
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๏DGLAP: from collinear limit of MEs (pb+pc)2→0 
•+ evolution equation from invariance with respect to QF → RGE

DGLAP 
(E.g., PYTHIA)

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability
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a

c
b

pb = z pa

pc = (1-z) pa

NB: dipoles, antennae, also have DGLAP kernels as their collinear limits

dt =
dQ2

Q2
= d lnQ2

… with Q2 some measure of “hardness” 
= event/jet resolution 

measuring parton virtualities / formation time / …



COHERENCE
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Coherence

QED: Chudakov effect (mid-fifties)
e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Illustration by T. Sjöstrand



Introduction to Event Generators Bryan Webber, MCnet School, 201429

● Radiation function can be separated into two parts containing collinear singularities along
lines i and j. Consider for simplicity massless particles, vi,j = 1. Then Wij = W i

ij + W j
ij

where

W i
ij =

1

2

„

Wij +
1

1 − cos θiq
−

1

1 − cos θjq

«

.

● This function has remarkable property of angular ordering. Write angular integration in polar
coordinates w.r.t. direction of i, dΩ = d cos θiq dφiq. Performing azimuthal integration,
we find

Z 2π

0

dφiq

2π
W i

ij =
1

1 − cos θiq
if θiq < θij, otherwise 0.

i

j

Thus, after azimuthal averaging,
contribution from W i

ij is confined to
cone, centred on direction of i, extending
in angle to direction of j. Similarly, W j

ij,
averaged over φjq, is confined to cone
centred on line j extending to direction of
i.

29

i

k

! 1

1� cos ✓ij

➾ Soft radiation 
averaged over φij : 

if θij < θik ; otherwise 0

what you get from a DGLAP kernel
kill radiation outside 

ik opening angle

DGLAP AND COHERENCE: ANGULAR ORDERING

Peter  Skands 25Monash Univers i ty

๏Physics: (applies to any gauge theory) 
•Interference between emissions from colour-connected 
partons (e.g. i and k) → coherent dipole patterns 

๏ (More complicated multipole effects beyond leading colour; ignored here) 
•DGLAP kernels, though incoherent a priori, can reproduce this pattern (at least in 
an azimuthally averaged sense) by angular ordering 

๏

Note: Dipole & antenna showers include this 
effect point by point in φ (without averaging)

E2
j (pi · pk)

(pi · pj)(pj · pk)
=

1� cos ✓ik
(1� cos ✓ij)(1� cos ✓jk)

=

1� cos ✓ik
(1� cos ✓ij)(1� cos ✓jk)

± 1

2(1� cos ✓ij)
⌥ 1

2(1� cos ✓jk)

Z 2⇡

0

d'ij

4⇡

✓
1� cos ✓ik

(1� cos ✓ij)(1� cos ✓jk)
+

1

1� cos ✓ij
� 1

1� cos ✓jk

◆
=

1

2(1� cos ✓ij)

✓
1 +

cos ✓ij � cos ✓ik
| cos ✓ij � cos ✓ik|

◆

Soft Eikonal Factor (write out 4-products) Add and subtract 1/(1-cosθij) and 1/(1-cosθjk) to isolate ij and jk collinear pieces

Take the ij piece and integrate over azimuthal angle dφij (using explicit momentum representations)

๏Start from the M.E. factorisation formula in the soft limit 

P. Skands Introduction to QCD

I

K

k

i

j
I

K

k

i

j

Figure 16: Diagrams (squared) giving rise to collinear (left) and soft (right) singularities.

I, goes on shell; the singularity of the associated propagator factor is the origin of the 1/s
ij

collinear singularities. On the right is shown the interference between a diagram with emission
from parton I and one with emission from parton K. The resulting term has propagator
singularities when both partons I and K go on shell, which can happen simultaneously if
parton j is soft. This generates the 2s

ik

/(s
ij

s
jk

) soft singularity, also called the soft eikonal
factor or the dipole factor.

We now understand the fundamental origin of the IR singularities, why they are universal,
and why amplitudes factorise in the soft and collinear limits — the singularities are simply
generated by intermediate parton propagators going on shell, which is independent of the
nature of the hard process, and hence can be factorised from it.

Thus, for each pair of (massless) color-connected partons I and K in F , the squared am-
plitude for F + 1 gluon, |M

F+1|2, will include a factor

|M
F+1|2 = g2

s

N
C

✓
2s

ik

s
ij

s
jk

+ collinear terms
◆

| {z }
Antenna Function

|M
F

|2 , (62)

where g2
s

= 4⇡↵
s

is the strong coupling, i and k represent partons I and K after the branching
(i.e., they include possible recoil effects) and s

ij

is the invariant between parton i and the
emitted parton, j.

The branching phase space of a color dipole (i.e., a pair of partons connected by a color-
index contraction) is illustrated in figure 17. Expressed in the branching invariants, s

ij

and s
jk

,
the phase space has a characteristic triangular shape, imposed by the relation s = s

ij

+s
jk

+s
ik

(assuming massless partons). Sketchings of the post-branching parton momenta have been
inserted in various places in the figure, for illustration. The soft singularity is located at the
origin of the plot and the collinear regions lie along the axes.

The collinear terms for a qq̄ ! qgq̄ “antenna” are unambiguous and are given in section 2.4.
Since gluons are in the adjoint representation, they carry both a color and an anticolor index
(one corresponding to the rows and the other to the columns of the Gell-Mann matrices),
and there is therefore some ambiguity concerning how to partition collinear radiation among
the two antennae they participate in. This is discussed in more detail in [88]. Differences
are subleading, however, and for our purposes here we shall consider gluon antenna ends as
radiating just like quark ones. The difference between quark and gluon radiation then arise
mainly because gluons participate in two antennae, while quarks only participate in one. This
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Figure 2: The Drell-Yan pT spectrum. The dashed red curve
shows the value computed using Vincia with default antennæ
functions, while the dotted green curve shows the Vincia pre-
dicted with an enhanced antenna function. The solid blue
curve gives the Pythia 8 prediction. The inset shows the high-
pT tail.

certainty due to the shower function and in particu-
lar higher-order terms in the shower. The di↵er-
ence shown here is illustrative only; a more ex-
tensive exploration of possible antenna variations
would be required before taking the spread as a
quantitative estimate of the uncertainty. We may
nonetheless observe that the Pythia 8 reference
calculation di↵ers from the Vincia one (with de-
fault antenna) by roughly the same amount in the
peak region as does the enhanced Vincia predic-
tion. This illustrates a tradeo↵ between a more ac-
tive recoil strategy (Pythia) and a more active radi-
ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the e↵ect
is given in fig. 3, which shows qq ! qq scatter-
ing with two di↵erent color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Di↵erent color flows and corresponding emission
patterns in qq ! qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.
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Figure 4: Angular distribution of the first gluon emission in
qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color
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COHERENCE AT WORK IN QCD

Peter  Skands 26Monash Univers i ty

๏Example: quark-quark scattering in hadron collisions   
•Consider, for instance, scattering at 45o 
•  2 possible colour flows :

a) “forward” colour flow

b) “backward” 
colour flow
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Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Another nice physics example is the SM contribution to the Tevatron top-quark forward-backward 
asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

Out 1

Out 2

Out 1

Out 2

BA

BA

http://arxiv.org/abs/arXiv:1210.6345


INITIAL-STATE VS FINAL-STATE EVOLUTION
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p2 = t < 0

ISR:FSR:

p2  > 0

Virtualities are 
Timelike: p2>0

Virtualities are 
Spacelike: p2<0

Start at Q2 = QF2 
“Forwards evolution”

Start at Q2 = QF2 
Constrained backwards evolution 
towards boundary condition = proton

Separation meaningful for collinear radiation, but not for soft …



INITIAL-FINAL INTERFERENCE

Peter  Skands 28Monash Univers i ty

Separation meaningful for collinear radiation, but not for soft …

Who emitted that gluon?

Real QFT = sum over amplitudes, then square → interference (IF coherence) 
Respected by dipole/antenna languages (and by angular ordering, azimuthally 

averaged), but not by conventional DGLAP (→ all PDFs are “wrong”)

+

A tricky aspect for many parton showers. Illustrates that quantum ≠ classical !
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where λ(a, b, c) = a2+b2+c2−2ab−2bc−2ca is the Källén function, s[i] is the invariant mass squared
of the branching dipole, and mâ,b̂ are the rest masses of the original endpoint partons. The second line
represents the massless case, with the two orientation angles θ and ψ fixed as discussed above.

Immediately following the phase space in eq. (2) is a δ function requiring that the integration variable
tn+1 should be equal to the ordering variable t evaluated on the set of n+1 partons, {p}n+1, i.e. that the
configuration after branching indeed corresponds to a resolution scale of tn+1. We leave the possibility
open that different mappings will be associated with different functional forms for the post-branching
resolution scale, and retain a superscript on t[i] to denote this.

Finally, there are the evolution or showering kernels Ai({p}n→{p}n+1), representing the differen-
tial probability of branching, which we take to have the following form,

Ai({p}n→{p}n+1) = 4παs(µR({p}n+1)) Ci ai({p}n→{p}n+1) , (11)

where 4παs = g2
s is the strong coupling evaluated at a renormalization scale defined by the function

µR, Ci is the color factor (e.g. Ci = Nc = 3 for gg → ggg), and ai is a radiation function, giving a
leading-logarithmic approximation to the corresponding squared evolution amplitude (that is, a parton
or dipole-antenna splitting kernel). When summed over possible overlapping phase-space regions, the
combined result should contain exactly the correct leading soft and collinear logarithms with no over- or
under-counting. Non-logarithmic (‘finite’) terms are in constrast arbitrary. They correspond to moving
around inside the leading-logarithmic uncertainty envelope. The renormalization scale µR could in
principle be a constant (fixed coupling) or running. Again, the point here is not to impose a specific
choice but just to ensure that the language is sufficiently general to explore the ambiguity.

Together, eqs. (2), (4), and (11) can be used as a framework for defining more concrete parton
showers. An explicit evolution algorithm (whether based on partons, dipoles, or other objects) must
specify:

1. The choice of perturbative evolution variable(s) t[i].

2. The choice of phase-space mapping dΦ[i]
n+1/dΦn.

3. The choice of radiation functions ai, as a function of the phase-space variables.

4. The choice of renormalization scale function µR.

5. Choices of starting and ending scales.

The definitions above are already sufficient to describe how such an algorithm can be matched to
fixed order perturbation theory. We shall later present several explicit implementations of these ideas, in
the form of the VINCIA code, see section 5.

Let us begin by seeing what contributions the pure parton shower gives at each order in perturbation
theory. Since∆ is the probability of no branching between two scales, 1−∆ is the integrated branching
probability Pbranch. Its rate of change gives the instantaneous branching probability over a differential

PERTURBATIVE AMBIGUITIES

Peter  Skands 29Monash Univers i ty

๏The final states generated by a shower algorithm will 
depend on

→ gives us additional handles for uncertainty estimates, beyond just μR

(+ ambiguities can be reduced by including more pQCD → matching!)

Ordering & Evolution-
scale choices

Recoils, kinematics

Non-singular terms, 
Reparametrizations, 
Subleading Colour

Phase-space limits / suppressions for hard 
radiation and choice of hadronization 

scale 



(ADVERTISEMENT: UNCERTAINTIES IN PARTON SHOWERS)
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๏Recently, HERWIG, PYTHIA & SHERPA all published papers on automated 
calculations of shower uncertainties (based on tricks with the Sudakov algorithm) 

•Weight of event = { 1 , 0.7, 1.2, … } 

Encouraged to start using those, and provide feedback
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Fig. V.16: Predictions for jet resolutions for W -boson productions at the LHC at LO+PS.
Results from reweighting runs CT14 æ MMHT2014 PDF are compared to the dedicated result for
direct use of the MMHT2014 PDF.
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3 Ntuples for NNLO events produced by EERAD3 7

We study the production of Ntuples based on the program EERAD3 which produces parton-level
QCD events to calculate event shapes and jet rates in electron-positron annihilation through to
order –3

s. The aim of this study is to assess the viability of Ntuples as a general way to have
NNLO results stored and made available to the experimental community.

3.1 Introduction
High precision calculations will be vital in the next phase(s) of the LHC in order to be able
profit from the high quality data being collected. In order to further explore the Higgs sector
and distinguish BSM e�ects from higher order e�ects within the Standard model, next-to-next-
to leading order (NNLO) predicitions are necessary for a number of proccesses. However, such
predictions are the results of complex calculations, which may take a considerable amount of time
and computing resources. Running such programs for various scale choices, parton distribution
functions and sets of cuts is a tedious, time consuming task.

For processes with multi-particle final states at NLO, one is faced with similar problems.
A possible solution, described in detail in Ref. [344], is to store the phase space points and
the corresponding matrix elememt weights, together with other relevant information, in Root
Ntuple files. This has the following advantages:

1. the results are flexible for (tighter) cuts to be applied at a later stage,
7 G. Heinrich, D. Maître
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SHERPA: Bothmann, 
Schönherr, Schumann; 
in arXiv:1605.04692
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Figure 4: Illustration of the default nonsingular variations for ISR splitting kernels, corresponding to cNS =

±2 (shown in red with \\\ hashing), compared with the default renormalisation-scale variations by a factor
of 2 with the NLO compensation term switched on (shown in blue with /// hashing). Left: matrix-element
corrections OFF. Right: matrix-element corrections ON. Distribution of the p? spectrum of the lepton pair in
pp ! Z ! e+e�/µ+µ� at the Z pole (66 < m``/GeV < 116), for leptons in the phase-space window
|⌘`| < 2.4, p?` > 20 GeV; data from the ATLAS experiment [27].
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See also HERWIG++ : 
Bellm et al., arXiv:1605.08256 

VINCIA:   
Giele, Kosower PS; arXiv:1102.2126 

PYTHIA 8: Mrenna & PS; 
arXiv:1605.08352 

Example 2: 
Renormalisation
-scale and  
Non-Singular 
Term Variations

http://arxiv.org/abs/arXiv:1605.08256
http://arxiv.org/abs/arXiv:1102.2126


SUMMARY: TWO WAYS TO COMPUTE QUANTUM CORRECTIONS

Peter  Skands 31Monash Univers i ty

๏Fixed Order Paradigm: consider a single physical process 
•Explicit solutions, process-by-process (to some extent automated) 

๏ Standard-Model: typically NLO or NNLO 
๏ Beyond-SM: typically LO or NLO 

•Accurate for hard process, to given perturbative order 
•Limited generality 

๏Event Generators (Showers): consider all physical processes 
•Universal solutions, applicable to any/all processes 

๏ Process-dependence = subleading correction (→ matrix-element 
corrections)  

•Maximum generality  
๏ Common property of all processes is, e.g., limits in which they factorise! 

•Accurate in strongly ordered (soft/collinear) limits (=bulk of radiation)
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So combine them!

JACK OF ALL ORDERS, MASTER OF NONE?

Peter  Skands 34Monash Univers i ty

๏Nice to have all-orders solution 
•But it is only exact in the singular (soft & collinear) limits 
•→ gets the bulk of bremsstrahlung corrections right, but fails equally 
spectacularly: for hard wide-angle radiation: visible, extra jets 
•… which is exactly where fixed-order calculations work!

P. Skands Introduction to QCD
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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→ Matching Lectures by Stefan Höche
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The “CMW” factor
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Depending on the value of µPS, a corresponding value of n
F

is chosen, as well as of the QCD

scale ⇤
F

. This is often di↵erent from that for a fixed order calculation. To give a specific

example, matrix elements will typically be renormalized at a scale characteristic of the total

CM energy, i.e., µ2
ME = s an event-independent value, while resummation arguments imply

one best chooses a running scale, such as µPS = p?, for shower applications [34, 35], which

can di↵er per event.

Shifting to a di↵erent scale for ↵
s

of a given flavour number is quite straightforward.

Translating from a shower scale µPS to a matrix-element scale µME amounts to replacing, for

an antenna function
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A further aspect is that shower Monte Carlos normally switch to 4-flavour (3-flavour)

running for scales µ < m
b

(µ < m
c

), matching the ↵
s

value across the thresholds to obtain a

continuous running. For a consistent treatment, such thresholds must be taken into account

when translating ↵
s

from the shower scale to the matrix-element one. At one-loop order

(which is all that is relevant for the NLO expansion), this can be done by inserting an

additional term for each flavour threshold in the region [µPS, µME],
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with mthres the flavour threshold. Physically, eq. (3.51) expresses running with n
F

flavours

all the way from µPS to µME. The correction term, eq. (3.52), expresses that the number of

flavours was e↵ectively lower below each flavour threshold passed on the way. Note that this

can also be used to account for a larger number of flavours in the shower calculation, e.g., at

scales µPS > m
t

, with the sign change of the correction then automatically reflected by the

logarithm.

For coherent parton-shower models, the arguments presented in [35] also motivate a

change to a “Monte Carlo” scheme for ↵
s

, in which ⇤QCD is rescaled, for each n
F

, by the

so-called CMW factor ⇠ 1.5 (with some mild flavour dependence), relative to its MS value.

If the shower model being matched employs this scheme, then a further rescaling of the

renormalization-scale argument, µPS ! µPS/kCMW, should be used in eq. (3.51), with
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for N
C

= 3. The translation of renormalization scale (and scheme) yields then an additional

term to be added to the definition of V3 in eq. (3.32),
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๏DGLAP for Parton Density 

๏→ Sudakov for ISR

That way we hope to achieve the most realistic description of mass e⇥ects in the collinear
and soft regions.

The shower inherits some further elements from PYSHOW, such as azimuthal anisotropies
in gluon branchings from polarization e⇥ects.

The relevant parameters will have to be retuned, since the shower is quite di⇥erent
from the mass-ordered one of PYSHOW. In particular, it appears that the five-flavour �QCD

value in PARJ(81) has to be reduced relative to the current default, roughly by a factor
of two (from 0.29 to 0.14 GeV). After such a retuning, PYPTFS (combined with string
fragmentation) appears to give an even better description of LEP1 data than does PYSHOW
[Rud04].

10.3 Initial-State Showers

The initial-state shower algorithms in Pythia are not quite as sophisticated as the final-
state ones. This is partly because initial-state radiation is less well understood theoreti-
cally, and partly because the programming task is more complicated and ambiguous. Still,
the program at disposal is known to do a reasonably good job of describing existing data,
such as Z0 production properties at hadron colliders [Sjö85]. It can be used both for QCD
showers and for photon emission o⇥ leptons (e, µ or ⇤ ; relative to earlier versions, the
description of incoming µ and ⇤ are better geared to represent the di⇥erences in lepton
mass, and the lepton-inside-lepton parton distributions are properly defined).

Again we begin with a fairly model-independent overview before zooming in on the
old virtuality-ordered algorithm implemented in PYSSPA. The new transverse-momentum-
ordered formalism in PYPTIS, described at the end, shares much of the same philosophy,
apart from the quite important choice of evolution variable, of course.

10.3.1 The shower structure

A fast hadron may be viewed as a cloud of quasi-real partons. Similarly a fast lepton
may be viewed as surrounded by a cloud of photons and partons; in the program the two
situations are on an equal footing, but here we choose the hadron as example. At each
instant, each individual parton initiates a virtual cascade, branching into a number of
partons. This cascade of quantum fluctuations can be described in terms of a tree-like
structure, composed of many subsequent branchings a � bc. Each branching involves
some relative transverse momentum between the two daughters. In a language where
four-momentum is conserved at each vertex, this implies that at least one of the b and
c partons must have a space-like virtuality, m2 < 0. Since the partons are not on the
mass shell, the cascade only lives a finite time before reassembling, with those parts of
the cascade that are most o⇥ the mass shell living the shortest time.

A hard scattering, e.g. in deeply inelastic leptoproduction, will probe the hadron at a
given instant. The probe, i.e. the virtual photon in the leptoproduction case, is able to
resolve fluctuations in the hadron up to the Q2 scale of the hard scattering. Thus probes
at di⇥erent Q2 values will seem to see di⇥erent parton compositions in the hadron. The
change in parton composition with t = ln(Q2/�2) is given by the evolution equations

dfb(x, t)

dt
=

⇤

a,c

⌅ dx⇥

x⇥
fa(x

⇥, t)
�abc

2⇥
Pa�bc

�
x

x⇥

⇥
. (187)

Here the fi(x, t) are the parton-distribution functions, expressing the probability of finding
a parton i carrying a fraction x of the total momentum if the hadron is probed at virtuality
Q2. The Pa�bc(z) are given in eq. (164). As before, �abc is �s for QCD shower and �em

for QED ones.
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step by step one moves ‘backwards’ in ‘time’, towards smaller Q2, all the way back to the
parton-shower initiator at the cut-o� scale Q2

0. This procedure is possible if evolved parton
distributions are used to select the hard scattering, since the fi(x, Q2) contain the inclusive
summation of all initial-state parton-shower histories that can lead to the appearance of
an interacting parton i at the hard scale. What remains is thus to select an exclusive
history from the set of inclusive ones. In this way, backwards evolution furnishes a very
clear and intuitive picture of the relationship between the inclusive (parton distributions)
and exclusive (initial-state showers) description of the same physics.

10.3.2 Longitudinal evolution

The evolution equations, eq. (187), express that, during a small increase dt, there is a
probability for parton a with momentum fraction x⇥ to become resolved into parton b
at x = zx⇥ and another parton c at x⇥ � x = (1 � z)x⇥. Correspondingly, in backwards
evolution, during a decrease dt a parton b may be ‘unresolved’ into parton a. The relative
probability dPb for this to happen is given by the ratio dfb/fb. Using eq. (187) one obtains

dPb =
dfb(x, t)

fb(x, t)
= |dt|

⇧

a,c

⌃ dx⇥

x⇥
fa(x⇥, t)

fb(x, t)

�abc

2⇥
Pa�bc

�
x

x⇥

⇥
. (188)

Summing up the cumulative e�ect of many small changes dt, the probability for no radi-
ation exponentiates. Therefore one may define a form factor

Sb(x, tmax, t) = exp

⇤

�
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t
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x⇥fa(x⇥, t⇥)

xfb(x, t⇥)

⌅

, (189)

giving the probability that a parton b remains at x from tmax to a t < tmax.
It may be useful to compare this with the corresponding expression for forward evolu-

tion, i.e. with Sa(t) in eq. (166). The most obvious di�erence is the appearance of parton
distributions in Sb. Parton distributions are absent in Sa: the probability for a given
parton a to branch, once it exists, is independent of the density of partons a or b. The
parton distributions in Sb, on the other hand, express the fact that the probability for
a parton b to come from the branching of a parton a is proportional to the number of
partons a there are in the hadron, and inversely proportional to the number of partons b.
Thus the numerator fa in the exponential of Sb ensures that the parton composition of
the hadron is properly reflected. As an example, when a gluon is chosen at the hard scat-
tering and evolved backwards, this gluon is more likely to have been emitted by a u than
by a d if the incoming hadron is a proton. Similarly, if a heavy flavour is chosen at the
hard scattering, the denominator fb will vanish at the Q2 threshold of the heavy-flavour
production, which means that the integrand diverges and Sb itself vanishes, so that no
heavy flavour remain below threshold.

Another di�erence between Sb and Sa, already touched upon, is that the Pg�gg(z)
splitting kernel appears with a normalization 2NC in Sb but only with NC in Sa, since
two gluons are produced but only one decays in a branching.

A knowledge of Sb is enough to reconstruct the parton shower backwards. At each
branching a⇥ bc, three quantities have to be found: the t value of the branching (which
defines the space-like virtuality Q2

b of parton b), the parton flavour a and the splitting
variable z. This information may be extracted as follows:
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⇤(x, tmax, t)
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Born {p} :  partons

But instead of evaluating O directly on the Born final state,  
first insert a showering operator

Most showers, with the exception of ARIADNE and the Winter–Krauss shower [32], are based on
collinear factorization, which is to say 1 → 2 branching in shower evolution. (PYTHIA 8 combines
a 1 → 2 splitting probability with a 2 → 3 phase-space mapping.) In the present paper, we continue
the development of a leading-log (LL) parton shower [33] based on dipole antennæ, that is 2 → 3
branching. We choose a simpler context than hadron collisions, that of electron–positron collisions.
This allows us to set aside the questions of initial-state emission as well as those of the underlying
event.

In sec. 2, we describe in greater detail the ingredients needed for such a shower, as well as our
normalization conventions, and compare the origins of different singularities and corresponding log-
arithms in different shower formalisms. We also discuss the different matching approaches in more
detail. In sec. 3, we discuss the evolution integral, and show how to cast it in a general form whose
specializations correspond to a wide variety of interesting evolution variables. We then solve the re-
sulting evolution equation. In sec. 4, we discuss the shower algorithm, as well as improvements that
can be made to its logarithmic accuracy. In sec. 5, we discuss the details of matching the dipole-
antenna shower to tree-level matrix elements, at both leading and subleading color. The procedure
we use to evaluate the remaining perturbative uncertainties is described in sec. 6, and in sec. 7, we
comment on hadronization; in sec. 8, we compare the results of running the unitarity-based approach
implemented in VINCIA to LEP data and to PYTHIA 8. We make some concluding remarks in sec. 9.

2 Nomenclature and Conventions

In this section, we introduce the basic elements of our perturbative formalism, which is largely based
on ref. [33]. First, in sec. 2.1, we illustrate how the KLN theorem may be used to rewrite the coeffi-
cients of perturbation theory as the expansion of an all-orders Markov chain, using NLO as an explicit
example. Then, in sec. 2.2, we briefly describe each of the ingredients that enter our dipole-antenna
shower formalism.

2.1 Perturbation Theory with Markov Chains

Consider the Born-level cross section for an arbitrary hard process, H , differentially in an arbitrary
infrared-safe observable O,

dσH
dO

∣∣∣∣Born
=
∫

dΦH |M (0)
H |2 δ(O −O({p}H)) , (1)

where the integration runs over the full final-state on-shell phase space of H (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and the δ function projects out a 1-dimensional slice defined
by O evaluated on the set of final-state momenta which we denote {p}H (without the δ function, the
integration over phase space would just give the total cross section, not the differential one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator, S , that acts on the Born-level final state before the observable is evaluated,
i.e.,

dσH
dO

∣∣∣∣S
=
∫

dΦH |M (0)
H |2 S({p}H ,O) . (2)

Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. The measurement δ function appear-
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Born 
+ shower S : showering operator

{p} :  partons
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where the integration runs over the full final-state on-shell phase space of H (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and the δ function projects out a 1-dimensional slice defined
by O evaluated on the set of final-state momenta which we denote {p}H (without the δ function, the
integration over phase space would just give the total cross section, not the differential one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator, S , that acts on the Born-level final state before the observable is evaluated,
i.e.,

dσH
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H = Hard process

Unitarity: to first order, S does nothing
S({p}H ,O) = � (O �O({p}H)) + O(↵s)
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๏To ALL Orders 

•All-orders Probability that nothing happens

S({p}X,O) = δ(O −O({p}X))
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∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

“Nothing Happens”

“Something Happens”

(Exponentiation) 
Analogous to nuclear decay 

N(t) ≈ N(0) exp(-ct)

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

∆(t1, t2) = exp

(

−
∫ t2

t1

dt
dP
dt

)

“Evaluate Observable”→ 

“Continue Shower”→ 


