Introduction to Event Generators

Lecture 1 of 4

Peter Skands
Monash University
(Melbourne, Australia)

MELBOURNE?

Australia's 4 deadliest animals:

Horses (7/yr) Cows (3/yr)
Dogs (3/yr) Roos (2/yr)
Hins

CYCLONES

SUNGRY
smaisu THE OHE whict
y.

DEADIY SPIDERS

 IN THE DUNNYCARNIVOROUS

KOALA DECRS

fuls. iots of
 THE ONE whch
LOTS OF SHARKS

Monash

University:

70,000 students
(Australia's largest uni)
~ 20km SE of
Melbourne City Centre

School of Physics \& Astronomy;
4 HEP theorists

+ post docs \& students

DISCLAIMER

This course covers:

Lecture 1: Foundations of MC Generators

Lecture 2: Parton Showers
Lecture 3: Jets and Confinement
Lecture 4: Physics at Hadron Colliders
Supporting Lecture Notes (~80 pages): "Introduction to QCD", arXiv:1207.2389

+ MCnet Review: "General-Purpose Event Generators", Phys.Rept.504(2011)145
It does not cover:
Simulation of BSM physics \rightarrow Lectures by V Hirschi
Matching and Merging \rightarrow Lectures by S Höche
Heavy Ions and Cosmic Rays \rightarrow Lectures by K Werner
Event Generator Tuning \rightarrow Lecture by H Schulz
+ many other (more specialised) topics such as: heavy quarks, hadron and T decays, exotic hadrons, lattice QCD, spin/polarisation, low-x, elastic, ...

CONTENTS

1. Foundations of MC Generators
2. Parton Showers
3. Jets and Confinement
4. Physics at Hadron Colliders

MAKING PREDICTIONS

Scattering Experiments:

LHC detector Cosmic-Ray detector Neutrino detector X-ray telescope
\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

In particle physics:

Integrate over all quantum histories
(+ interferences)

$d \sigma / d \Omega$; how hard can it be?

If event generators could talk:

Someone hold my drink while I approximate the amplitude (squared) for this ...

... integrate it over a ~300dimensional phase space
... and estimate the detector response

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Quark fields

Covariant Derivative

$$
D_{i j}^{\mu}=\delta_{i j} \partial^{\mu}-i g_{s} t_{i j}^{a} A^{\mu}
$$

Gell-Mann Matrices $\left(t^{a}=1 / 2 \lambda a\right)$
(Traceless and Hermitian)

$$
\begin{aligned}
& \lambda^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \lambda^{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \lambda^{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \lambda^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda^{8}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & 0 \\
0 & 0 & \frac{-2}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

INTERACTIONS IN COLOUR SPACE

A quark-gluon interaction
(= one term in sum over colours)

$$
\begin{gathered}
\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j} \\
D_{i j}^{\mu}=\delta_{i j} \partial^{\mu}-i g_{s} t_{i j}^{a} A^{\mu}
\end{gathered}
$$

$$
\propto \quad-\frac{i}{2} g_{s}
$$

$$
\bar{\psi}_{q R}
$$

$$
=-\frac{i}{2} g_{s}\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

INTERACTIONS IN COLOUR SPACE

A gluon-gluon interaction
(no equivalent in OED)

$$
\begin{aligned}
\propto-g_{s} f^{246} & {\left[\left(k_{3}-k_{2}\right)^{\rho} g^{\mu \nu}\right.} \\
& +\left(k_{2}-k_{1}\right)^{\mu} g^{\nu \rho} \\
& \left.+\left(k_{1}-k_{3}\right)^{\nu} g^{\rho \mu}\right]
\end{aligned}
$$

$$
i f^{a b c}=2 \operatorname{Tr}\left\{t^{c}\left[t^{a}, t^{b}\right]\right\}
$$

Structure Constants of SU(3)
$f_{123}=1$
$f_{147}=f_{246}=f_{257}=f_{345}=\frac{1}{2}$
$f_{156}=f_{367}=-\frac{1}{2}$
$f_{458}=f_{678}=\frac{\sqrt{3}}{2}$
Antisymmetric in all indices
All other $f_{a b c}=0$

Amplitudes Squared summed over colours \rightarrow traces over t matrices
\rightarrow Colour Factors (see literature, or back of these slides)

COLOUR VERTICES IN EVENT GENERATORS

MC generators use a simple set of rules for "colour flow" Based on "Leading Colour" $8=3 \otimes \overline{3} \ominus 1 \quad\left(\Rightarrow\right.$ valid to $\left.\sim 1 / N_{C}^{2} \sim 10 \%\right)$ LC: represent gluons as outer products of triplet and antitriplet

COLOUR FLOW

Showers (can) generate lots of partons, $\mathcal{O}(10-100)$.
Colour Flow used to determine between which partons confining potentials arise

```
Example: Z0 }->\mathrm{ qq
```


Coherence of pQCD cascades \rightarrow suppression of "overlapping" systems
\rightarrow Leading-colour approximation pretty good
(LEP measurements in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow$ hadrons confirm this (at least to order $10 \% \sim 1 / \mathrm{N}_{\mathrm{c}}{ }^{2}$))
Note: (much) more color getting kicked around in hadron collisions.
Signs that LC approximation is breaking down? \rightarrow Lecture 4

THE STRONG COUPLING

Bjorken scaling:

To first approximation, QCD is
SCALE INVARIANT (a.k.a. conformal)

Jets inside jets inside jets
Fluctuations (loops) inside fluctuations inside fluctuations ...

If the strong coupling didn't "run", this would be absolutely true (e.g., $\mathrm{N}=4$ Supersymmetric Yang-Mills) Since $\alpha_{\text {s }}$ only runs slowly (logarithmically) \rightarrow can still gain insight from fractal analogy (\rightarrow lecture 2 on showers)

Note: I use the terms "conformal" and "scale invariant" interchangeably
Strictly speaking, conformal (angle-preserving) symmetry is more restrictive than just scale invariance

MANY WAYS TO SKIN A CAT

The strong coupling is (one of) the main perturbative parameter(s) in event generators. It controls:

- The overall amount of QCD initial- and final-state radiation
- Strong-interaction cross sections (and resonance decays)
- The rate of (mini)jets in the underlying event

MCs: get value from: PDG?
PDFs? Fits to
data (tuning)?

Example (for Final-State Radiation):

will undershoot LEP 3-jet rate by ~ 10% (unless combined with NLO 3-jet ME)

PYTHIA : tuning to LEP 3-jet rate; requires ~ 20\% increase
TimeShower:alphaSvalue default $=\mathbf{0 . 1 3 6 5}$
TimeShower:alphaSorder default = 1
TimeShower:alphaSuseCMW default = off

USING SCALE VARIATIONS TO ESTIMATE UNCERTAINTIES

Scale variation ~ uncertainty; why?

Scale dependence of calculated orders must be canceled by contribution from uncalculated ones (+ non-pert)

$$
\begin{aligned}
& \alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)} \quad b_{0}=\frac{11 N_{C}-2 n_{f}}{12 \pi} \\
& \rightarrow \alpha_{s}\left(Q_{1}^{2}\right)-\alpha_{s}\left(Q_{2}^{2}\right)=\alpha_{s}^{2} b_{0} \ln \left(Q_{2}^{2} / Q_{1}^{2}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)
\end{aligned}
$$

\rightarrow Generates terms of higher order, proportional to what you already have $\left(|\mathrm{M}|^{2}\right) \rightarrow$ a first naive* way to estimate uncertainty
*warning: some believe it is the only way ... but be agnostic! Really a lower limit. There are other things than scale dependence...

WARNING: MULTI-SCALE PROBLEMS

Example: pp $\rightarrow \mathbf{W}+3$ jets

1: MW
2: MW + Sum(|pT|)
3: -"- (quadratically)
4: Geometric mean pT (~shower)
5: Arithmetic mean pT

Also consider functional dependence on each scale $\left(+N^{(n)} L O \rightarrow\right.$ some compensation)

BEYOND FIXED ORDER

QCD is more than just a perturbative expansion in α_{s} (and Perturbation theory is more than Feynman diagrams)

Jets \longleftrightarrow amplitude structures \longleftrightarrow fundamental quantum field theory / gauge theory. Precision jet (structure) studies.
\rightarrow Lecture 2

Strings (strong gluon fields) \longleftrightarrow quantum-classical correspondence. String physics. Dynamics of confinement / hadronisation phase transition. \rightarrow Lecture 3

Hadrons \longleftrightarrow Spectroscopy (incl excited and exotic states), lattice QCD, (rare) decays, mixing, light nuclei. Hadron beams \rightarrow MPI, diffraction, $\ldots \rightarrow$ Lecture 4

HARD-PROCESS CROSS SECTIONS

Factorisation \Rightarrow Fixed-order cross sections still useful.

In DIS, there is a formal proof

(Collins, Soper, 1987)

Note: Beyond LO, f can be more than one parton
\rightarrow We really can write the cross section in factorised form :

$$
\begin{aligned}
& \sigma^{\ell h}=\sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}} \\
& \begin{array}{lll}
\text { Sum over } & \Phi_{f} & f_{i / h} \quad \text { Differential partonic }
\end{array} \\
& \text { Initial (i) } \\
& \text { and final (f) } \\
& \text { parton flavors } \\
& =\text { Final-state } \\
& =\text { PDFs } \\
& \text { Hard-scattering } \\
& \text { phase space Assumption: } \\
& \mathrm{Q}^{2}=\mathrm{Q}_{\mathrm{F}}{ }^{2}
\end{aligned}
$$

A PROPOS FACTORISATION

Why do we need PDFs, parton showers / jets, etc.? Why are Fixed-Order OCD matrix elements not enough?

F.O. QCD requires Large scales $\Rightarrow \alpha_{s}$ small enough to be perturbative $(\cdots$ cannot be used to address intrinsically soft physics such as minimum-bias or diffraction, but still OK for high-scale/hard processes)
F.O. $Q C D$ requires No scale hierarchies $\Rightarrow \alpha_{s} \ln \left(Q_{i} / Q_{j}\right)$ small In the presence of scale hierarchies, propagator singularities integrate to logarithms (tomorrow's lecture) which ruin fixed-order expansion.

But!!! we collide - and observe - hadrons, with non-perturbative structure, that participate in hard processes, whose scales are hierarchically greater than mad $\sim 1 \mathrm{GeV}$.
\rightarrow A Priori, no perturbatively calculable observables in QCD

FACTORISATION \Rightarrow WE CAN STILL CALCULATE!

Why is Fixed Order OCD not enough?

: It requires all resolved scales >> ^ocd AND no large hierarchies
PDFs: connect incoming hadrons with the high-scale process
Fragmentation Functions: connect high-scale process with final-state hadrons
(each is a non-perturbative function modulated by initial- and final-state radiation)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections

In MCs: made exclusive as initial-state radiation + non-perturbative hadron (beam-remnant) structure
(+ multiple parton-parton interactions)

FFs: needed to compute (semi-)exclusive cross sections

In MCs: resonance decays, final-state radiation, hadronisation, hadron decays
(+ final-state interactions?)

Resummed pQCD: All resolved scales >> ^ocd AND X Infrared Safe

 "pOCD = perturbative OCD
ORGANISING THE CALCULATION

Divide and Conquer \rightarrow Split the problem into many (nested) pieces

+ Quantum mechanics \rightarrow Probabilities \rightarrow Random Numbers

$$
\mathcal{P}_{\text {event }}=\mathcal{P}_{\text {hard }} \otimes \mathcal{P}_{\text {dec }} \otimes \mathcal{P}_{\text {ISR }} \otimes \mathcal{P}_{\text {FSR }} \otimes \mathcal{P}_{\text {MPI }} \otimes \mathcal{P}_{\text {Had }} \otimes \ldots
$$

Hard Process \& Decays:
Use process-specific (N)LO matrix elements (e.g., gg $\rightarrow \mathrm{H}^{0} \rightarrow \gamma \gamma$)
\rightarrow Sets "hard" resolution scale for process: $\mathrm{Q}_{\text {max }}$
ISR \& FSR (Initial- \& Final-State Radiation):
Driven by differential (e.g., DGLAP) evolution equations, $\mathrm{dP} / \mathrm{dQ}^{2}$, as function of resolution scale; from $\mathrm{Q}_{\text {MAX }}$ to $\mathrm{O}_{\text {HAD }} \sim 1 \mathrm{GeV}$

MPI (Multi-Parton Interactions)
Protons contain lots of partons \rightarrow can have additional (soft) partonparton interactions \rightarrow Additional (soft) "Underlying-Event" activity

Hadronisation

Non-perturbative modeling of partons \rightarrow hadrons transition

THE MAIN WORKHORSES

PYTHIA (begun 1978)

Originated in hadronisation studies: Lund String model
Still significant emphasis on soft/non-perturbative physics
HERWIG (begun 1984)

i
Originated in coherence studies: angular-ordered showers Cluster hadronisation as simple complement

SHERPA (begun ~2000)
Originated in ME/PS matching (CKKW-L)
Own variant of cluster hadronisation

+ Many more specialised:
Matrix-Element Generators, Matching/Merging Packages, Resummation packages, Alternative QCD showers, Soft-QCD MCs, Cosmic-Ray MCs, Heavy-Ion MCs, Neutrino MCs, Hadronic interaction MCs (GEANT/FLUKA; for energies below $\mathrm{E}_{\mathrm{CM}} \sim 10 \mathrm{GeV}$), (BSM) Model Generators, Decay Packages, ...

\rightarrow MONTE CARLO

MC: any technique that makes use of random sampling (to provide numerical estimates)
Prescribed for cases of complicated integrands/boundaries in high dimensions

\rightarrow MONTE CARLO

MC: any technique that makes use of random sampling (to provide numerical estimates) Prescribed for cases of complicated integrands/boundaries in high dimensions

Example: Integrate $f(x)$

1. Compute area of box (you can do it!)
2. Throw random (x, y) points uniformly inside box
3. If $y<f(x)$: accept (blue); else reject (red)
4. After $\mathrm{N}_{\text {tot }}$ throws, you have an estimate

$$
\int_{x_{\min }}^{x_{\max }} f(x) \mathrm{d} x \sim A_{\text {box }} N_{\text {blue }} / N_{\text {tot }}
$$

5. Central limit theorem \Rightarrow converges to Ablue

Recap Convergence:

Calculus: $\{\mathrm{A}\}$ converges to B if n exists for which $\left|\mathrm{A}_{\gg n}-\mathrm{B}\right|<\varepsilon$, for any $\varepsilon>0$

Monte Carlo: $\{\mathrm{A}\}$ converges to B if n exists for which
the probability for $\left|\mathrm{A}_{i>n}-\mathrm{B}\right|<\varepsilon$, is $>\mathrm{P}$, for any $\mathrm{P}[0<\mathrm{P}<1]$ for any $\varepsilon>0$
"This risk, that convergence is only given with a certain probability, is inherent in Monte Carlo calculations and is the reason why this technique was named after the world's most famous gambling casino." [F. James, MC theory and practice]

\rightarrow MONTE CARLO

MC: any technique that makes use of random sampling (to provide numerical estimates) Prescribed for cases of complicated integrands/boundaries in high dimensions

Example: Integrate $f(x)$

Could also have used standard 1D num. int. (e.g., "Fixed-Grid": Trapezoidal rule, Simpson's rule ...) \rightarrow typically faster convergence in 1D but few general optimised methods in 2D; none beyond 3D \& convergence rate becomes worse . The convergence rate of $M C$ remains the stochastic $1 / \sqrt{n}$ independent of dimension* !

${ }^{*}$) You still need to worry about variance; physics has lots of peaked/singular functions \rightarrow adaptive sampling (or stratification)

Numerical Integration: Relative Uncertainty (after n function evaluations)
Trapezoidal Rule (2-point) Simpson's Rule (3-point) Monte Carlo

JUSTIFICATION:

1. Law of large numbers (MC is accurate)

For a function, f, of random variables, x_{i},

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\substack{i=1 \\ \text { Monte Carlo Estimate }}}^{n} f\left(x_{i}\right)=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x
$$

For infinite n: Monte Carlo is a consistent estimator
2. Central limit theorem (MC precision is stochastic: $1 / \sqrt{ } n$)

The sum of n independent random variables (of finite expectations and variances) is asymptotically Gaussian
(no matter how the individual random variables are distributed)

For finite n :

The Monte Carlo estimate is Gauss distributed around the true value \rightarrow with $1 / \sqrt{ }$ n precision In other words: MC stat unc same as for data

PEAKED FUNCTIONS

Precision on integral dominated by the points with $f \approx f_{\text {max }}$ (i.e., peak regions)
\rightarrow slow convergence if high, narrow peaks

STRATIFIED SAMPLING

\rightarrow Make it twice as likely to throw points in the peak

Choose:

For: | $[0,1]$ | \rightarrow Region A |
| ---: | :--- |
| $[1,2]$ | \rightarrow Region B |
| $6 * R_{1} \in[2,4]$ | \rightarrow Region C |
| $[4,5]$ | \rightarrow Region D |
| $0: 0$ | \rightarrow Region E |

\rightarrow faster convergence for same number of function evaluations

(ADAPTIVE SAMPLING)

\rightarrow Can even design algorithms that do this automatically as they run
(not covered here)
\rightarrow Adaptive sampling

IMPORTANCE SAMPLING

Note: if several peaks: do multi-channel importance sampling (\sim competing random processes)

WHY DOES THIS WORK?

1) You are inputting knowledge: obviously need to know where the peaks are to begin with ... (say you know, e.g., the location and width of a resonance or singularity)
2) Stratified sampling increases efficiency by combining n point quadrature with the MC method, with further gains from adaptation
3) Importance sampling:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} \frac{f(x)}{g(x)} \mathrm{d} G(x)
$$

$$
\begin{gathered}
\text { Effectively does flat } M C \text { with } \\
\text { changed integration variables } \\
\text { Fast convergence if } \\
f(x) / g(x) \approx 1
\end{gathered}
$$

Flat sampling in $x \rightarrow$ Flat sampling in $G(x)$

SIMPLE MC EXAMPLE

NUMBER OF PEDESTRIANS (IN LUND) WHO WILL GET HIT BY A CAR THIS WEEK

Complicated Function:

Time-dependent
Traffic density during day, week-days vs week-ends (I.E., NON-TRIVAL TIME EVOLUTION OF SYSTEM)

No two pedestrians are the same
Need to compute probability for each and sum
(SIMULATES HAVING SEVERAL DISTINCT TYPES OF "EVOLVERS")
(Multiple outcomes (ignored for today):)
Hit \rightarrow keep walking, or go to hospital?
Multiple hits = Product of single hits, or more complicated?

MONTE CARLO APPROACH

Approximate Traffic

Simple overestimate:
highest recorded density
of most careless drivers,
driving at highest recorded speed

Approximate Pedestrian
by most completely reckless and accident-prone person (e.g., MCnet student wandering the streets lost in thought after these lectures ...)

This extreme guess will be the equivalent of a simple area (~integral) we can calculate:

HIT GENERATOR

Off we go...

Throw random accidents according to:
basically a special application of importance sampling; transforming a uniform distribution to a non-uniform one

Solve for $t(R)$


```
to : starting time
t : time of accident
```


Sum over

Pedestrians

Larger trial area with simple
boundary (in this case, circle)

$$
R_{\text {trial }}=\left(t_{\text {trial }}-t_{0}\right) \overline{\left(\pi r_{\text {max }}^{2}\right)} \alpha_{\text {Hit rate for most }} n_{\text {ped }} \rho_{c \max }
$$

Solve for
$t_{\text {trial }}\left(R_{\text {trial }}\right)$
accident-prone pedestrian with worst driver

Rush-hour density of cars

(Also generate trial x, e.g., uniformly in circular area around Lund) (Also generate trial i; a random pedestrian gets hit)
(note: this generator is unordered; not asking whether that pedestrian was already hit earlier...)

ACCEPT OR REJECT TRIAL

Now you have a trial. Veto the trial if generated x is outside desired physical boundary. If inside, accept trial hit (i, x, t) with probability (exactly equivalent to when we coloured points blue [accept] or red [reject])

$$
\operatorname{Prob}(\mathrm{accept})=\frac{\alpha_{i}(x, t) \rho_{i}(x, t) \rho_{c}(x, t)}{\alpha_{\max } \rho_{c \max }}
$$

Using the following:
ρ_{c} : actual density of cars at location x at time t ρ_{i} : actual density of student i at location x at time t $\boldsymbol{\alpha}_{i}$: The actual "hit rate" (OK, not really known, but could fit to past data: "tuning")

\rightarrow True number $=$ number of accepted hits (caveat: we didn't really treat multiple hits ...
 \rightarrow Sudakovs \& Markov Chains; tomorrow)

SUMMARY: HOW WE DO MONTE CARLO

Take your system

Generate a "trial" (event/decay/interaction/...)
Not easy to generate random numbers distributed according to exactly the right distribution?
May have complicated dynamics, interactions ...
\rightarrow use a simpler "trial" overestimating distribution

> Flat with some stratification
> Or importance sample with simple overestimating function (for which you can \sim easily generate random numbers)

SUMMARY: HOW WE DO MONTE CARLO

Take your system
Generate a "trial" (event/decay/interaction/...)
Accept trial with probability $f(x) / g(x)$
$f(x)$ contains all the complicated dynamics
$g(x)$ is the simple trial function
If accept: replace with new system state
If reject: keep previous system state

> | no dependence on $g(x)$ in |
| :--- |
| final result - only affects |
| convergence rate |

And keep going: generate next trial

SUMMARY: HOW WE DO MONTE CARLO

Take your system

Generate a "trial" (event/decay/intera Accept trial with probability $f(x) / g(x)$
$f(x)$ contains all the complicated dynamic. $g(x)$ is the simple trial function
If accept: replace with new system stat
If reject: keep previous system state
no dependence on final result - only af

Sounds deceptively simple, but ...
with it, you can integrate arbitrarily complicated functions (and chains of nested functions), over arbitrarily complicated regions, in arbitrarily many dimensions ...

And keep going: generate next trial ...

SUMMARY: USING RANDOM NUMBERS TO MAKE DECISIONS

A Psychological Tip

Whenever you're called on to make up your mind, and you're hampered by not having any,
 the best way to solve the dilemma, you'll find, is simply by spinning a penny.

No -- not so that chance shall decide the affair while you're passively standing there moping; but the moment the penny is up in the air, you suddenly know what you're hoping.

[Piet Hein, Danish scientist, poet \& friend of Niels Bohr]

Extra Slides

IF YOU WANT TO PLAY WITH RANDOM NUMBERS

I will not tell you how to write a Random-number generator. (For that, see the references in the writeup.)

Instead, I assume that you can write a computer code and link to a random-number generator, from a library
E.g., ROOT includes one that you can use if you like.

PYTHIA also includes one
From the PYTHIA 8 HTML documentation, under "Random Numbers":

Random numbers R uniformly distributed in $0<R<1$ are obtained with Pythia8: :Rndm: :flat();

+ Other methods for exp, x^{\star} exp, 1D Gauss, 2D Gauss.

RANDOM NUMBERS AND MONTE CARLO

Example 1: simple function (=constant); complicated boundary

INTERACTIONS IN COLOUR SPACE

Colour Factors

Processes involving coloured particles have a "colour factor".
It counts the enhancement from the sum over colours. (average over incoming colours \rightarrow can also give suppression)

INTERACTIONS IN COLOUR SPACE

Colour Factors

Processes involving coloured particles have a "colour factor".
It counts the enhancement from the sum over colours. (average over incoming colours \rightarrow can also give suppression)

INTERACTIONS IN COLOUR SPACE

Colour Factors

Processes involving coloured particles have a "colour factor".
It counts the enhancement from the sum over colours.
(average over incoming colours \rightarrow can also give suppression)

CROSSINGS

$e^{+} e^{-} \rightarrow \gamma^{*} / Z \rightarrow q \bar{q}$
(Hadronic Z Decay)

Color Factor:
$\operatorname{Tr}\left[\delta_{i j}\right]=N_{C}$
$q \bar{q} \rightarrow \gamma^{*} / Z \rightarrow \ell^{+} \ell^{-}$
(Drell \& Yan, 1970)

Color Factor:
$\frac{1}{N_{C}^{2}} \operatorname{Tr}\left[\delta_{i j}\right]=\frac{1}{N_{C}}$
$\ell q \xrightarrow{\gamma^{*} / Z} \ell q$
(DIS)

Color Factor:
$\frac{1}{N_{C}} \operatorname{Tr}\left[\delta_{i j}\right]=1$

INTERACTIONS IN COLOUR SPACE

Colour Factors

Processes involving coloured particles have a "colour factor".
It counts the enhancement from the sum over colours.
(average over incoming colours \rightarrow can also give suppression)

QUICK GUIDE TO COLOUR ALGEBRA

Colour factors squared produce traces
Trace
Example Diagram Relation

$$
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}
$$

$$
\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{\mathrm{T}_{\mathrm{R}}\left(\mathrm{~N}_{c}^{2}\right.}{3}
$$

$$
\sum_{C, D} f^{A C D} f_{f}^{B C D}=C_{A} \delta^{A B}, \quad C_{A}=N_{c}=3
$$

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d} \text { (Fierz) }
$$

(from ESHEP lectures by G. Salam)

SCALING VIOLATION

Real OCD isn't conformal

The coupling runs logarithmically with the energy scale

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{s}\right) \quad \beta\left(\alpha_{s}\right)=-\alpha_{s}^{2}\left(b_{0}+b_{1} \alpha_{s}+b_{2} \alpha_{s}^{2}+\ldots\right) \\
& b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi} \quad b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}} \\
& \begin{array}{c}
\text { 1-Loop } \beta \text { function } \\
\text { coefficient }
\end{array}
\end{aligned}
$$

Asymptotic freedom in the ultraviolet

Confinement (IR slavery?) in the infrared

Multi-Scale Exercise

Skands, TASI Lectures, arXiv:1207.2389

If needed, can convert from multi-scale to single-scale

$$
\begin{aligned}
\alpha_{s}\left(\mu_{1}\right) \alpha_{s}\left(\mu_{2}\right) \cdots \alpha_{s}\left(\mu_{n}\right) & =\prod_{i=1}^{n} \alpha_{s}(\mu)\left(1+b_{0} \alpha_{s} \ln \left(\frac{\mu^{2}}{\mu_{i}^{2}}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right) \\
& =\alpha_{s}^{n}(\mu)\left(1+b_{0} \alpha_{s} \ln \left(\frac{\mu^{2 n}}{\mu_{1}^{2} \mu_{2}^{2} \cdots \mu_{n}^{2}}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
\end{aligned}
$$

by taking geometric mean of scales

Phase Space Generation

$$
\begin{aligned}
\sigma & =\frac{1}{2 s} \int|\mathcal{M}|^{2} d \Pi_{n}(\sqrt{ } s) \\
\Gamma & =\frac{1}{2 M} \int|\mathcal{M}|^{2} d \Pi_{n}(M)
\end{aligned}
$$

- Phase space:

$$
d \Pi_{n}(M)=\left[\prod_{i=1}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3}\left(2 E_{i}\right)}\right](2 \pi)^{4} \delta^{(4)}\left(p_{0}-\sum_{i=1}^{n} p_{i}\right)
$$

- Two-body easy:

$$
d \Pi_{2}(M)=\frac{1}{8 \pi} \frac{2 p}{M} \frac{d \Omega}{4 \pi}
$$

- Other cases by recursive subdivision:

$$
d \Pi_{n}(M)=\frac{1}{2 \pi} \int_{0}^{(M-m)^{2}} d m_{x}^{2} d \Pi_{2}(M) d \Pi_{n-1}\left(m_{x}\right)
$$

- Or by 'democratic' algorithms: RAMBO, MAMBO Can be better, but matrix elements rarely flat.

Particle Decays

- Simplest example e.g. top quark decay:

$$
\begin{gathered}
|\mathcal{M}|^{2}=\frac{1}{2}\left(\frac{8 \pi \alpha}{\sin ^{2} \theta_{w}}\right)^{2} \frac{p_{t} \cdot p_{\ell} p_{b} \cdot p_{\nu}}{\left(m_{W}^{2}-M_{W}^{2}\right)^{2}+\Gamma_{W}^{2} M_{W}^{2}} \\
\Gamma=\frac{1}{2 M} \frac{1}{128 \pi^{3}} \int|\mathcal{M}|^{2} d m_{W}^{2}\left(1-\frac{m_{W}^{2}}{M^{2}}\right) \frac{d \Omega}{4 \pi} \frac{d \Omega_{W}}{4 \pi}
\end{gathered}
$$

Breit-Wigner peak of W very strong - must be removed by importance sampling:

$$
m_{W}^{2} \rightarrow \arctan \left(\frac{m_{W}^{2}-M_{W}^{2}}{\Gamma_{W} M_{W}}\right)
$$

