Status of NLO Antenna Showers

Hai Tao Li \& Peter Skands (Monash University)

Based on:

- 2013: $(q \bar{q} \rightarrow) q g \bar{q}$ at NLO [HLS, JHEP 1310 (2013) 127]
- 2016: Framework for full FSR at LC [LS, PLB771 (2017) 59]
... + work in progress ...

\therefore ジ MCnet

June 2017 CERN TH Institute on Physics at the LHC

MOTIVATION

Motivation: not a priori to do N(N)LL evolution, nor do we at this point claim that we do.
Wanted to see if we could use experience with tree- and oneloop matrix-element corrections in showers \rightarrow derive \& implement a set of self-consistent $2^{\text {nd }}$-order corrections to our shower kernels
To be used all throughout the shower.
Expect this $\rightarrow N(N) L L$ evolution for some set of observables but not the focus of our work so far.

Many (interesting) questions remaining
Initial-State Radiation (interface with PDFs), radiation in resonance decays, heavy quarks, OED radiation, merging with fixed order

MATRIX-ELEMENT CORRECTIONS

Matrix-Element Corrections

Regard shower as generating approximate weighting of (all) n-parton phase space(s) ~ sums over radiation functions times Sudakov factors

Captures universal leading singular structures, but not subleading or process-dependent terms \rightarrow
 impose M.E. corrections order by order.

Used extensively in PYTHIA to correct first emission in all SM decays, most BSM ones, and for colourless boson production + ISR
Is the basis for the real corrections in POWHEG Generalised to multiple emissions in VINCIA

Tree-level, 1 emission:
Sjöstrand \& Miu PLB449 (1999) 313-320
Sjöstrand \& Norrbin Nucl.Phys. B603 (2001) 297

One-loop, 0 emissions: Nason (POWHEG), JHEP 0411 (2004) 040

Tree-level, 1:N emissions: Giele, Kosower, PZS, PRD84 (2011) 054003
One-loop, 0:1 emission: Hartgring, Laenen, PZS, JHEP 1310 (2013) 127

Shower contains correct singularities for all singleunresolved limits \longleftrightarrow Corrections nonsingular @ NLO

True for any (coherent) shower model.

(COHERENCE : DGLAP VS ANTENNAE)

DGLAP: based on collinear limits
Each parton treated as an ~ independently radiating monopole, $\mathrm{P}(\mathrm{z}) / \mathrm{Q}^{2}$
Misses soft-limit coherence, already at leading (dipole) level
Ang. ord. (or vetos) \rightarrow correct soft limit when summed over azimuth
(But phase-space distributions of emitted gluons still not point-by-point correct)
Matrix-Element corrections can restore exact coherence point-by-point, up to order applied
E.g., a DGLAP shower could be improved by "dipole corrections" at all orders (but we have dipole showers)

Antenna evolution: each LC-connected parton pair ~ radiating dipole-antenna Splittings fundamentally $2 \rightarrow 3$ instead of $1 * \rightarrow 2 \quad$ Gustafison \& Pettersen: NPB306 (1988) 746-758

Antenna Factorisation of:

Phase Space: Lorentz-invariant on-shell $2 \rightarrow 3$ phase-space maps exact over all of phase space, not just limits.
Amplitudes: Correct in collinear and soft limits (to all orders): Kosower PRD71 (2005) 045016
Collinear limits $\rightarrow P(z) / Q^{2}$
Soft limits \rightarrow eikonal factors $\frac{2 s_{13}}{s_{12} s_{23}}$
Point-by-point coherence (at LC; higher colour multipoles suppressed by $1 / \mathrm{N}_{\mathrm{C}}^{2}$)

THE MULTIPLE-EMISSION PHASE SPACE

Antenna phase-space maps obey exact nesting

$$
\begin{aligned}
& \mathrm{d} \Phi_{n+1}=\mathrm{d} \Phi_{n} \times \mathrm{d} \Phi_{\text {ant }} \text { (one clustering) } \\
& \longrightarrow \text { Generalisation to many possible clusterings: } \mathrm{d} \Phi_{n+1}=\sum_{i=1}^{n_{\text {ant }}} \int_{i} \mathrm{~d} \Phi_{\text {ant }, \mathrm{i}} \mathrm{~d} \Phi_{n}^{i} \text { (global or sect }
\end{aligned}
$$

Sector showers: $f_{i}=$ partition of unity (x strong-ordering)
~ WINNER-TAKES-ALL JET ALGORITHMS Lopez-Villarejo \& PZS: JHEP 1111 (2011) 150
Global showers: $f_{i}=$ multiple cover (x strong-ordering)
ANTENNA FUNCTIONS SUM TO TOTAL SINGULARITIES
\rightarrow Can cover all of phase space; but do we?

For a general shower ordering variable, the $2 \rightarrow 4$ (and higher) phase spaces exhibit regions with all $f_{i}=0$ (no ordered paths) \rightarrow inaccessible

(a) Strong Ordering

HOW BIG ARE THESE REGIONS?

Flat scans of N -parton phase space (RAMBO)

Total size of
dead zone
$\sim 2 \%$ of PS

$$
R_{N}=\log _{10}\left(\frac{\operatorname{Sum}(\text { shower-paths })}{\left|M_{N}^{(\mathrm{LO}, \mathrm{LC})}\right|^{2}}\right)
$$

PS = shower expanded to tree level, summed over all ordered paths

$$
\begin{aligned}
& \text { ME }= \text { LO matrix element } \\
& \text { (MADGRAPH @ } \\
& \text { leading colour) }
\end{aligned}
$$

THE SOLUTION THAT WORKED AT LO

Wanted starting point for (LO) matrix-element corrections over all of phase space (good approx \rightarrow small corrections)

Allow newly created antennae to evolve over their full phase spaces, with suppressed (beyond-LL) probability: smooth ordering

Giele, Kosower, PZS: PRD84 (2011) 054003

SMOOTH ORDERING: AN EXCELLENT APPROXIMATION (at tree level)

(WHY IT WORKS?)

The antenna factorisations are on shell

\mathbf{n} on-shell partons $\boldsymbol{\rightarrow} \mathbf{n + 1}$ on-shell partons
In the first $2 \rightarrow 3$ branching, final-leg virtualities assumed ~ 0

Strong Ordering:

Cannot be neglected in unordered part of phase space

$$
\frac{1}{2 p_{i} \cdot p_{j}} \rightarrow \frac{P_{\mathrm{imp}}(n \rightarrow n+1)}{2 p_{i} \cdot p_{j}}=\frac{1}{2 p_{i} \cdot p_{j}+\mathcal{O}\left(p_{\perp n+1}^{2}\right)}
$$

Good agreement with ME \rightarrow good starting point for $2 \rightarrow 4$

SOMETHING ROTTEN?

Smooth ordering: nice tree-level expansions (small ME corrections) \Rightarrow good $2 \rightarrow 4$ starting point

But we worried the Sudakov factors were "wrong" \Rightarrow not good starting point for $2 \rightarrow 3$ virtual corrections? Not good exponentiation?

For unordered branchings (e.g., double-unresolved) effective $2 \rightarrow 4$ Sudakov factor effectively \rightarrow LL Sudakov for intermediate (unphysical) 3parton point

DIRECT $2 \rightarrow 4$

Redefine the shower resolution scale

For unordered $2 \rightarrow 4$ paths: scale of $\mathbf{2}^{\text {nd }}$ branching defines resolution
The intermediate on-shell 3-parton state is merely a convenient stepping stone in phase space but is in reality highly off shell \Rightarrow integrate out

Figure 1: Illustration of scales and Sudakov factors in strongly ordered (ACD), smoothly (un)ordered (ACB), and direct $2 \rightarrow$ $4(\mathrm{AB})$ branching processes, as a function of the number of emitted partons, n.

Interchange order of integrations

$$
\mathrm{Q}_{2 \rightarrow 3} \leftrightarrow \mathrm{O}_{3 \rightarrow 4}
$$

$$
\int_{0}^{Q_{0}^{2}} d Q_{3}^{2} \int_{Q^{2}}^{Q_{0}^{2}} d Q_{4}^{2} \Theta\left(Q_{4}^{2}-Q_{3}^{2}\right) f\left(Q_{3}^{2}, Q_{4}^{2}\right)=
$$

$$
\text { Originally, the } 3 \rightarrow 4 \text { phase space } \frac{\int_{0}^{Q_{0}^{2}}}{>} O^{2} \int_{4}^{Q_{4}^{2}} d O^{2} f\left(O^{2} O^{2}\right) \text { Now the }
$$ is nested inside the $2 \rightarrow 3$ one

 (innordered) scale is integrated over for
for a generic integrand, f, with the result: each value of Q_{4}

$$
\begin{gather*}
\Delta_{2 \rightarrow 4}\left(Q_{0}^{2}, Q^{2}\right)=\exp \left[-\sum_{s \in a, b} \int_{Q^{2}}^{Q_{0}^{2}} d Q_{4}^{2} \int_{0}^{Q_{4}^{2}} d Q_{3}^{2}\right. \\
\int_{\zeta_{4-}}^{\zeta_{4+}} d \zeta_{4} \int_{\zeta_{3-}}^{\zeta_{3+}} d \zeta_{3} \frac{\left|J_{3} J_{4}\right|}{\left.\substack{\text { Product of } \\
\left(16 \pi^{2}\right)^{2} m^{2} m_{s}^{2}} \int_{0}^{2 \pi} \frac{d \phi_{4}}{2 \pi} R_{2 \rightarrow 4} S_{3} s_{3}^{\prime+}\right]} \text {, } \\
\text { Jacobian for dLIPS } \rightarrow \mathrm{dQ}_{3} \mathrm{dQ}_{4} \mathrm{~d} \zeta_{3} \mathrm{~d} \zeta_{4} \tag{11}
\end{gather*}
$$

DIRECT $2 \rightarrow 4$ VS ITERATED $2 \rightarrow 3$

Split the $2 \rightarrow 4$ phase space into non-overlapping sectors
Fully unordered (inacessible to iterated $2 \rightarrow 3$)
\Rightarrow add new "direct" $2 \rightarrow 4$ branchings without risk of double-counting
Rest of phase space (accessible to at least one ordered $2 \rightarrow 3$ path)
Unitarity (Sudakov exponentials and virtual corrections): want to sum inclusively over the "least resolved" degree of freedom
Classify according to what a jet algorithm (with shower evolution parameter as clustering measure) would do. E.g., for a (colour-connected) double-emission:

$$
\begin{aligned}
& p_{\perp 2} \equiv \frac{m_{12} m_{23}}{m_{123}} \\
& p_{\perp 3} \equiv \frac{m_{23} m_{34}}{m_{234}}
\end{aligned}
$$

A jet clustering algorithm (ARCLUS) would grab the smallest of these pT values, and cluster

If the resulting path is ordered: populate by iterated $2 \rightarrow 3$ (with $2 \rightarrow 4$ MEC factors) If unordered, keep clustering; direct $2 \rightarrow \mathrm{n}$

Clustering terminates when we reach a $Q_{n}>\min \left(\right.$ рт2, 2 Ртз,...)
\Rightarrow defines point as $2 \rightarrow 2+m \quad$ (NB: so far we only do $2 \rightarrow 3$ and $2 \rightarrow 4$!)

PHASE-SPACE DISTRIBUTIONS

Actual shower runs:

Figure 3: Top left: the ratio of sequential clustering scales Q_{4} / Q_{3} for a strongly ordered $2 \rightarrow 3$ shower, for $Z \rightarrow q g g \bar{q}$ (on $\log -\log$ axes). Top right: closeup of the region around $Q_{4} / Q_{3} \sim 1$, with $2 \rightarrow 4$ branchings included. Bottom row: the same for $H \rightarrow \operatorname{gggg}$.

VIRTUAL CORRECTIONS

Disclaimer

No established literature for antenna-evolved fragmentation functions
Known results (e.g., one-loop antenna functions) available mainly in context of
F.O. subtraction terms, not diff. eqs. / exponentation / resummation
\Rightarrow Had to (re)invent much of what follows as we went along
Clustering sequence $=$ series of on-shell representations of the momentum flow; terminates when representation consistent with ordering (allowing to sum over unresolved degrees of freedom below that scale)

Sudakov factor for an antenna $\quad \Delta\left(Q_{0}^{2}, Q^{2}\right)=\Delta_{2 \rightarrow 3}\left(Q_{0}^{2}, Q^{2}\right) \Delta_{2 \rightarrow 4}\left(Q_{0}^{2}, Q^{2}\right)$
Clustering corresponding to Q^{2} is: Ordered Unordered
(but next one up is ordered)
\Rightarrow Starting from Q_{0} (with inclusive sum over all unresolved $2 \rightarrow 3$ and $2 \rightarrow 4$ branchings below it), evolve to given Q : exclusive above O , inclusive below

To define one-loop MEC: compare expansions of shower Sudakov factors to $2^{\text {nd }}$-order antenna functions

VIRTUAL MECS @ SECOND ORDER

Proof of concept case: second-order correction to q-qbar antenna emitting a gluon A.k.a. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 3$ jets at $\mathrm{O}\left(\alpha_{s}^{2}\right)$
(at that time, we used smooth ordering for double-real; now direct $2 \rightarrow 4$)
Matching equation for one-loop virtual:
Exclusive 3-jet cross section above Q_{4}, for $\mathrm{Q}_{4} \rightarrow 0$ (in dim.reg.) (Could stop at hadronisation scale \rightarrow power corrections in $\mathrm{Q}_{\text {had }}$)
All-orders shower answer

$$
\left|M_{Z \rightarrow q \bar{q}}\right|^{2} A_{3}^{0}\left(Q^{2}\right)\left(1+V_{3}^{q \bar{q}}\right) \Delta_{2 \rightarrow 3}\left(Q_{0}^{2}, Q^{2}\right) \Delta_{3 \rightarrow 4}\left(Q^{2}, 0\right) \xrightarrow{\mathcal{O}\left(\alpha_{s}^{2}\right)}\left|M_{3}^{0}\right|^{2}\left(1+\frac{2 \operatorname{Re}\left[M_{3}^{0} M_{3}^{1 *}\right]}{\left|M_{3}^{0}\right|^{2}}\right)
$$

\rightarrow DIFFERENTIAL "K-FACTOR" FOR $2 \rightarrow 3$ BRANCHINGS

Solve for V_{3}

But not all \rightarrow split into analytic and numerical parts
Use that smooth-ordering already gave a good approximation, which can be integrated fairly easily

$$
\text { E.g.: } \Delta_{3 \rightarrow 4}=1-\sum_{a \in 1,2} \int_{\substack{\text { ord } \\ \text { ordering boundary } \\ \text { complicated } 2 \rightarrow 4 \text { ME-correction factor }}} \mathrm{d} \Phi_{\text {ant }} a_{3 \rightarrow 4} \frac{a_{2 \rightarrow 4}}{a_{2 \rightarrow 3} a_{3 \rightarrow 4}+a_{2 \rightarrow 3}^{\prime} a_{3 \rightarrow 4}^{\prime}}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

$$
\pm \sum_{a \in 1,2} \int \underset{\text { Doable analytically; }}{\mathrm{d} \Phi_{\mathrm{ant}} a_{3 \rightarrow 4} P_{\mathrm{imp}}}
$$

Difference done numerically;
(slow but can be parametrised in terms of two invariants)

\rightarrow DIFFERENTIAL "K-FACTOR" FOR $2 \rightarrow 3$ BRANCHINGS

Solve for V_{3}

$$
\begin{aligned}
& \left|M_{Z \rightarrow q \bar{q}}\right|^{2} A_{3}^{0}\left(Q^{2}\right)\left(1+V_{3}^{q \bar{q}}\right) \Delta_{2 \rightarrow 3}\left(Q_{0}^{2}, Q^{2}\right) \Delta_{3 \rightarrow 4}\left(Q^{2}, 0\right) \underset{\text { Poles }}{\stackrel{\mathcal{O}}{\left(\alpha_{s}^{2}\right)}\left|M_{3}^{0}\right|^{2}\left(1+\frac{2 \operatorname{Re}\left[M_{3}^{0} M_{3}^{1 *}\right]}{\left|M_{3}^{0}\right|^{2}}\right)} \underset{\text { Cancel if } \mathrm{Q} \text { is IR safe }}{\longrightarrow} \\
& \text { Non-divergent NLO correction Partial cancellations } \\
& \rightarrow \text { positive-definite NLO antenna Use to define LL evolution so as to }
\end{aligned}
$$

(a) $\mu_{\mathrm{PS}}=\sqrt{s}$

(a) $\mu_{\mathrm{PS}}=\sqrt{s}$

(b) $\mu_{\mathrm{PS}}=p_{\perp}$

(b) $\mu_{\mathrm{PS}}=p_{\perp}$

(c) $\mu_{\mathrm{PS}}=m_{D}$

(c) $\mu_{\mathrm{PS}}=m_{D}$

ADDING QG AND GG PARENTS

with direct $2 \rightarrow 4$ instead of smooth ordering

Work in progress...
Plots by Hai Tao

$$
Q G \rightarrow Q G G
$$

From X decay

Note: large corrections for $\mathrm{g} \rightarrow \mathrm{qq}$
(leading pole only $1 / y_{j k}$)

SECOND-ORDER ANTENNA EVOLUTION EQUATION

Putting $2 \rightarrow 3$ and $2 \rightarrow 4$ together \Rightarrow evolution equation for dipole-antenna at $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$:

Iterated $2 \rightarrow 3$ with (finite) one-loop correction

$$
\frac{d \Delta\left(Q_{0}^{2}, Q^{2}\right)}{d Q^{2}}=\int_{-\rightarrow 0} d \Phi_{\text {ant }}\left[\delta\left(Q^{2}-Q_{(2 \rightarrow \mid) \rightarrow 4 \text { antenna }}^{2}\left(\Phi_{3}\right)\right) a_{3}^{0}\right.
$$

$\begin{array}{c}\text { Direct } 2 \rightarrow 4 \text { (as sum over } \longrightarrow \\ \text { "a" and "b" subpaths) }\end{array}+\sum_{s \in a, b} \int_{\text {unord }} d \Phi_{\text {ant }}^{s} \delta\left(Q^{2}-Q_{2}^{2}\left(\Phi_{4}\right)\right) R_{2 \rightarrow 4}$ as explicit product $\left.S_{3} s_{s}^{\prime} \Delta\left(Q_{0}^{2}, Q^{2}\right)\right]$
Only generates double-unresolved singularities, not single-unresolved
Note: the equation is formally identical to:

$$
\begin{align*}
& \frac{d}{d Q^{2}} \Delta\left(Q_{0}^{2}, Q^{2}\right)= \\
& \int \frac{d \Phi_{3}}{d \Phi_{2}} \delta\left(Q^{2}-Q^{2}\left(\Phi_{3}\right)\right)\left(a_{3}^{0}+a_{3}^{1}\right) \Delta\left(Q_{0}^{2}, Q^{2}\right) \\
& +\int \frac{d \Phi_{4}}{d \Phi_{2}} \delta\left(Q^{2}-Q^{2}\left(\Phi_{4}\right)\right) a_{4}^{0} \Delta\left(Q_{0}^{2}, Q^{2}\right), \tag{3}
\end{align*}
$$

But on this form, the pole cancellation
happens between the two integrals

FURTHER DETAILS \& OUTLOOK

Further details

Since antenna functions are defined from specific physical matrix elements (GGG used Z, H, and X decays), the corrections effectively include nonsingular terms for those processes
Will probably use variations to estimate effects \rightarrow uncertainty bands
MECs (or merging) at given order could be used to cancel them
VINCIA 2 used a mixed evolution, with gluon emissions ordered in p_{T} and
$\mathrm{g} \rightarrow \mathrm{qq}$ splittings ordered in m_{qq}
Large log corrections at NLO \rightarrow reverting to single evolution measure

When can others play with it?

Old NLO qq \rightarrow qqg corrections already implemented in VINCIA 1
New paradigm; currently writing up longer paper with details and preparing for new code release, with Hai Tao Li. Expect (at least) a month or two.
Note: still only for (massless) final-state evolution.
Big projects in their own right: ISR and radiation in resonance decays (+OED)

SUMMARY

GGG: full set of $2^{\text {nd }}$-order antenna functions (summed over colours and permutations)
We use: $Q \bar{Q}: N_{C}^{2} A_{3}^{1}, N_{C} n_{F} \hat{A}_{3}^{1}, N_{C}^{2} A_{4}, N_{C} n_{F} B_{4}$,
Gehrmann-de Ridder, Gehrmann, Glover JHEP 0509 (2005) 056

$$
\begin{aligned}
& Q G: N_{C}^{2} D_{3}^{1}, N_{C} n_{F} \hat{D}_{3}^{1}, n_{f} N_{C} E_{3}^{1}, n_{f}^{2} \hat{E}_{3}^{1}, N_{C}^{2} D_{4}, N_{C} n_{F} E_{4}
\end{aligned} \begin{gathered}
\text { subleading-calour and - flavour } \\
\text { (NB GGG a } \\
\text { antenna functions; so far ignored) }
\end{gathered}
$$

(Colour-ordered sub-antenna functions defined using $2 \rightarrow 3$ as partitioning functions)
Direct $2 \rightarrow 4$ branchings interleaved with iterated ME-corrected $2 \rightarrow 3$ ones $2 \rightarrow 4$ resolved in $\mathrm{Q}_{4}=\min \left(\mathrm{p}_{\mathrm{T} 4 \mathrm{a}}, \mathrm{P}_{\mathrm{T} 4 \mathrm{~b}}\right)$

Based on eikonal $\times \mathrm{P}_{\text {imp }} \times$ eikonal integrated over intermediate (unphysical) Q_{3} scale
Two trial channels, one for each path; overlap with iterated $2 \rightarrow 3$ removed by vetos
Iterated $2 \rightarrow 3$ resolved in Q_{3} (as before, with veto if colour neighbour has lower scale and is unordered), with differential second-order (NLO) "K-factor" correction
(For default shower parameters, the NLO correction is well-controlled; can become large if using "wrong" renormalisation scales, evolution measures, etc.)

All radiation functions positive-definite

$2 \rightarrow 4$ from tree-level positivity (and no overlap); $2 \rightarrow 3$ since written explicitly as [$1+\mathrm{O}\left(\alpha_{s}\right)$]
New evolution paradigm beyond LL looking promising so far.

Backup Slides

$2 \rightarrow 4$ TRIAL GENERATION

$$
\begin{align*}
\frac{1}{\left(16 \pi^{2}\right)^{2}} a_{\text {trial }}^{2 \rightarrow 4} & =\frac{2}{\left(16 \pi^{2}\right)^{2}} a_{\text {trial }}^{2 \rightarrow 3}\left(Q_{3}^{2}\right) P_{\text {imp }} a_{\text {trial }}^{2 \rightarrow 3}\left(Q_{4}^{2}\right) \\
& =C\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \frac{128}{\left(Q_{3}^{2}+Q_{4}^{2}\right) Q_{4}^{2}} \tag{15}
\end{align*}
$$

Solution for constant trial α_{s}

$$
\begin{aligned}
& \mathcal{A}_{2 \rightarrow 4}^{\text {trial }}\left(Q_{0}^{2}, Q^{2}\right)=C I_{\xi} \frac{\ln (2) \hat{\alpha}_{s}^{2}}{8 \pi^{2}} \ln \frac{Q_{0}^{2}}{Q^{2}} \ln \frac{m^{4}}{Q_{0}^{2} Q^{2}} \\
\Rightarrow & Q^{2}=m^{2} \exp \left(-\sqrt{\ln ^{2}\left(Q_{0}^{2} / m^{2}\right)+2 f_{R} / \hat{\alpha}_{s}^{2}}\right)
\end{aligned}
$$

$$
\text { where } f_{R}=-4 \pi^{2} \ln R /\left(\ln (2) C I_{\zeta}\right) . \quad\left(\text { Same } \mathrm{I}_{\text {zeta }} \text { as in } \mathrm{GKS}\right)
$$

Solution for first-order running α_{s} (also used as overestimate

$$
\begin{equation*}
Q^{2}=\frac{4 \Lambda^{2}}{k_{\mu}^{2}}\left(\frac{k_{\mu}^{2} m^{2}}{4 \Lambda^{2}}\right)^{-1 / W_{-1}(-y)} \text { Lambert } \mathrm{W} \tag{20}
\end{equation*}
$$ for 2-loop running):

where

$$
y=\frac{\ln k_{\mu}^{2} m^{2} / 4 \Lambda^{2}}{\ln k_{\mu}^{2} Q_{0}^{2} / 4 \Lambda^{2}} \exp \left[-f_{R} b_{0}^{2}-\frac{\ln k_{\mu}^{2} m^{2} / 4 \Lambda^{2}}{\ln k_{\mu}^{2} Q_{0}^{2} / 4 \Lambda^{2}}\right],
$$

