Status of NLO Antenna Showers

Hai Tao Li & Peter Skands (Monash University)

MOTIVATION

Motivation: not a priori to do N(N)LL evolution, nor do we at this point claim that we do.

Wanted to see if we could use experience with tree- and oneloop matrix-element corrections in showers \rightarrow derive & implement a set of self-consistent 2nd-order corrections to our shower kernels

To be used all throughout the shower.

Expect this \rightarrow N(N)LL evolution for some set of observables but not the focus of our work so far.

Many (interesting) questions remaining

Initial-State Radiation (interface with PDFs), radiation in resonance decays, heavy quarks, QED radiation, merging with fixed order

MATRIX-ELEMENT CORRECTIONS

Matrix-Element Corrections

Regard shower as generating approximate weighting of (all) n-parton phase space(s) ~ sums over radiation functions times Sudakov factors

Captures universal leading singular structures, but not subleading or process-dependent terms → impose M.E. corrections order by order.

Used extensively in PYTHIA to correct first emission in all SM decays, most BSM ones, and for colourless boson production + ISR Is the basis for the real corrections in POWHEG Generalised to multiple emissions in VINCIA

Shower contains correct singularities for all singleunresolved limits \longleftrightarrow Corrections nonsingular @ NLO

True for any (coherent) shower model.

Tree-level, 1 emission: Sjöstrand & Miu PLB449 (1999) 313-320 Sjöstrand & Norrbin Nucl.Phys. B603 (2001) 297 One-loop, 0 emissions: Nason (POWHEG), JHEP 0411 (2004) 040 Tree-level, 1:N emissions: Giele, Kosower, PZS, PRD84 (2011) 054003 One-loop, 0:1 emission: Hartgring, Laenen, PZS, JHEP 1310 (2013) 127

(COHERENCE : DGLAP VS ANTENNAE)

DGLAP: based on collinear limits

Each parton treated as an \sim independently radiating monopole, P(z)/Q²

Misses soft-limit coherence, already at leading (dipole) level

Ang. ord. (or vetos) \rightarrow correct soft limit when summed over azimuth

(But phase-space *distributions* of emitted gluons still not point-by-point correct)

Matrix-Element corrections can restore exact coherence point-by-point, up to order applied

E.g., a DGLAP shower could be improved by "dipole corrections" at all orders (but we have dipole showers) Antenna evolution: each LC-connected **parton pair** ~ radiating dipole-antenna

Splittings fundamentally $2 \rightarrow 3$ instead of $1^* \rightarrow 2$ Gustafson & Petterson: NPB306 (1988) 746-758

Antenna Factorisation of:

Phase Space: Lorentz-invariant on-shell 2→3 phase-space maps exact over all of phase space, not just limits.

Amplitudes: Correct in collinear and soft

limits (to all orders):Kosower PRD71 (2005) 045016Collinear limits \rightarrow P(z)/Q2Soft limits \rightarrow eikonal factors $\frac{2s_{13}}{s_{12}s_{23}}$ Point-by-point coherence (at LC; higher colour
multipoles suppressed by $1/N_C^2$)

Complete set of NNLO final-state antenna functions: Gehrmann-de Ridder, Gehrmann, Glover JHEP 0509 (2005) 056

THE MULTIPLE-EMISSION PHASE SPACE

Antenna phase-space maps obey exact nesting

HOW BIG ARE THESE REGIONS?

Giele, Kosower, PZS: PRD84 (2011) 054003

Peter Skands

THE SOLUTION THAT WORKED AT LO

Note: this conclusion appears to differ from that of Bellm et al., Eur.Phys.J. C76 (2016) no.1 My interpretation is that, in the context of a partonic angular ordering, they neglect the additional rapidity range from the extra origami folds

7

SMOOTH ORDERING: AN EXCELLENT APPROXIMATION (at tree level)

Even after three sequential shower emissions, the smooth shower approximation is still a very close approximation to the matrix element **over all of phase space**

(WHY IT WORKS?)

The antenna factorisations are **on shell**

n on-shell partons \rightarrow **n+1** on-shell partons

In the first $2 \rightarrow 3$ branching, final-leg virtualities assumed ~ 0

Interpretation: off-shell effect

$$\frac{1}{2p_i \cdot p_j} \rightarrow \frac{P_{\rm imp}(n \to n+1)}{2p_i \cdot p_j} = \frac{1}{2p_i \cdot p_j + \mathcal{O}(p_{\perp n+1}^2)}$$

Good agreement with ME \rightarrow good starting point for $2\rightarrow 4$

SOMETHING ROTTEN?

Smooth ordering: nice tree-level expansions (small ME corrections) \Rightarrow good 2 \rightarrow 4 starting point

But we worried the Sudakov factors were "wrong" \Rightarrow not good starting point for 2 \rightarrow 3 virtual corrections? Not good exponentiation?

For unordered branchings (e.g., double-unresolved) effective 2→4 Sudakov factor effectively → LL Sudakov for intermediate (unphysical) 3parton point

 \mathcal{N}

DIRECT 2→4

Li & PZS: PLB771 (2017) 59

Redefine the shower resolution scale

For unordered $2 \rightarrow 4$ paths: scale of 2^{nd} branching defines resolution

The intermediate on-shell 3-parton state is merely a convenient stepping stone in phase space but is in reality highly off shell ⇒ integrate out

DIRECT 2→4 VS ITERATED 2→3

Split the $2 \rightarrow 4$ phase space into non-overlapping sectors

- Fully unordered (inacessible to iterated $2 \rightarrow 3$)
 - \Rightarrow add new "direct" 2 \rightarrow 4 branchings without risk of double-counting

Rest of phase space (accessible to at least one ordered $2\rightarrow 3$ path)

- Unitarity (Sudakov exponentials and virtual corrections): want to sum inclusively over the "least resolved" degree of freedom
- Classify according to what a jet algorithm (with shower evolution parameter as clustering measure) would do. E.g., for a (colour-connected) double-emission:

A jet clustering algorithm (ARCLUS) would grab the smallest of these p_T values, and cluster

If the resulting path is **ordered**: populate by iterated 2→3 (with 2→4 MEC factors) If **unordered**, keep clustering; direct 2→n

Clustering terminates when we reach a $Q_n > \min(p_{T2}, p_{T3,...})$ \Rightarrow defines point as $2 \rightarrow 2 + m$ (NB: so far we only do $2 \rightarrow 3$ and $2 \rightarrow 4!$)

PHASE-SPACE DISTRIBUTIONS

Li & PZS: PLB771 (2017) 59

Actual shower runs:

Figure 3: Top left: the ratio of sequential clustering scales Q_4/Q_3 for a strongly ordered $2 \rightarrow 3$ shower, for $Z \rightarrow qgg\bar{q}$ (on log-log axes). Top right: closeup of the region around $Q_4/Q_3 \sim 1$, with $2\rightarrow 4$ branchings included. Bottom row: the same for $H \rightarrow gggg$. . Details of trial functions etc, see Li & PZS: PLB771 (2017) 59

VIRTUAL CORRECTIONS

Disclaimer

- No established literature for antenna-evolved fragmentation functions
- Known results (e.g., one-loop antenna functions) available mainly in context of F.O. subtraction terms, not diff. eqs. / exponentation / resummation
 - ⇒ Had to (re)invent much of what follows as we went along

Clustering sequence = series of on-shell representations of the momentum flow; terminates when representation consistent with ordering (allowing to sum over unresolved degrees of freedom below that scale)

Sudakov factor for an antenna $\Delta(Q_0^2, Q^2) = \Delta_{2\to 3}(Q_0^2, Q^2) \Delta_{2\to 4}(Q_0^2, Q^2)$

Clustering corresponding to Q² is: Ordered Unordered (but next one up is ordered)

 \Rightarrow Starting from Q₀ (with inclusive sum over all unresolved 2→3 and 2→4 branchings below it), evolve to given Q: exclusive above Q, inclusive below

To define one-loop MEC: compare expansions of shower Sudakov factors to 2nd-order antenna functions

VIRTUAL MECS @ SECOND ORDER

Proof of concept case: second-order correction to q-qbar antenna emitting a gluon Hartgring, Laenen, PZS: JHEP 1310 (2013) 127

A.k.a. $e^+e^- \rightarrow 3$ jets at $O(\alpha_s^2)$

(at that time, we used smooth ordering for double-real; now direct $2\rightarrow 4$)

Matching equation for one-loop virtual:

Exclusive 3-jet cross section above Q_4 , for $Q_4 \rightarrow 0$ (in dim.reg.) (Could stop at hadronisation scale \rightarrow power corrections in Q_{had}) All-orders shower answer

 $\left| M_{Z \to q\bar{q}} \right|^2 A_3^0(Q^2) \left(1 + V_3^{q\bar{q}} \right) \Delta_{2 \to 3}(Q_0^2, Q^2) \Delta_{3 \to 4}(Q^2, 0) \xrightarrow{\mathcal{O}(\alpha_s^2)} |M_3^0|^2 \left(1 + \frac{2\text{Re}\left[M_3^0 M_3^{1*} \right]}{|M_2^0|^2} \right) + \frac{2\text{Re}\left[M_3^0 M_3^{1*} \right]}{|M_2^0|^2} \right) + \frac{2\text{Re}\left[M_3^0 M_3^{1*} \right]}{|M_3^0|^2} \left(1 + \frac{2\text{Re}\left[M_3^0 M_3^{1*} \right]}{|M_3^0|^2} \right) + \frac{2\text{Re}\left[M_3^0 M_3^{1*} \right]}{|M_3^0|^2} \right)$ (best cross section available) term, to be solved for With Q, evaluated at his Sudakov factor . no branchings antenna function TOM Starting Starting Start Conconfiguration of --loop matching Fixed-Order O(α_s^2) m starting scale O to resolution JUDIAKOV FACTOR robability via Unitari Q to tero (in dim. reg.) (in dim. reg.) S Darton Confiduration (renormalised at $\mu = \mu_{ME}$) r: no branchings

→ DIFFERENTIAL "K-FACTOR" FOR 2→3 BRANCHINGS

Hartgring, Laenen, PZS, JHEP 1310 (2013) 127

But not all \rightarrow split into analytic and numerical parts

Use that smooth-ordering already gave a good approximation, which can be integrated fairly easily

E.g.:
$$\Delta_{3\to4} = 1 - \sum_{a \in 1,2} \int_{\text{ord}} d\Phi_{\text{ant}} a_{3\to4} \frac{a_{2\to4}}{a_{2\to3}a_{3\to4} + a'_{2\to3}a'_{3\to4}} + \mathcal{O}(\alpha_s^2)$$

ordering boundary complicated $2 \to 4$ ME-correction factor
 $\pm \sum_{a \in 1,2} \int d\Phi_{\text{ant}} a_{3\to4} P_{\text{imp}}$
Doable analytically; (slow but can be parametrised in terms of two invariants)
contains all single-unresolved poles

→ DIFFERENTIAL "K-FACTOR" FOR 2→3 BRANCHINGS

Hartgring, Laenen, PZS, JHEP 1310 (2013) 127

ADDING QG AND GG PARENTS

with direct $2 \rightarrow 4$ instead of smooth ordering

Work in progress... Plots by Hai Tao L

Differential NLO K-Factors for 2→3 kernels

SECOND-ORDER ANTENNA EVOLUTION EQUATION

Li & PZS: PLB771 (2017) 59

Putting 2→3 and 2→4 together \Rightarrow evolution equation for dipole-antenna at O(α_s^2): Iterated 2→3 with (finite) one-loop correction Direct 2→4 (as sum over "a" and "b" subpaths) $\overset{d\Delta(Q_0^2, Q^2)}{dQ^2} = \int d\Phi_{ant} \left[\delta(Q^2 - Q^2(\Phi_3)) a_3^0 + Q^2(\Phi_3) +$

Only generates double-unresolved singularities, not single-unresolved

Note: the equation is formally identical to:

$$\frac{d}{dQ^{2}}\Delta(Q_{0}^{2},Q^{2}) = \int \frac{d\Phi_{3}}{d\Phi_{2}} \,\delta(Q^{2}-Q^{2}(\Phi_{3})) \left(a_{3}^{0}+a_{3}^{1}\right)\Delta(Q_{0}^{2},Q^{2}) \\ + \int \frac{d\Phi_{4}}{d\Phi_{2}} \,\delta(Q^{2}-Q^{2}(\Phi_{4})) \,a_{4}^{0} \,\Delta(Q_{0}^{2},Q^{2}) \,, \quad (3)$$

But on this form, the pole cancellation happens *between* the two integrals

FURTHER DETAILS & OUTLOOK

Further details

- Since antenna functions are defined from specific physical matrix elements (GGG used Z, H, and χ decays), the corrections effectively include nonsingular terms for those processes
 - Will probably use variations to estimate effects → uncertainty bands
 - MECs (or merging) at given order could be used to cancel them
- VINCIA 2 used a mixed evolution, with gluon emissions ordered in p_T and $g \rightarrow qq$ splittings ordered in m_{qq}
 - Large log corrections at NLO \rightarrow reverting to single evolution measure

When can others play with it?

- Old NLO qq \rightarrow qqg corrections already implemented in VINCIA 1
- New paradigm; currently writing up longer paper with details and preparing for new code release, with Hai Tao Li. Expect (at least) a month or two.
- Note: still only for (massless) final-state evolution.
 - Big projects in their own right: ISR and radiation in resonance decays (+QED)

SUMMARY

GGG: full set of 2nd-order antenna functions (summed over colours and permutations)

We use: $Q\bar{Q}: N_C^2 A_3^1, N_C n_F \hat{A}_3^1, N_C^2 A_4, N_C n_F B_4,$ Gehrmann-de Ridder, Gehrmann, Glover JHEP 0509 (2005) 056

 $QG: N_C^2 D_3^1, \ N_C n_F \hat{D}_3^1, \ n_f N_C E_3^1, n_f^2 \hat{E}_3^1, \ N_C^2 D_4, \ N_C n_F E_4$ $GG: N_C^2 F_3^1, \ N_C n_F \hat{F}_3^1, n_F N_C G_3^1, \ n_F^2 \hat{G}_3^1, \ N_C^2 F_4, \ N_C n_F G_4, \ n_F^2 H_4$

(NB: GGG also provide subleading-colour and -flavour antenna functions; so far ignored)

(Colour-ordered sub-antenna functions defined using $2\rightarrow 3$ as partitioning functions)

Direct $2 \rightarrow 4$ branchings interleaved with iterated ME-corrected $2 \rightarrow 3$ ones

2→4 resolved in $Q_4 = min(p_{T4a}, p_{T4b})$

Based on eikonal × P_{imp} × eikonal integrated over intermediate (unphysical) Q_3 scale Two trial channels, one for each path; overlap with iterated 2→3 removed by vetos

Iterated 2 \rightarrow 3 resolved in Q₃ (as before, with veto if colour neighbour has lower scale and is unordered), with differential second-order (NLO) "K-factor" correction

(For default shower parameters, the NLO correction is well-controlled; can become large if using "wrong" renormalisation scales, evolution measures, etc.)

All radiation functions positive-definite

2→4 from tree-level positivity (and no overlap); 2→3 since written explicitly as [1 + $O(\alpha_s)$]

New evolution paradigm beyond LL looking promising so far.

Backup Slides

2→4 TRIAL GENERATION

$$\frac{1}{(16\pi^2)^2} a_{\text{trial}}^{2 \to 4} = \frac{2}{(16\pi^2)^2} a_{\text{trial}}^{2 \to 3} (Q_3^2) P_{\text{imp}} a_{\text{trial}}^{2 \to 3} (Q_4^2)$$
$$= C \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{128}{(Q_3^2 + Q_4^2)Q_4^2} .$$
(15)

Solution for constant trial α_s

$$\mathcal{A}_{2\to4}^{\text{trial}}(Q_0^2, Q^2) = C I_{\zeta} \frac{\ln(2)\hat{\alpha}_s^2}{8\pi^2} \ln \frac{Q_0^2}{Q^2} \ln \frac{m^4}{Q_0^2 Q^2}$$
$$\implies Q^2 = m^2 \exp\left(-\sqrt{\ln^2(Q_0^2/m^2) + 2f_R/\hat{\alpha}_s^2}\right)$$
where $f_R = -4\pi^2 \ln R/(\ln(2)CI_{\zeta})$. (Same I_{zeta} as in GKS)

In particular, the trial function for sector A (B) is independent of momentum $p_6(p_3)$ which makes it easy to translate the 2 \rightarrow 4 phase spaces defined in eq. (6) to shower variables. Technically, we generate these phase spaces by oversampling, vetoing configurations which do not fall in the appropriate sector.

Accept ratio:

$$P_{\text{trial}}^{2 \to 4} = \frac{\alpha_s^2}{\hat{\alpha}_s^2} \frac{a_4}{a_{\text{trial}}^{2 \to 4}}$$

Solution for first-order running α_s (also used as overestimate for 2-loop running):

$$Q^{2} = \frac{4\Lambda^{2}}{k_{\mu}^{2}} \left(\frac{k_{\mu}^{2}m^{2}}{4\Lambda^{2}}\right)^{-1/W_{-1}(-y)} \text{Lambert W}.$$
 (20)

where

$$y = \frac{\ln k_{\mu}^2 m^2 / 4\Lambda^2}{\ln k_{\mu}^2 Q_0^2 / 4\Lambda^2} \exp\left[-f_R b_0^2 - \frac{\ln k_{\mu}^2 m^2 / 4\Lambda^2}{\ln k_{\mu}^2 Q_0^2 / 4\Lambda^2}\right],$$

