Monte Carlos and New Physics

Peter Skands (Monash University)

Lecture 2:

Parton Showers and Matrix-Element Corrections

Pre-SUSY - June 2016
Lecture Notes: P. Skands, arXiv:1207.2389

Recap from Yesterday: Loops and Legs

Factorisation of amplitudes (squared) \rightarrow approximate all-orders fractal

Universality (scaling)

$$
\frac{\left|M_{X+1}\right|^{2}}{\left|M_{X}\right|^{2}} \propto g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right]
$$

Jet-within-a-jet-within-a-jet-...

Universal poles for soft \& collinear bremsstrahlung

$$
\sigma_{\mathrm{X}+1}^{\mathrm{LO}}(R)=\int_{R}\left|M_{X+1}^{(0)}\right|^{2}
$$

$X^{(2)}$	$X+I^{(2)}$	\ldots
$X^{(1)}$	$X+I^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$

$\mathrm{R}=$ some "Infrared Safe" phase space region (Often a cut on $p_{\perp}>X \mathrm{GeV}$)

The corrections from Quantum Loops are missing

We know from Unitarity (KLN):
Real + Virtual = Finite

From Legs to Loops

Unitarity: sum(probability) $=1$

Kinoshita-Lee-Nauenberg:
(sum over degenerate quantum states = finite: infinities must cancel!)

Neglect non-singular piece, $F \rightarrow$ "Leading-Logarithmic" (LL) Approximation
\rightarrow Can also include loops-within-loops-within-loops ...
\rightarrow Bootstrap for approximate All-Orders Quantum Corrections!
Parton Showers: reformulation of pQCD corrections as gain-loss diff eq.
Iterative (Markov-Chain) evolution algorithm, based on universality and unitarity With evolution kernel $\sim \frac{\left|\mathcal{M}_{n+1}\right|^{2}}{\left|\mathcal{M}_{n}\right|^{2}}$ (or soft/collinear approx thereof)
Generate explicit fractal structure across all scales (via Monte Carlo Simulation) Evolve in some measure of resolution \sim hardness, virtuality, 1/time $\ldots \sim$ fractal scale + account for scaling violation via quark masses and $g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(\mathrm{Q}^{2}\right)$

Evolution

$$
Q \sim Q_{\mathrm{HARD}}
$$

Evolution

$$
Q_{\mathrm{HARD}} / Q<\text { "A few" }
$$

Evolution

$Q \ll Q_{\mathrm{HARD}}$

Evolution Equations

What we need is a differential equation

Boundary condition: a few partons defined at a high scale (Q_{F})
Then evolves (or "runs") that parton system down to a low
scale (the hadronization cutoff $\sim 1 \mathrm{GeV}$)
\rightarrow It's an evolution equation in Q_{F}
Close analogy: nuclear decay
Evolve an unstable nucleus (+ follow chains of decays)

Decay constant

$$
\frac{\mathrm{d} P(t)}{\mathrm{d} t}=c_{N}
$$

Probability to remain undecayed in the time interval [t_{1}, t_{2}]

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

Decay probability per unit time

$$
=1-c_{N} \Delta t+\mathcal{O}\left(c_{N}^{2}\right)
$$

$$
\frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{~d} t}=c_{N} \Delta\left(t_{1}, t\right)
$$

(requires that the nucleus did not already decay)

$$
\Delta\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right): \text { "Sudakov Factor" }
$$

Fixed vs Infinite Orders

$\underset{\text { after time } \mathbf{t}}{\text { Nuclei remaining undecayed }}=\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} \mathrm{~d} t \frac{\mathrm{~d} \mathcal{P}}{\mathrm{~d} t}\right)$

The Sudakov Factor

In nuclear decay, the Sudakov factor counts:

How many nuclei remain undecayed after a time t
Probability to remain undecayed in the time interval [t_{1}, t_{2}]

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

The Sudakov factor for a parton system counts:
The probability that the parton system doesn't evolve (branch) when we run the factorization scale ($\sim 1 /$ time) from a high to a low scale

Evolution probability per unit "time"

$$
\frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{~d} t}=c_{N} \Delta\left(t_{1}, t\right)
$$

The Shower Operator

$$
\text { Born }\left.\frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\text {Born }}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right) \quad \begin{array}{r}
\mathrm{H}=\text { Hard process } \\
\{\mathrm{p}\} \text { : partons }
\end{array}
$$

But instead of evaluating O directly on the Born final state, first insert a showering operator

Born
+ shower $\left.\frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right\|_{\mathcal{S}}=\int \mathrm{d} \Phi_{H}\left\|M_{H}^{(0)}\right\|^{2} \mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right) \quad \begin{array}{c}\text { \{p\} : partons } \\ \mathrm{s}: \text { showering operator }\end{array}$

Unitarity: to first order, S does nothing

$$
\mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right)=\delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right)+\mathcal{O}\left(\alpha_{s}\right)
$$

The Shower Operator

To ALL Orders
(Markov Chain)

$$
S\left(\{p\}_{X}, \mathcal{O}\right)=\underset{\substack{\text { "Nothing Happens" } \rightarrow \text { "Evaluate Observable" }}}{\Delta\left(t_{\text {start }}, t_{\text {had }}\right) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{X}\right)\right)}
$$

$$
-\int_{t_{\text {start }}}^{t_{\mathrm{had}}} \mathrm{~d} t \frac{\mathrm{~d} \Delta\left(t_{\text {start }}, t\right)}{\mathrm{d} t} S\left(\{p\}_{X+1}, \mathcal{O}\right)
$$

$$
\text { "Something Happens" } \rightarrow \text { "Continue Shower" }
$$

All-orders Probability that nothing happens

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} \mathrm{~d} t \frac{\mathrm{~d} \mathcal{P}}{\mathrm{~d} t}\right) \begin{gathered}
\text { (Exponentiation) } \\
\text { Analogous to nuclear decay } \\
\mathrm{N}(\mathrm{t}) \approx \mathrm{N}(0) \exp (-\mathrm{ct})
\end{gathered}
$$

Initial-State vs Final-State Evolution

Virtualities are
Timelike: $\mathrm{p}^{2}>0$
Start at $\mathrm{Q}^{2}=\mathrm{Qf}^{2}$
"Forwards evolution"

ISR:

Virtualities are
Spacelike: $\mathrm{p}^{2}<0$
Start at $\mathrm{Q}^{2}=\mathrm{Qf}^{2}$
Constrained backwards evolution towards boundary condition $=$ proton

Separation meaningful for collinear radiation, but not for soft ...

Initial-Final Interference

Illustrates quantum \neq classical

Who emitted that gluon?

Real QFT = sum over amplitudes, then square \rightarrow interference (IF coherence) Respected by dipole/antenna languages (and by angular ordering), but not by conventional DGLAP $(\rightarrow$ all PDFs are "wrong")

Separation meaningful for collinear radiation, but not for soft ...

Coherence

QED: Chudakov effect (mid-fifties)

$$
\begin{array}{lcc}
\text { emulustration by } \mathrm{T} \text {. Sjöstrand } & \\
\text { emplate } & \begin{array}{c}
\text { reduced } \\
\text { ionization }
\end{array} & \begin{array}{c}
\text { normal } \\
\text { ionization }
\end{array}
\end{array}
$$

Approximations to

 Coherence:Angular Ordering (HERWIG)
Angular Vetos (PYTHIA)
Coherent Dipoles/Antennae (ARIADNE,
Catani-Seymour, DIRE, VINCIA)

QCD: colour coherence for soft gluon emission

\rightarrow an example of an interference effect that can be treated probabilistically
More interference effects can be included by matching to full matrix elements

Coherence at Work

Example: quark-quark scattering in hadron collisions

Consider one specific phase-space point (eg scattering at 45o) 2 possible colour flows: \mathbf{a} and \mathbf{b}
 colour flow

Figure 4: Angular distribution of the first gluon emission in $q q \rightarrow q q$ scattering at 45°, for the two different color flows. The light (red) histogram shows the emission density for the forward flow, and the dark (blue) histogram shows the emission density for the backward flow.

Bootstrapped Perturbation Theory

Start from an arbitrary lowest-order process (green = QFT amplitude squared)
Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (approximate infinite-order resummation)

Universality (scaling)
Jet-within-a-jet-within-a-jet-...

Cancellation of real \& virtual singularities

Exponentiation

fluctuations within fluctuations
But \neq full QCD! Only LL Approximation (\rightarrow matching)

(real corrections)

Perturbative Ambiguities

The final states generated by a shower algorithm will depend on

1. The choice of perturbative evolution variable(s) $t^{[i]}$. Ordering \& Evolution-
 scale choices
2. The choice of phase-space mapping $\mathrm{d} \Phi_{n+1}^{[i]} / \mathrm{d} \Phi_{n} . \longleftarrow$ Recoils, kinematics
3. The choice of radiation functions a_{i}, as a function of the phase-space variables.
4. The choice of renormalization scale function μ_{R}.

Non-singular terms,
Reparametrizations, Subleading Colour
5. Choices of starting and ending scales.

Phase-space limits / suppressions for hard radiation and choice of hadronization scale
\rightarrow can give additional handles for uncertainty estimates, beyond just μ_{R} (+ ambiguities can be reduced by including more $\mathrm{pQCD} \rightarrow$ matching!)

Uncertainties in Parton Showers

Very recently, HERWIG, SHERPA, PYTHIA, all published

 papers on automated calculations of shower uncertaintiesWeight of event $=\{1,0.7,1.2, \ldots\}$

Originally proposed (for VINCIA) in
Giele, Kosower \& Skands; arXiv:1102.2126

Hard Jets

Variation of non-singular terms; not controlled by shower

 Example pT of Z boson in Drell-Yan production (= zero at LO)

Jack of All Orders, Master of None?

Nice to have all-orders solution
But it is only exact in the singular (soft \& collinear) limits
\rightarrow gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: visible, extra jets
... which is exactly where fixed-order calculations work!

So combine them!

Example: $\mathbf{H}^{\mathbf{0}} \rightarrow \mathbf{b \vec { b }}$

Born + Shower

Example: $\mathbf{H}^{\mathbf{0}} \rightarrow \mathbf{b} \overline{\mathrm{b}}$

Born + Shower

$$
\left(\left.\right|^{2}\left(\boldsymbol{+} g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right]+\ldots\right)\right.
$$

Born + I @ LO

Total Overkill to add these two. All I really need is just that $\mathbf{+ 2}$...

1. Matrix-Element Corrections

Exploit freedom to choose non-singular terms

Bengtsson, Sjöstrand, PLB I85 (I987) 435

Modify parton shower to use process-dependent radiation functions for first emission \rightarrow absorb real correction

$$
\text { Parton Shower } \frac{P(z)}{Q^{2}} \rightarrow \frac{P^{\prime}(z)}{Q^{2}}=\frac{P(z)}{Q^{2}} \underbrace{\frac{\left|M_{n+1}\right|^{2}}{\sum_{i} P_{i}(z) / Q_{i}^{2}\left|M_{n}\right|^{2}}}_{\mathrm{MEC}}
$$

(suppressing $\alpha_{\text {s }}$
and Jacobian
factors)

Process-dependent MEC $\rightarrow \mathrm{P}^{\prime}$ different for each process
Done in PYTHIA for all SM decays and many BSM ones

Norrbin, Sjöstrand, NPB 603 (200I) 297 Based on systematic classification of spin/colour structures Also used to account for mass effects, and for a few $2 \rightarrow 2$ procs

Difficult to generalise beyond 1st emission
Parton-shower expansions complicated \& can have "dead zones" Achieved in VINCIA (by changing from parton showers to "Markovian Antenna Showers") Giele, Kosower, Skands, PRD 84 (20II) 054003

Only recently done for hadron collisions Fischer et al, arXiv:1605.06142

MECs with Loops: POWHEG

Acronym stands for: Positive Weight Hardest Emission Generator.

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission $\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { anv }} a_{i}\left|M_{F}\right|^{2}$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\rightarrow\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int \operatorname{Real}$

Method is widely applied/available, can be used with PYTHIA, HERWIG, SHERPA

Subtlety 1: Connecting with parton shower
Truncated Showers \& Vetoed Showers
Subtlety 2: Avoiding (over)exponentiation of hard radiation

Controlled by "hFact parameter"

2: Slicing (MLM \& CKKW-L)

First emission: "the HERWIG correction"

Use the fact that the angular-ordered HERWIG parton shower has a "dead zone" for hard wide-angle radiation (Seymour, 1995)

F @ LO \times LL-Soft (Herwig Shower)

$$
\text { F+1 @ LO } \times \mathbf{L L} \text { (HERWIG Corrections) }
$$

F @ $\mathbf{L O}_{1} \times \mathbf{L L}$ (HERWIG Matched)

Many emissions: the MLM \& CKKW-L prescriptions

F @ LO \times LL-Soft (excl)

F+1 @ LO \times LL-Soft (excl)
F+2@ LO $\times \mathbf{L L}($ incl $)$

F @ $\mathbf{L O}_{2} \times \mathbf{L L}$ (MLM \& (L)-CKKW)

The Gain

The Cost

Example: LHC_{7} : W + 20-GeV Jets

Plot from mcplots.cern.ch; see arXiv: I 306.3436

Example: $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{Z} \rightarrow$ Jets

2. Time to generate 1000 events ($Z \rightarrow$ partons, fully showered \& matched. No hadronization.)

1000 SHOWERS

$\mathrm{Z} \rightarrow \mathrm{n}$: Number of Matched Emissions

See e.g. Lopez-Villarejo \& Skands, arXiv:I I 09.3608

3: Subtraction

Examples: MC@NLO, aMC@NLO

LO \times Shower

NLO

$$
\begin{array}{llll}
X^{(2)} & X+I^{(2)} & \ldots \\
X^{(1)} & X+I^{(1)} & X+2^{(1)} & X+3^{(1)}
\end{array} \ldots
$$

\ldots Fixed-Order Matrix Element
\ldots Shower Approximation

Matching 3: Subtraction

Examples: MC@NLO, aMC@NLO

LO \times Shower

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element

Shower Approximation

NLO - Showernlo

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Expand shower approximation to NLO analytically, then subtract:

Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

Matching 3: Subtraction

Examples: MC@NLO, aMC@NLO

LO \times Shower

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element
... Shower Approximation
(NLO - Showernlo) \times Shower

Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

Subleading corrections generated by shower off subtracted ME

Matching 3: Subtraction

Examples: MC@NLO, aMC@NLO

Combine \rightarrow MC@NLO

Consistent NLO + parton shower (though correction events can have $w<0$) Recently, has been fully automated in aMC@NLO

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP I202 (20I2) 048

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

NB: $\mathbf{w} \mathbf{< 0}$ are a problem because they kill efficiency:
Extreme example: 1000 positive-weight - 999 negative-weight events \rightarrow statistical precision of 1 event, for 2000 generated (for comparison, normal MC@NLO has $\sim 10 \%$ neg-weights)

POWHEG vs MC@NLO

Both methods include the complete first-order (NLO) matrix elements.

Difference is in whether only the shower kernels are exponentiated (MC@NLO) or whether part of the matrix-element corrections are too (POWHEG)

In POWHEG, how much of the MEC you exponentiate can be controlled by the "hFact" parameter

Variations basically span range between MC@NLO-like case, and original (hFact=1) POWHEG case (~ PYTHIA-style MECs)

(Multi-Leg Merging at NLO)

Currently, much activity on how to combine several NLO matrix elements for the same process: NLO for $\mathrm{X}, \mathrm{X}+1, \mathrm{X}+2, \ldots$

Unitarity is a common main ingredient for all of them
Most also employ slicing (separating phase space into regions defined by one particular underlying process)

Methods

UNLOPS, generalising CKKW-L/UMEPS: Lonnblad, Prestel, arXiv:I2II. 7278
MiNLO, based on POWHEG: Hamilton, Nason, Zanderighi (+more) arXiv:I206.3572,
FxFx, based on MC@NLO: Frederix \& Frixione, arXiv:I209.62I5
(VINCIA, based on NLO MECs): Hartgring, Laenen, Skands, arXiv:I303.4974
Most (all?) of these will also allow for reaching NNLO accuracy on the total inclusive cross section

Will soon define the state-of-the-art for SM processes
For BSM, the state-of-the-art is generally one order less than SM

Summary

This Lecture:

From Unitarity to Evolution Equations
Parton Showers; the Sudakov no-emission probability
Interference and Coherence
Colour Flow
Ambiguities in Parton Showers \leftrightarrow Uncertainties
Matching \& Merging
Matrix-Element Corrections: PYTHIA, POWHEG, VINCIA
Slicing: CKKW-L (SHERPA + others), MLM (ALPGEN + others)
Subtraction (MC@NLO, aMC@NLO + others)
State-of-the-art: Multi-Leg NLO (UNLOPS, MiNLO, FxFx)
Last Lecture (Friday)
Lecture 3: Hadronisation + BSM Signals and Backgrounds

Extra Slides

Simple Monte Carlo Example: Number of AEPSHEP students who will get hit by a car this week

Complicated Function:

Time-dependent
Traffic density during day, week-days vs week-ends
(i.e., non-trivial time evolution of system)

No two students are the same
Need to compute probability for each and sum
(simulates having several distinct types of "evolvers")
Multiple outcomes:
Hit \rightarrow keep walking, or go to hospital?
Multiple hits = Product of single hits, or more complicated?

Monte Carlo Approach

Approximate Traffic

Simple overestimate:
highest recorded density
of most careless drivers,
driving at highest recorded speed

Approximate Student
by most completely reckless and accident-prone student
(wandering the streets lost in thought after these lectures ...)

This extreme guess will be the equivalent of our simple overestimate from yesterday:

Hit Generator

Off we go...

Throw random accidents according to:

$$
\begin{aligned}
& \mathrm{R}=\int_{t_{0}}^{t_{e}} \mathrm{~d} t \int_{x} \mathrm{~d} x \sum_{\substack{t=1 \\
\text { Sumer } \\
\text { sumdent-Car } \\
\text { shit rute }}}^{n_{\text {stud }}} \alpha_{i}(x, t) \rho_{i}(x, t) \rho_{\substack{\text { Density of } \\
\text { Studenti } i}}^{\substack{\text { Density of } \\
\text { Cars }}}(x, t) \\
& \begin{array}{c}
t_{e}: \text { time } \\
\text { of accident }
\end{array}
\end{aligned}
$$

$\mathrm{R}=\left(t_{e}-t_{0}\right) \Delta x$
$\alpha_{\text {max }} n_{\text {stud }} \rho_{\text {cmax }}$

Hit rate for most accident-prone student

Rush-hour density of cars

Too
 Difficult

(Also generate trial x_{e}, e.g., uniformly in circle around Puri)
(Also generate trial i; a random student gets hit)

Hit Generator

Accept trial hit ($\mathrm{i}, \mathrm{x}, \mathrm{t}$) with probability

$$
\operatorname{Prob}(\text { accept })=\frac{\alpha_{i}(x, t) \rho_{i}(x, t) \rho_{c}(x, t)}{\alpha_{\max } n_{\mathrm{stud}} \rho_{c \max }}
$$

Using the following:
ρ_{c} : actual density of cars at location x at time t ρ_{i} : actual density of student i at location x at time t α_{i} : The actual "hit rate" (OK, not really known, but can make one up)
\rightarrow True number $=$ number of accepted hits (note: we didn't really treat multiple hits $\ldots \rightarrow$ Markov Chain)

Summary: How we do Monte Carlo

Take your system
Generate a "trial" (event/decay/interaction/...) Not easy to generate random numbers distributed according to exactly the right distribution?
May have complicated dynamics, interactions ...
\rightarrow use a simpler "trial" distribution

Flat with some stratification

Or importance sample with simple overestimating function (for which you can generate random \#s)

Summary: How we do Monte Carlo

Take your system
Generate a "trial" (event/decay/interaction/...)
Accept trial with probability $f(x) / g(x)$
$f(x)$ contains all the complicated dynamics $\mathrm{g}(\mathrm{x})$ is the simple trial function
If accept: replace with new system state
If reject: keep previous system state
no dependence on g in final result - only affects convergence rate

And keep going: generate next trial ...

Summary: How we do Monte Carlo

Generate a "trial" (event/decay/in Accept trial with probability $f(x) / g($ $f(x)$ contains all the complicated $\mathrm{g}(\mathrm{x})$ is the simple trial function
If accept: replace with new system
If reject: keep previous system stat
no dependence on g ir result - only affec convergence rate

Sounds deceptively simple, but ...
with it, you can integrate arbitrarily complicated functions (in particular chains of nested functions), over arbitrarily complicated regions, in arbitrarily many dimensions ...

And keep going: generate next trial ...

