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The Phenomenology Pipeline
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Making Predictions

3M o n a s h  U n i v e r s i t y

In particle physics:  
Integrate over all quantum histories 

(+ interferences)
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Predicted number of counts  
= integral over solid angle
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→ Integrate differential cross sections 
over specific phase-space regions

LHC detector 
Cosmic-Ray detector 

Neutrino detector 
X-ray telescope 

…

source
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In nature, σ is all-orders S-
matrix element, integrated 
over 3 dimensions per 
particle (with resonances, 
singularities, loops, non-
perturbative dynamics, …)

Scattering  
Experiments:
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→ Monte Carlo
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Numerical Uncertainty 
(after n function evaluations)

neval / 
bin

Conv. Rate  
(in 1D)

Conv. Rate  
(in D dim)

Trapezoidal Rule (2-point) 2D 1/n2 1/n2/D

Simpson’s Rule (3-point) 3D 1/n4 1/n4/D

Monte Carlo 1 1/n1/2 1/n1/2 

+ optimisations (stratification, adaptation), coupled/iterative solutions (Markov-Chain Monte Carlo)

Recap Convergence:

Calculus: {A} converges to B
if n exists for which |Ai>n - B| < ε, for any ε >0

Monte Carlo: {A} converges to B 
if n exists for which 

the probability for |Ai>n - B| < ε,  
is > P, for any P[0<P<1] for any ε > 0

๏MC: prescribed for cases of complicated / coupled integrands in high dimensions

What is Monte Carlo?

Any technique that makes use of random sampling
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The Role of MC Generators
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Event Generators : start from elementary scattering process 
Include the ‘most significant’ corrections: higher-order matrix elements, 

bremsstrahlung, resonance decays, hadronization, underlying event, beam remnants, …

Calculate Everything ≈ solve QFT*  → requires compromise!

Reality is more complicated

*QFT = Quantum Field Theory

A detailed picture that connects  
directly with the observable world 

of hadrons, photons, and leptons
Events Histograms
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Organising the Calculation
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๏Divide and Conquer → Split the problem into many (nested) pieces

M o n a s h  U n i v e r s i t y

Pevent = Phard ⌦ Pdec ⌦ PISR ⌦ PFSR ⌦ PMPI ⌦ PHad ⌦ . . .

Hard Process & Decays:  
Use process-specific (N)LO matrix elements (e.g., gg → H0 → γγ) 
→ Sets “hard” resolution scale for process: QMAX 

ISR & FSR (Initial- & Final-State Radiation):  
Bremsstrahlung, driven by differential (DGLAP) evolution equations, 
dP/dQ2, as function of resolution scale; rom QMAX to QHAD ~ 1 GeV   

MPI (Multi-Parton Interactions) 
Protons contain lots of partons → can have additional (soft) parton-
parton interactions → Additional (soft) “Underlying-Event” activity  

Hadronization 
Non-perturbative modeling of partons → hadrons transition

+ Quantum mechanics → Probabilities → Random Numbers
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Challenges Beyond Fixed Order

7

• QCD is more than just a perturbative expansion in αs 
• The relation between αs, Feynman diagrams, and the full QCD 
dynamics involves spectacular “emergent” phenomena: 

Jets (perturbative QCD, initial- and final-state radiation) ⟷ 

amplitude structures in quantum field theory ⟷ 
factorisation & unitarity. Precision jet (structure) studies. 

Strings (strong gluon fields) ⟷ quantum-classical 
correspondence. String physics. String breaks. 
Dynamics of hadronization phase transition. 

Hadrons ⟷ Spectroscopy (incl excited and exotic states), 
lattice QCD, (rare) decays, mixing, light nuclei. Hadron 
beams → multiparton interactions, diffraction, … 

M o n a s h  U n i v e r s i t yThe emergent is unlike its components insofar as … it cannot be reduced to their sum or their difference." G. Lewes (1875)



1: JETS

• 1st jet: pT = 520 GeV, η = -1.4, φ = -2.0
• 2nd jet: pT = 460 GeV, η =  2.2, φ =  1.0
• 3rd jet: pT = 130 GeV, η = -0.3, φ =  1.2
• 4th jet: pT =  50 GeV, η = -1.0, φ = -2.9
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What are Jets?
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QCD lecture 4 (p. 19)

Jets Jets as projections

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

π π

K
p φ

Projection to jets provides “universal” view of event

Illustrations by G. Salam
   

Think of jets as projections that provide a universal view of events

LO partons NLO partons Parton Shower Hadron Level
Jet Definition Jet Definition Jet Definition Jet Definition

I’m not going to cover the many different types of jet clustering algorithms 
(kT, anti-kT, C/A, cones, …) - see e.g., lectures & notes by G. Salam.

➤ Focus instead on the physical origin and MC modeling of jets



P e t e r  S k a n d s

The Structure of Jets
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i

j

k

a

b

Partons ab → 
“collinear”:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

P(z) = “DGLAP” splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

/ 1

2(pa · pb)

+ scaling violation: gs2 → 4παs(Q2)

Gluon j → “soft”:

|MF+1(. . . , i, j, k. . . )|2
jg!0! g2sC

(pi · pk)
(pi · pj)(pj · pk)

|MF (. . . , i, k, . . . )|2
Coherence → Parton j really emitted by (i,k) “colour antenna” 

See e.g.: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times 
→ nested factorizations 

M o n a s h  U n i v e r s i t y

Gauge amplitudes factorize 
in singular limits (→ universal 
“conformal” or “fractal” structure)

Most bremsstrahlung is 
driven by divergent propagators 
→ simple structure

http://arxiv.org/abs/arXiv:1207.2389
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Other Examples of Factorisation
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๏Factorization of Production and Decay: 

•     = “Narrow-width approximation” 
• Valid up to corrections Γ/m → breaks down for large Γ 
• (More subtle when particle is coloured/charged/polarised) 

๏Factorization of Long and Short Distances 
•Scale of fluctuations inside a hadron  
• ~ ΛQCD ~ 200 MeV 
•Scale of hard process ≫ ΛQCD  
• → proton looks “frozen”  
•Instantaneous snapshot of long- 
•wavelength structure, independent of nature of hard process → PDFs

M o n a s h  U n i v e r s i t y

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions
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The Structure of Quantum Fields

12

๏What we actually see when we 
look at a “jet”, or inside a proton  

•An ever-repeating self-similar 
pattern of quantum fluctuations  

•At increasingly smaller energies or 
distances : scaling 

•To our best knowledge, this is 
what a fundamental (‘elementary’) 
particle really looks like 

M o n a s h  U n i v e r s i t y

(modulo α(Q) scaling violation)
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The Structure of Quantum Fields

13

๏What we actually see when we 
look at a “jet”, or inside a proton  

•An ever-repeating self-similar 
pattern of quantum fluctuations  

•At increasingly smaller energies or 
distances : scaling 

•To our best knowledge, this is 
what a fundamental (‘elementary’) 
particle really looks like 

๏Nature makes copious use of 
such structures - Fractals 

M o n a s h  U n i v e r s i t y

Note: this is 
not an 

elementary 
particle, but a 

different 
fractal, 

illustrating the 
principle

(modulo α(Q) scaling violation)
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Fractal QFT

14

๏Bremsstrahlung 
•Rate of bremsstrahlung jets mainly depends on the RATIO of 
the jet pT to the “hard scale” 

M o n a s h  U n i v e r s i t y

σX(j ≥ 5 GeV)

σX

σX(j ≥ 50 GeV)

σX

qj

qi

qj

p⊥ = 5 GeV

mX

qj

qi

qj

p⊥ = 50 GeV

10mX

Rate of 5-GeV jets
in X production

Eg., Drell-Yan

σX(j ≥ 5 GeV)

σX

σX(j ≥ 50 GeV)

σX

qj

qi

qj

p⊥ = 5 GeV

mX

qj

qi

qj

p⊥ = 50 GeV

10mX≈
Rate of 50-GeV jets
in production of 10X

Eg.,Heavy Particle at LHC

Harder Processes are Accompanied by Harder Jets
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Example:  

SUSY pair production at LHC14, with MSUSY ≈ 600 GeV 

Conformal QCD in Action

15

๏Naively, QCD radiation suppressed by αs≈0.1
•➙ Truncate at fixed order = LO, NLO, …

๏  But beware the jet-within-a-jet-within-a-jet …

M o n a s h  U n i v e r s i t y

100 GeV can be “soft” at the LHC

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for X + jets much larger than 
naive estimate

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for 50 GeV jets ≈ larger than 
total cross section → not under 

(fixed-order) control

All the scales are high, Q >> 1 GeV, so perturbation theory should be OK



•F.O. QCD also requires No hierarchies  
•Conformal jets-within-jets structure: 
integrated over phase space, 
bremsstrahlung poles → logarithms  
•→ large if upper and lower integration 
limits are hierarchically different

2
QHARD/QRES

10

P e t e r  S k a n d s

Apropos Factorisation

16

๏F.O. QCD requires Large scales (αs small enough to be 
perturbative - not too bad, since we anyway often want 
to consider large-scale processes)

M o n a s h  U n i v e r s i t y

Why are Fixed-Order QCD matrix elements not enough?

QHARD

1

ΛQCD

F.O. 
ME

10

100 large 
logs

perturbative

non-perturbative
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Resummation to the Rescue
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Factorization

d⇤

dX
=

⇥

a,b

⇥

f

�

X̂f

fa(xa, Q
2
i )fb(xb, Q

2
i )

d⇤̂ab�f(xa, xb, f, Q2
i , Q

2
f)

dX̂f

D(X̂f � X, Q2
i , Q

2
f)

20

PDFs: needed to compute 
inclusive cross sections

FFs: needed to compute 
(semi-)exclusive cross sections

PDFs: connect incoming hadrons with the high-scale process 
PDF evolution: sums the (leading, next-to-leading, …) logarithms to all orders, 
between the high scale and the initial-state proton scale ↔ initial-state radiation 

Fragmentation Functions: connect high-scale process with final-state hadrons 
FF evolution: sums the logarithms to all orders, between the high scale and the 
final-state hadronic (or more general observable) scale ↔ final-state radiation

Resummed pQCD:  All resolved scales >> ΛQCD AND X Infrared Safe
*)pQCD = perturbative QCD But can now include hierarchies
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Example:  

SUSY pair production at 14 TeV, with MSUSY ≈ 600 GeV 

Interpretation

18

๏Naively, QCD radiation suppressed by αs≈0.1
•➙ Truncate at fixed order = LO, NLO, …

๏  But beware the jet-within-a-jet-within-a-jet …

M o n a s h  U n i v e r s i t y

100 GeV can be “soft” at the LHC

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for X + jets much larger than 
naive estimate

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for 50 GeV jets ≈ larger than 
total cross section → not under 

(fixed-order) control

Interpretation : Most of these events will have more than one 50-GeV jet !
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Parton Showers
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๏So it’s not like you can put a cut at X (e.g., 50, or even 100) GeV 
and say: “ok, now fixed-order matrix elements will be OK” 

๏The hard scale QHARD of your process will start off the fractal 
•Sooner or later you will resolve bremsstrahlung structure, for 
•QJET/QHARD (or more generally QRESOLVED/QHARD) << 1 
•Will generate corrections to your kinematics,  
•Can be important combinatorial background if you are looking for 
decay jets of similar pT scales (often, ΔM << M) 

๏This is what parton showers are made for  
•(as well as resolving the fractal structure inside each of the jets)

M o n a s h  U n i v e r s i t y

Harder Processes are Accompanied by Harder Jets
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Bremsstrahlung
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dσ
X$

dσ
X+1 &
dσ

X+2 &
dσ

X+2&

✓d�X =

d�X+1 ⇠ NC2g
2
s
dsi1
si1

ds1j
s1j

d�X ✓

d�X+2 ⇠ NC2g
2
s
dsi2
si2

ds2j
s2j

d�X+1 ✓

d�X+3 ⇠ NC2g
2
s
dsi3
si3

ds3j
s3j

d�X+2 . . .

Factorization in Soft and Collinear Limits

|M(. . . , pi, pj , pk . . .)|2
jg!0! g2sC

2sik
sijsjk

|M(. . . , pi, pk, . . .)|2

|M(. . . , pi, pj . . .)|2
i||j! g2sC

P (z)

sij
|M(. . . , pi + pj , . . .)|2

P(z) :  “DGLAP Splitting Functions” 

“Soft Eikonal” : generalizes to Dipole/Antenna Functions 

(calculated process by process)For any basic process
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Bremsstrahlung
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dσ
X$

dσ
X+1 &
dσ

X+2 &
dσ

X+2&

✓For any basic process (calculated process by process)d�X =

d�X+1 ⇠ NC2g
2
s
dsi1
si1

ds1j
s1j

d�X ✓

d�X+2 ⇠ NC2g
2
s
dsi2
si2

ds2j
s2j

d�X+1 ✓

d�X+3 ⇠ NC2g
2
s
dsi3
si3

ds3j
s3j

d�X+2 . . .

Singularities: mandated by gauge theory 
Non-singular terms: process-dependent 

|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

+ 2

◆�

|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

◆�SOFT

COLLINEARSOFT +F

COLLINEAR
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Bremsstrahlung
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dσ
X$

dσ
X+1 &
dσ

X+2 &
dσ

X+2&

Iterated factorization 
Gives us a universal approximation to ∞-order tree-level cross sections. 

Exact in singular (strongly ordered) limit.
Finite terms (non-universal) → Uncertainties for non-singular (hard) radiation

But something is not right … Total σ would be infinite … 

✓For any basic process (calculated process by process)d�X =

d�X+1 ⇠ NC2g
2
s
dsi1
si1

ds1j
s1j

d�X ✓

d�X+2 ⇠ NC2g
2
s
dsi2
si2

ds2j
s2j

d�X+1 ✓

d�X+3 ⇠ NC2g
2
s
dsi3
si3

ds3j
s3j

d�X+2 . . .
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Loops and Legs
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๏ Coefficients of the Perturbative Series

M o n a s h  U n i v e r s i t y

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

The corrections from 
Quantum Loops are 

missing

Universality 
(scaling)

Jet-within-a-jet-within-a-jet-...
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Cross sections at LO

24

๏Born @ LO 

๏Born + n @ LO 

•Infrared divergent (when sij and/or sjk → 0): Integral → Logarithms

M o n a s h  U n i v e r s i t y

LO, NLO, etc

⇥Born =

⇤
|M (0)

X |2

⇥LO
X+1(R) =

⇤

R
|M (0)

X+1|
2

⇥NLO
X = ⇥Born +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X =

⇤
|M (0)

X |2 +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X = ⇥Born+Finite

⌅⇤
|M (0)

X+1|
2

�
+Finite

⌅⇤
2Re[M (1)

X M (0)�
X ]

�

⇥NLO
X = ⇥Born(1 + K)

⇥NNLO
X = ⇥NLO

X +

⇤ ⇥
|M (1)

X |2 + 2Re[M (2)
X M (0)�

X ]
⇧
+

⇤
2Re[M (1)

X+1M
(0)�
X+1]+

⇤
|M (0)

X+2|
2

14

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)

LO, NLO, etc

⇥Born =

⇤
|M (0)

X |2

⇥LO
X+1(R) =

⇤

R
|M (0)

X+1|
2

⇥NLO
X = ⇥Born +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X =

⇤
|M (0)

X |2 +

⇤
|M (0)

X+1|
2 +

⇤
2Re[M (1)

X M (0)�
X ]

⇥NLO
X = ⇥Born+Finite

⌅⇤
|M (0)

X+1|
2

�
+Finite

⌅⇤
2Re[M (1)

X M (0)�
X ]

�

⇥NLO
X = ⇥Born(1 + K)

⇥NNLO
X = ⇥NLO

X +

⇤ ⇥
|M (1)

X |2 + 2Re[M (2)
X M (0)�

X ]
⇧
+

⇤
2Re[M (1)

X+1M
(0)�
X+1]+

⇤
|M (0)

X+2|
2

14

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)

|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

◆�

๏R = some “Infrared Safe” phase space region (Often a cut on p⊥ > X GeV) 
๏ ๏Careful not to take it too low!

P.  S k a n d s

Cross sections at LO

Born @ LO 
!
!
!
!

Born + n @ LO 
!
!
!

Infrared divergent → Must be regulated 

R = some Infrared Safe phase space region 
(Often a cut on p⊥ > n GeV) 

Careful not to take it too low!
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๏NLO: 

๏KLN Theorem (Kinoshita-Lee-Nauenberg) 
•Sum over ‘degenerate quantum states’ :                
Singularities cancel at complete order (only finite terms left over)

M o n a s h  U n i v e r s i t y

P.  S k a n d s

�NLO(e
+e� ! qq̄) = �LO(e

+e� ! qq̄)

✓
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+O(↵2
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◆

Cross sections at NLO

NLO: 

!
!

!

KLN Theorem (Kinoshita-Lee-Nauenberg) 
Sum over ‘degenerate quantum states’ :                
Singularities cancel at complete order (only finite terms left over)
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Cross sections at LO

Born @ LO 
!
!
!
!

Born + n @ LO 
!
!
!

Infrared divergent → Must be regulated 

R = some Infrared Safe phase space region 
(Often a cut on p⊥ > n GeV) 

Careful not to take it too low!
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๏How do I get finite{Real} and finite{Virtual} ? 
•First step: classify IR singularities using universal functions 

๏EXAMPLE: factorization of amplitudes in the soft limit 

M o n a s h  U n i v e r s i t y
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j

k
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m+1 m+1

K

K

Figure 3: Illustration of NLO antenna factorisation representing the factorisation of both the
squared matrix elements and the (m + 1)-particle phase space. The term in square brackets repre-
sents both the antenna function X0

ijk and the antenna phase space dΦXijk
.

+
∑

j

Dkj,i |Mm((p1, . . . , p̃i, p̃kj , . . . , pm+1)|2 J (m)
m (p1, . . . , p̃i, p̃kj , . . . , pm+1)

]

.

(2.7)

In the first term, the dipole contribution involves the m-parton amplitude which only

depends on the redefined on-shell momenta p1, . . . , p̃ij , p̃k, . . . , pm+1 and the dipole function

Dij,k which depends on pi, pj , pk. The momenta pi, pj and pk are respectively the emitter,

unresolved parton and the spectator momenta corresponding to a single dipole term. In

the second term, the role of emitter and spectator are exchanged. The redefined on-

shell momenta p̃ij, p̃k (p̃kj , p̃i) are different linear combinations of pi, pj and pl for each

dipole. In the antenna approach, the momentum mapping would be the same for each

dipole contribution and the two terms combine to form the tree antenna, X0
ijk. The two

dipoles combining to an antenna have a common unresolved parton, and contain the two

possible emitter/spectator combinations. In the antenna language, emitter and spectator

act as radiators. Note that we can always choose to divide the antenna and use different

momentum maps for the two parts.

The jet function J (m)
m in (2.6) does not depend on the individual momenta pi, pj and

pk, but only on p̃I , p̃K . One can therefore carry out the integration over the unresolved

dipole phase space appropriate to pi, pj and pk analytically, exploiting the factorisation of

the phase space,

dΦm+1(p1, . . . , pm+1; q) = dΦm(p1, . . . , p̃I , p̃K , . . . , pm+1; q) · dΦXijk
(pi, pj , pk; p̃I + p̃K) .

(2.8)

The NLO antenna phase space dΦXijk
is proportional to the three-particle phase space,

as can be seen by using m = 2 in the above formula and exploiting the fact that the

two-particle phase space is a constant,

P2 =

∫
dΦ2 = 2−3+2ϵπ−1+ϵ Γ(1 − ϵ)

Γ(2 − 2ϵ)

(
q2
)−ϵ

, (2.9)

such that

dΦ3 = P2 dΦXijk
. (2.10)

– 8 –

Mm+1 MmSoft Limit
(Ej → 0):
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Figure 2: Illustration of the dampening of the collinear singularity for Z ! Qg ¯Q: squared matrix elements with
(thick) and without (thin) mass corrections, normalized to the massless case, as a function of the opening angle
between the quark and the gluon, for constant Eg = 10GeV and mQ = 4.8GeV.

framework presented in [13, 14] (and in the dipole formalism [30] that predates it), the main building
blocks, massive antenna (dipole) functions and phase-space factorizations, are therefore constructed
so as to reproduce exactly the quasi-collinear and soft behaviours of real radiation matrix-elements in
the corresponding limits. For cross sections which are well-behaved in the massless limit, the explicit
cancellations of the ln(Q2/m2

)-terms also ensure numerical stability in the limit m ! 0.
For some observables which are not infrared safe in their massless limit, such as ones sensitive to

the details of the fragmentation process for example, the cancellation of the mass-dependent logarithms
is incomplete. Terms of the form ↵n

S ln

n
(Q2/m2

) appear in every order of the expansion. In the case
of a large hierarchy m ⌧ Q, these terms jeopardize the convergence of the perturbative series. It is
necessary to resum them to all orders to obtain a meaningful result, as is done, for example, for the b-
quark fragmentation process in [33], to which we compare the massive VINCIA dipole-antenna shower
in section 5. However, in order to construct this shower, we must first consider the soft and quasi-
collinear limits more carefully and define how the massless splitting functions and soft Eikonal factors
are generalized in the presence of massive particles.

The infrared singularity properties of tree-level colour-ordered matrix elements involving only mass-
less partons have been well studied in [31]. In the limit where a gluon j is soft with respect to its
neighbouring partons i and k, the colour-ordered matrix-elements squared |Mn+1

|2 for (n+1) partons
factorizes into a universal soft Eikonal factor Sijk and a colour-ordered tree-level squared amplitude
where gluon j has been removed. For the squared amplitudes we have,

|Mn+1

(1, · · · , i, j, k, · · · , n+ 1)|2 jg!0���! g2sCijk Sijk |Mn(1, · · · , i, k, · · · , n+ 1)|2 (28)

where g2s = 4⇡↵s is the strong coupling, Cijk is a colour factor that tends to NC in the leading-colour
limit, and the massless Eikonal factor is given by

Sijk =

2sik
sijsjk

. (29)

Similarly when two neighbouring gluons or a quark and a gluon become collinear the colour-ordered
matrix elements factorize. Depending on the nature of the partons involved different collinear factors

9

are obtained. Partons which are not colour-connected do not lead to singular behaviours of the colour
ordered matrix-elements squared, hence the soft or collinear factors only involve the neighbouring par-
ticles to which the unresolved particle is colour-connected.

In the massive case, essentially the same factorization properties still hold, provided the collinear
limit is generalized to the quasi-collinear limit (see below). For the emission of a soft gluon from
massive radiators, the factorization of the matrix element into a soft Eikonal factor times a reduced
matrix element with the soft gluon omitted works in the same way as for massless partons. The soft
Eikonal factor given in equation (29) needs however to be generalized. Written in terms of the parent
parton masses mI and mK and the invariants between the daughter partons i, j and k, the massive soft
Eikonal factor reads

Sijk(mI ,mK) =

2sik
sijsjk

� 2m2

I

s2ij
� 2m2

K

s2jk
(30)

which has two new mass-dependent terms compared to the massless Eikonal factor defined above.
The quasi-collinear limit of a massive parton with momentum pµ decaying into two massive partons

j and k is given by,
pµj ! z pµ, pµk ! (1 � z) pµ, (31)

p2 = m2

(jk). (32)

with the constraints,
pj · pk,mj ,mk,mjk ! 0 (33)

at fixed ratios,
m2

j

pj · pk ,
m2

k

pj · pk ,
m2

jk

pj · pk . (34)

The key difference between the massless collinear limit and the quasi-collinear limit is given by
the constraint that the on-shell masses squared have to be kept of the same order as the invariant mass
(pj + pk)

2, with the latter becoming small. In these corresponding quasi-collinear limits, the colour-
ordered (m + 1)-parton matrix element squared factorizes into a reduced m-parton matrix element
squared multiplied by quasi-collinear splitting functions, the latter are generalizations of the Altarelli-
Parisi splitting functions [34] from which they differ by mass-dependent terms. In four dimensions, they
read

Pqg!Q(z,mq, sqg) =
1 + (1 � z)2

z
� 2m2

q

sqg
,

Pqq̄!G(z,mq, sqq̄) = z2 + (1 � z)2 � 2m2

q

sqq̄ + 2m2

q
.

(35)

We now turn to a description of the full massive dipole-antenna functions as implemented in VINCIA.

2.5 Massive dipole-antenna functions

In general, the full forms of the dipole-antenna functions are obtained by normalizing a three-parton
tree-level matrix-element squared to a corresponding two-parton squared matrix element, stripped of all

10

Universal
“Soft Eikonal” 

sij ⌘ 2pi · pj
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๏How do I get finite{Real} and finite{Virtual} ? 
•First step: classify IR singularities using universal functions 

๏Add and subtract IR limits (SOFT and COLLINEAR) 

๏Choice of subtraction terms: 
•Singularities mandated by gauge theory 
•Non-singular terms: up to you (added and subtracted, so vanish)

M o n a s h  U n i v e r s i t y

yield configurations where a certain number of essentially non-interacting particles are

emitted between a pair of hard radiators. By carrying out the colour algebra, it becomes

evident that non-ordered gluon emission inside a colour-ordered system is equivalent to

photon emission off the outside legs of the system [18,42]. For simplicity, these subleading

colour contributions are also denoted as squared matrix elements |Mm|2, although they

often correspond purely to interference terms between different amplitudes.

The precise definition depends on the number and types of particles involved in the

process. However, all colour orderings are summed over in
∑

m with the appropriate colour

weighting. The jet function J (n)
m defines the procedure for building m jets out of n partons.

The main property of J (n)
m is that the jet observable defined above is collinear and infrared

safe as explained in [39, 40]. In general J (n)
m contains θ and δ-functions. J (n)

m can also

represent the definition of the n-parton contribution to an event shape observable related

to m-jet final states.

From (2.1), one obtains the leading order approximation to the m-jet cross section by

integration over the appropriate phase space.

dσLO =

∫

dΦm

dσB . (2.3)

Depending on the jet function used, this cross section can still be differential in certain

kinematical quantities.

2.1 NLO infrared subtraction terms

At NLO, we consider the following m-jet cross section,

dσNLO =

∫

dΦm+1

(
dσR

NLO − dσS
NLO

)
+

[∫

dΦm+1

dσS
NLO +

∫

dΦm

dσV
NLO

]

. (2.4)

The cross section dσR
NLO has the same expression as the Born cross section dσB

NLO (2.1)

above except that m → m + 1, while dσV
NLO is the one-loop virtual correction to the m-

parton Born cross section dσB . The cross section dσS
NLO is a (preferably local) counter-term

for dσR
NLO. It has the same unintegrated singular behaviour as dσR

NLO in all appropriate

limits. Their difference is free of divergences and can be integrated over the (m+1)-parton

phase space numerically. The subtraction term dσS
NLO has to be integrated analytically

over all singular regions of the (m + 1)-parton phase space. The resulting cross section

added to the virtual contribution yields an infrared finite result.

A systematic procedure for finding NLO infrared subtraction terms is the antenna

formalism introduced in [10, 41]. The antenna subtraction terms are obtained as sum of

antennae:

dσS
NLO = N

∑

m+1

dΦm+1(p1, . . . , pm+1; q)
1

Sm+1

×
∑

j

X0
ijk |Mm(p1, . . . , p̃I , p̃K , . . . , pm+1)|2 J (m)

m (p1, . . . , p̃I , p̃K , . . . , pm+1) , (2.5)

– 6 –

Finite by Universality Finite by KLN

Dipoles (Catani-
Seymour)

Global Antennae 
(Gehrmann, 
Gehrmann-de Ridder, 
Glover)

Sector Antennae 
(Kosower)

… 

|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

+ 2

◆�

|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

◆�
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๏Definition: an observable is infrared safe if 
it is insensitive to

M o n a s h  U n i v e r s i t y

Note: some people use the word “infrared” to refer to soft only. Hence you may also hear  
“infrared and collinear safety”. Advice: always be explicit and clear what you mean.

SOFT radiation:  
Adding any number of infinitely soft particles (zero-energy)  

should not change the value of the observable

COLLINEAR radiation: 
Splitting an existing particle up into two comoving ones 

(conserving the total momentum and energy)  
should not change the value of the observable
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QCD lecture 4 (p. 30)

Jets

Cones
IRC safety & real-life

Real life does not have infinities, but pert. infinity leaves a real-life trace

α2
s + α3

s + α4
s ×∞ → α2

s + α3
s + α4

s × ln pt/Λ→ α2
s + α3

s + α3
s

︸ ︷︷ ︸

BOTH WASTED

Among consequences of IR unsafety:

Last meaningful order
JetClu, ATLAS MidPoint CMS it. cone Known at

cone [IC-SM] [ICmp -SM] [IC-PR]

Inclusive jets LO NLO NLO NLO (→ NNLO)
W /Z + 1 jet LO NLO NLO NLO
3 jets none LO LO NLO [nlojet++]
W /Z + 2 jets none LO LO NLO [MCFM]
mjet in 2j + X none none none LO

NB: 50,000,000$/£/CHF/e investment in NLO

Multi-jet contexts much more sensitive: ubiquitous at LHC
And LHC will rely on QCD for background double-checks

extraction of cross sections, extraction of parameters

Why do we care?
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QCD lecture 4 (p. 29)

Jets

Cones
Consequences of collinear unsafety

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞nαs x (− )∞n αs x (+ )∞nαs x (− )∞n

Collinear Safe Collinear Unsafe

Infinities cancel Infinities do not cancel

Invalidates perturbation theory

Invalidates perturbation theory(KLN: ‘degenerate states’)

Virtual and Real go into different bins!Virtual and Real go into same bins!

(example by G. Salam)
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Summary
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๏This Lecture: 
•Making Predictions: the Role of MC Generators 
•Jets: Factorisation of QCD amplitudes in soft/collinear limits 

๏Harder Processes are Accompanied by Harder Jets 
•We collide - and observe - hadrons, with low-scale non-
perturbative structure. They participate in hard processes, 
with QHARD hierarchically greater than mHAD ~ 1 GeV. 

๏With (IR safe) jets, we get to replace mHAD by pTJET 
๏Can be computed perturbatively (using PDFs for initial state) 
but hierarchies QHARD/PTJET can still → need resummation 

๏Next Two Lectures (Tuesday & Friday) 
•Lecture 2: Parton showers + Matching & Merging 
•Lecture 3: Hadronisation + BSM Signals and Backgrounds

M o n a s h  U n i v e r s i t y
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➜ Test models of  
“known physics” to 

high precision

Triggers target the 
needles in the haystack

“Jets”“Missing Energy”

Trigger on signatures of 
decays of heavy particles, 

violent reactions

“Leptons”“Photons”
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PDFs: Factorisation Theorem
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๏In DIS, there is a formal proof of PDF (collinear) 
factorisation 

M o n a s h  U n i v e r s i t y

(Collins, Soper, 1987)

�Q2

Lepton
Scattered 
Lepton

Scattered 
Quark

Deep Inelastic 
Scattering (DIS) 

(By “deep”, we 
mean Q2>>Mh2)

Sum over 
Initial (i) 

and final (f) 
parton flavors

= Final-state  
phase space

�f Differential partonic 
Hard-scattering 

Matrix Element(s)

�

`h =
X

i

X

f

Z
dxi

Z
d�f fi/h(xi, Q

2
F )

d�̂

`i!f (xi,�f , Q
2
F )

dxi d�f

→ We really can write the cross section in factorized form :

= PDFs 
Assumption: 

Q2 = QF
2

fi/h

fi/h

�̂
xi

f
Note: Beyond LO, 

f can be more 
than one parton
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There is no unique or “best” jet definition
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๏ YOU decide how to look at event 
•The construction of jets is inherently ambiguous 

๏1. Which particles get grouped together? 
๏JET ALGORITHM (+ parameters) 

๏2. How will you combine their momenta? 
๏RECOMBINATION SCHEME  
๏(e.g., ‘E’ scheme: add 4-momenta)

M o n a s h  U n i v e r s i t y

Ambiguity complicates life, but gives flexibility 
in one’s view of events → Jets non-trivial!

Jet Definition
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Types of Algorithms
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๏1. Sequential Recombination 

M o n a s h  U n i v e r s i t y

Iterate until A or B (you choose which):  
A: all distance measures larger than something
B: you reach a specified number of jets

Look at event at: 

specific njets

specific resolution

Take your 4-vectors. Combine the ones that have the lowest 
‘distance measure’ 

Different names for different distance measures

Durham kT :

Cambridge/Aachen :

Anti-kT : 

ArClus (3→2):  

→ New set of (n-1) 4-vectors

�R2
ij

�R2
ij/ max(k2

Ti, k
2
Tj)

�R2
ij ⇥min(k2

Ti, k
2
Tj)

p2
? = sijsjk/sijk

k2
Ti = E2

i (1� cos ✓ij)

�R2
ij = (⌘i � ⌘j)2 + ��2

ij

+ Prescription for how to 
combine 2 momenta into 1

(or 3 momenta into 2)
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Why kT (or pT or ∆R)?
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๏Attempt to (approximately) capture universal jet-within-jet-
witin-jet… behavior 

•Approximate full matrix element 

•by Leading-Log limit of QCD → universal dominant terms

M o n a s h  U n i v e r s i t y

|M (0)
X+1(si1, s1k, s)|2

|M (0)
X (s)|2

⇥ 4⌥ sCF

⇥
2sik

si1s1k
+ ...

�

dsi1ds1k

si1s1k
⇥ dp2

�
p2
�

dz

z(1� z)
⇥ dE1

min(Ei, E1)

d⇤i1

⇤i1
(E1 ⇤ Ei, ⇤i1 ⇤ 1)

30

“Eikonal”
(universal, always there)

,...

|M (0)
X+1(si1, s1k, s)|2

|M (0)
X (s)|2

⇥ 4⌥ sCF

⇥
2sik

si1s1k
+ ...

�

dsi1ds1k

si1s1k
⌅ dp2

�
p2
�

dz

z(1� z)
⌅ dE1

min(Ei, E1)

d⇤i1

⇤i1
(E1 ⇤ Ei, ⇤i1 ⇤ 1)

30

Rewritings in soft/collinear limits

“smallest” kT (or pT or θij, or …) → largest Eikonal

=
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Types of Algorithms
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๏ 2. “Cone” type

M o n a s h  U n i v e r s i t y

Warning: seeded algorithms are INFRARED UNSAFE

Take your 4-vectors. Select a procedure for which “test cones” 
to draw

Different names for different procedures

Seeded : start from hardest 4-vectors (and possibly combinations thereof, 
e.g., CDF midpoint algorithm) = “seeds”

Unseeded : smoothly scan over entire event, trying everything

Sum momenta inside test cone → new test cone direction

Iterate until stable (test cone direction = momentum sum direction)
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Safe vs Unsafe Jets
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•May look pretty similar in experimental environment …  
•But it’s not nice to your theory friends …  

M o n a s h  U n i v e r s i t y

appears to be able to account for. It therefore appears plausible that a universal modeling of the underly-
ing event must take into account that the hard-scattering and underlying-event components can involve
similar time scales and have a common, correlated evolution. It is in this spirit that the concept of “in-
terleaved evolution” [12] was developed as the cornerstone of the p⊥-ordered models [12, 13] in both
PYTHIA 6 [14] and, more recently, PYTHIA 8 [15], the latter of which now also incorporates a model of
parton rescattering [16].

The second tool, infrared safety1, provides us with a class of observables which are insensitive to
the details of the long-distance physics. This works up to corrections of order the long-distance scale
divided by the short-distance scale to some (observable-dependent) power, typically

IR Safe Corrections ∝
Q2

IR

Q2
UV

(1)

where QUV denotes a generic hard scale in the problem, and QIR ∼ ΛQCD ∼ O(1 GeV). Of course,
in minimum-bias, we typically have Q2

UV ∼ Q2
IR, wherefore all observables depend significantly on

the IR physics (or in other words, when IR physics is all there is, then any observable, no matter how
carefully defined, depends on it).

Even when a high scale is present, as in resonance decays, jet fragmentation, or underlying-event-
type studies, infrared safety only guarantees us that infrared corrections are small, not that they are zero.
Thus, ultimately, we run into a precision barrier even for IR safe observables, which only a reliable
understanding of the long-distance physics itself can address.

Finally, there are the non-infrared-safe observables. Instead of the suppressed corrections above,
such observables contain logarithms

IR Sensitive Corrections ∝ αn
s log

m

(

Q2
UV

Q2
IR

)

, m ≤ 2n , (2)

which grow increasingly large as QIR/QUV → 0. As an example, consider such a fundamental quantity
as particle multiplicities; in the absence of nontrivial infrared effects, the number of partons that would
be mapped to hadrons in a naı̈ve local-parton-hadron-duality [17] picture would tend logarithmically to
infinity as the IR cutoff is lowered. Similarly, the distinction between a charged and a neutral pion only
occurs in the very last phase of hadronisation, and hence observables that only include charged tracks
are always IR sensitive.

Minimum-bias (MB) and Underlying-Event (UE) physics can therefore be perceived of as offering
an ideal lab for studying nonfactorised and nonperturbative phenomena, with the added benefit of having
access to the highest possible statistics in the case of min-bias. In this context there is no strong prefer-
ence for IR safe over IR sensitive observables; they merely represent two different lenses through which
we can view the infrared physics, each revealing different aspects. By far the most important point is
that it is in their combination that we achieve a sort of stereo vision, in which infrared safe observables
measuring the overall energy flow are simply the slightly averaged progenitors of the spectra and cor-
relations that appear at the level of individual particles. A systematic programme of such studies can
give crucial tests of our ability to model and understand these ubiquitous components, and the resulting
improved physics models can then be fed back into the modeling of high-p⊥ physics.

1By “infrared” we here mean any non-UV limit, without regard to whether it is collinear or soft.

2

Unsafe: badly divergent in pQCD → large IR corrections:

Even if we have a hadronization model with which to compute 
these corrections, the dependence on it → larger uncertainty

appears to be able to account for. It therefore appears plausible that a universal modeling of the underly-
ing event must take into account that the hard-scattering and underlying-event components can involve
similar time scales and have a common, correlated evolution. It is in this spirit that the concept of “in-
terleaved evolution” [12] was developed as the cornerstone of the p⊥-ordered models [12, 13] in both
PYTHIA 6 [14] and, more recently, PYTHIA 8 [15], the latter of which now also incorporates a model of
parton rescattering [16].

The second tool, infrared safety1, provides us with a class of observables which are insensitive to
the details of the long-distance physics. This works up to corrections of order the long-distance scale
divided by the short-distance scale to some (observable-dependent) power, typically

IR Safe Corrections ∝
Q2

IR

Q2
UV

(1)

where QUV denotes a generic hard scale in the problem, and QIR ∼ ΛQCD ∼ O(1 GeV). Of course,
in minimum-bias, we typically have Q2

UV ∼ Q2
IR, wherefore all observables depend significantly on

the IR physics (or in other words, when IR physics is all there is, then any observable, no matter how
carefully defined, depends on it).

Even when a high scale is present, as in resonance decays, jet fragmentation, or underlying-event-
type studies, infrared safety only guarantees us that infrared corrections are small, not that they are zero.
Thus, ultimately, we run into a precision barrier even for IR safe observables, which only a reliable
understanding of the long-distance physics itself can address.

Finally, there are the non-infrared-safe observables. Instead of the suppressed corrections above,
such observables contain logarithms

IR Sensitive Corrections ∝ αn
s log

m

(

Q2
UV

Q2
IR

)

, m ≤ 2n , (2)

which grow increasingly large as QIR/QUV → 0. As an example, consider such a fundamental quantity
as particle multiplicities; in the absence of nontrivial infrared effects, the number of partons that would
be mapped to hadrons in a naı̈ve local-parton-hadron-duality [17] picture would tend logarithmically to
infinity as the IR cutoff is lowered. Similarly, the distinction between a charged and a neutral pion only
occurs in the very last phase of hadronisation, and hence observables that only include charged tracks
are always IR sensitive.

Minimum-bias (MB) and Underlying-Event (UE) physics can therefore be perceived of as offering
an ideal lab for studying nonfactorised and nonperturbative phenomena, with the added benefit of having
access to the highest possible statistics in the case of min-bias. In this context there is no strong prefer-
ence for IR safe over IR sensitive observables; they merely represent two different lenses through which
we can view the infrared physics, each revealing different aspects. By far the most important point is
that it is in their combination that we achieve a sort of stereo vision, in which infrared safe observables
measuring the overall energy flow are simply the slightly averaged progenitors of the spectra and cor-
relations that appear at the level of individual particles. A systematic programme of such studies can
give crucial tests of our ability to model and understand these ubiquitous components, and the resulting
improved physics models can then be fed back into the modeling of high-p⊥ physics.

1By “infrared” we here mean any non-UV limit, without regard to whether it is collinear or soft.

2

Safe → IR corrections power suppressed:
Can still be computed (MC) but 
can also be neglected (pure pQCD)

Let’s look at a specific example … 
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Stereo Vision
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๏Use IR Safe algorithms 
•To study short-distance physics 
•These days, ≈ as fast as IR unsafe algos and widely 
implemented (e.g., FASTJET), including 

๏Then use IR Sensitive observables 
•E.g., number of tracks, identified particles, … 
•To explicitly check hadronization and models of IR physics

M o n a s h  U n i v e r s i t y

“Cone-like”: SiSCone, Anti-kT, …  
“Recombination-like”: kT,Cambridge/Aachen,Anti-kT… 

More about IR in lecture on soft QCD …

http://www.fastjet.fr/

Image Credits: Richard Seaman

http://www.fastjet.fr

