Monte Carlos and New Physics

Peter Skands (Monash University)

The Phenomenology Pipeline

Exclusions
Hints
Evidence
Discoveries
Surprises

INTERPRETATION

Statistical Tests
Validate/Falsify Models
Constrain Free Parameters

Making Predictions

Scattering

 Experiments:

LHC detector
Cosmic-Ray detector Neutrino detector X-ray telescope

\rightarrow Integrate differential cross sections

 over specific phase-space regionsPredicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

In particle physics:

Integrate over all quantum histories (+ interferences)

In nature, σ is all-orders Smatrix element, integrated over 3 dimensions per particle (with resonances, singularities, loops, nonperturbative dynamics, ...)

\rightarrow Monte Carlo

Recap Convergence:

Calculus: $\{A\}$ converges to B if n exists for which $\left|A_{i>n}-B\right|<\varepsilon$, for any $\varepsilon>0$

Monte Carlo: $\{A\}$ converges to B if n exists for which
the probability for $\left|A_{i>n}-B\right|<\varepsilon$, is $>P$, for any $P[0<P<1]$ for any $\varepsilon>0$
Any technique that makes use of random sampling
MC: prescribed for cases of complicated / coupled integrands in high dimensions

Numerical Uncertainty (after n function evaluations)	$n_{\text {eval }} /$ bin	Conv. Rate (in 1D)	Conv. Rate (in D dim)
Trapezoidal Rule (2-point)	2^{D}	$1 / n^{2}$	$1 / n^{2 / D}$
Simpson's Rule (3-point)	3^{D}	$1 / n^{4}$	$1 / n^{4 / D}$
Monte Carlo	1	$1 / n^{1 / 2}$	$1 / n^{1 / 2}$

+ optimisations (stratification, adaptation), coupled/iterative solutions (Markov-Chain Monte Carlo)

The Role of MC Generators

T H E O R Y

Calculate Everything \approx solve QFT＊\rightarrow requires compromise！
Event Generators ：start from elementary scattering process Include the＇most significant＇corrections：higher－order matrix elements， bremsstrahlung，resonance decays，hadronization，underlying event，beam remnants，．．．

A detailed picture that connects directly with the observable world

of hadrons，photons，and leptons

Organising the Calculation

Divide and Conquer \rightarrow Split the problem into many (nested) pieces

+ Quantum mechanics \rightarrow Probabilities \rightarrow Random Numbers

$$
\mathcal{P}_{\text {event }}=\mathcal{P}_{\text {hard }} \otimes \mathcal{P}_{\text {dec }} \otimes \mathcal{P}_{\text {ISR }} \otimes \mathcal{P}_{\text {FSR }} \otimes \mathcal{P}_{\text {MPI }} \otimes \mathcal{P}_{\text {Had }} \otimes \ldots
$$

Hard Process \& Decays:
Use process-specific (N)LO matrix elements (e.g., gg $\rightarrow \mathrm{H}^{0} \rightarrow \gamma \gamma$)
\rightarrow Sets "hard" resolution scale for process: Qmax
ISR \& FSR (Initial- \& Final-State Radiation):
Bremsstrahlung, driven by differential (DGLAP) evolution equations, $d P / \mathrm{dQ}^{2}$, as function of resolution scale; rom Qmax to $\mathrm{Qhad}^{\sim} 1 \mathrm{GeV}$

MPI (Multi-Parton Interactions)
Protons contain lots of partons \rightarrow can have additional (soft) partonparton interactions \rightarrow Additional (soft) "Underlying-Event" activity

Hadronization

Non-perturbative modeling of partons \rightarrow hadrons transition

Challenges Beyond Fixed Order

QCD is more than just a perturbative expansion in α_{s}
The relation between α_{s}, Feynman diagrams, and the full QCD dynamics involves spectacular "emergent" phenomena:

Jets (perturbative QCD, initial- and final-state radiation) \longleftrightarrow amplitude structures in quantum field theory \longleftrightarrow factorisation \& unitarity. Precision jet (structure) studies.

Strings (strong gluon fields) \longleftrightarrow quantum-classical correspondence. String physics. String breaks. Dynamics of hadronization phase transition.

Hadrons \longleftrightarrow Spectroscopy (incl excited and exotic states), lattice QCD, (rare) decays, mixing, light nuclei. Hadron beams \rightarrow multiparton interactions, diffraction, ...

What are Jets?

Think of jets as projections that provide a universal view of events

Parton Shower Jet Definition

jet 1

I'm not going to cover the many different types of jet clustering algorithms (k_{T}, anti- $K_{T}, C / A$, cones, ...) - see e.g., lectures \& notes by G. Salam.

- Focus instead on the physical origin and MC modeling of jets

The Structure of Jets

Most bremsstrahlung is driven by divergent propagators
\rightarrow simple structure

Gauge amplitudes factorize

 in singular limits (\rightarrow universal "conformal" or "fractal" structure)

$$
\begin{aligned}
& \text { Partons } \mathrm{ab} \rightarrow \quad \mathrm{P}(\mathrm{z})=\text { "DGLAP" splitting kernels, with } \mathrm{z}=\text { energy fraction }=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right) \\
& \text { "collinear": } \\
& \qquad\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a| | b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{aligned}
$$

Gluon j \rightarrow "soft":
Coherence \rightarrow Parton j really emitted by (i,k) "colour antenna"

$$
\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

+ scaling violation: $g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(\mathrm{Q}^{2}\right)$
See e.g.: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times
\rightarrow nested factorizations

Other Examples of Factorisation

Factorization of Production and Decay:

Valid up to corrections $\Gamma / \mathrm{m} \rightarrow$ breaks down for large Γ (More subtle when particle is coloured/charged/polarised)

Factorization of Long and Short Distances Scale of fluctuations inside a hadron
$\sim \Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$
Scale of hard process $>\Lambda_{\mathrm{QCD}}$
\rightarrow proton looks "frozen" Instantaneous snapshot of long-
 wavelength structure, independent of nature of hard process \rightarrow PDFs

The Structure of Quantum Fields

What we actually see when we look at a "jet", or inside a proton An ever-repeating self-similar pattern of quantum fluctuations At increasingly smaller energies or distances: scaling (modulo a(Q) scaling violation) To our best knowledge, this is what a fundamental ('elementary') particle really looks like

The Structure of Quantum Fields

What we actually see when we look at a "jet", or inside a proton An ever-repeating self-similar pattern of quantum fluctuations At increasingly smaller energies or distances: scaling (modulo a(Q) scaling violation) To our best knowledge, this is what a fundamental ('elementary') particle really looks like

Nature makes copious use of such structures - Fractals

Fractal QFT

Bremsstrahlung

Rate of bremsstrahlung jets mainly depends on the RATIO of the jet p_{T} to the "hard scale"

Harder Processes are Accompanied by Harder Jets

Conformal QCD in Action

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0.1$
\rightarrow Truncate at fixed order $=$ LO, NLO, \ldots
But beware the jet-within-a-jet-within-a-jet ...

Example: $\quad 100 \mathrm{GeV}$ can be "soft" at the LHC
SUSY pair production at LHC_{14}, with $M_{\text {susy }} \approx 600 \mathrm{GeV}$

LHC - spsla - m~600 GeV						
Plehn, Rainwater, PS PLB645(2007)217						
FIXED ORDER pQCD $\sigma_{\text {tot }}[\mathrm{pb}]$ $\tilde{g} \tilde{g}$ $\tilde{u}_{L} \tilde{g}$ $\tilde{u}_{L} \tilde{u}_{L}^{*}$ $\tilde{u}_{L} \tilde{u}_{L}$ $T T$ $p_{T, j}>100 \mathrm{GeV}$ $\sigma_{0 j}$ 4.83 5.65 0.286 0.502 1.30 inclusive $\mathbf{x}+\mathbf{1}$ "jet" $\rightarrow \sigma_{1 j}$ 2.89 2.74 0.136 0.145 0.73 inclusive $\mathbf{x}+\mathbf{2}$ "jets" $\rightarrow \sigma_{2 j}$ 1.09 0.85 0.049 0.039 0.26						

σ for $X+$ jets much larger than
naive estimate

$p_{T, j} \nmid 50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

(Computed with SUSY-MadGraph)

All the scales are high, $\mathrm{Q} \gg 1 \mathrm{GeV}$, so perturbation theory should be OK

Apropos Factorisation

Why are Fixed-Order QCD matrix elements not enough?

F.O. QCD requires Large scales ($\boldsymbol{\alpha}_{\mathrm{s}}$ small enough to be perturbative - not too bad, since we anyway often want to consider large-scale processes)
F.O. QCD also requires No hierarchies

Conformal jets-within-jets structure: integrated over phase space, bremsstrahlung poles \rightarrow logarithms
\rightarrow large if upper and lower integration limits are hierarchically different

Resummation to the Rescue

PDFs: connect incoming hadrons with the high-scale process
PDF evolution: sums the (leading, next-to-leading, ...) logarithms to all orders, between the high scale and the initial-state proton scale \leftrightarrow initial-state radiation

Fragmentation Functions: connect high-scale process with final-state hadrons FF evolution: sums the logarithms to all orders, between the high scale and the final-state hadronic (or more general observable) scale \leftrightarrow final-state radiation

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections

FFs: needed to compute (semi-)exclusive cross sections

Resummed pQCD: All resolved scales >> @ecD AND X Infrared Safe

Interpretation

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0.1$
\rightarrow Truncate at fixed order $=$ LO, NLO, \ldots
But beware the jet-within-a-jet-within-a-jet ...

Example: $\quad 100 \mathrm{GeV}$ can be "soft" at the LHC
SUSY pair production at 14 TeV , with $M_{\text {susy }} \approx 600 \mathrm{GeV}$

LHC - spsla - m~600 GeV						
Plehn, Rainwater, PS PLB645(2007)217						
FIXED ORDER pQCD $\sigma_{\text {tot }}[\mathrm{pb}]$ $\tilde{g} \tilde{g}$ $\tilde{u}_{L} \tilde{g}$ $\tilde{u}_{L} \tilde{u}_{L}^{*}$ $\tilde{u}_{L} \tilde{u}_{L}$ $T T$ $p_{T, j}>100 \mathrm{GeV}$ $\sigma_{0 j}$ 4.83 5.65 0.286 0.502 1.30 inclusive $\mathbf{x}+\mathbf{1}$ "jet" $\rightarrow \sigma_{1 j}$ 2.89 2.74 0.136 0.145 0.73 inclusive $\mathbf{x}+\mathbf{2}$ "jets" $\rightarrow \sigma_{2 j}$ 1.09 0.85 0.049 0.039 0.26						

σ for $X+$ jets much larger than naive estimate

$p_{T, j} \ngtr 50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

σ for 50 GeV jets \approx larger than total cross section \rightarrow not under (fixed-order) control
(Computed with SUSY-MadGraph)
Interpretation : Most of these events will have more than one $\mathbf{5 0 - G e V}$ jet !

Parton Showers

So it's not like you can put a cut at X (e.g., 50 , or even 100) GeV and say: "ok, now fixed-order matrix elements will be OK"

Harder Processes are Accompanied by Harder Jets

The hard scale Qhard of your process will start off the fractal Sooner or later you will resolve bremsstrahlung structure, for Qiti/Qhard (or more generally $\mathrm{Q}_{\text {resolved }}$ /Qhard) $\ll 1$ Will generate corrections to your kinematics,
Can be important combinatorial background if you are looking for decay jets of similar p_{T} scales (often, $\Delta M \ll M$)

This is what parton showers are made for (as well as resolving the fractal structure inside each of the jets)

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \quad \checkmark \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \quad \ldots
\end{aligned}
$$

Factorization in Soft and Collinear Limits

$$
\begin{array}{r}
P(z): \text { "DGLAP Splitting Functions" } \\
\left|M\left(\ldots, p_{i}, p_{j} \ldots\right)\right|^{2} \xrightarrow{i \| j} g_{s}^{2} \mathcal{C} \frac{P(z)}{s_{i j}}\left|M\left(\ldots, p_{i}+p_{j}, \ldots\right)\right|^{2} \\
\left|M\left(\ldots, p_{i}, p_{j}, p_{k} \ldots\right)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{2 s_{i k}}{s_{i j} s_{j k}}\left|M\left(\ldots, p_{i}, p_{k}, \ldots\right)\right|^{2} \\
\text { "Soft Eikonal" }: \text { generalizes to Dipole/Antenna Functions }
\end{array}
$$

Bremsstrahlung

$$
\text { For any basic process } d \sigma_{X}=\checkmark \text { (calculated process by process) }
$$

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \quad \checkmark \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \quad \ldots
\end{aligned}
$$

Singularities: mandated by gauge theory Non-singular terms: process-dependent

SOFT

COLLINEAR

$$
\begin{array}{r}
\frac{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right] \\
\frac{\left|\mathcal{M}\left(H^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(H^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}+2\right)\right] \\
\text { SOFT } \\
\text { COLLINEAR+F }
\end{array}
$$

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \quad \checkmark \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \quad \ldots
\end{aligned}
$$

Iterated factorization

Gives us a universal approximation to ∞-order tree-level cross sections. Exact in singular (strongly ordered) limit.
Finite terms (non-universal) \rightarrow Uncertainties for non-singular (hard) radiation

But something is not right ... Total σ would be infinite ...

Loops and Legs

Coefficients of the Perturbative Series

Cross sections at LO

Born @ LO

$$
\sigma_{\text {Born }}=\int\left|M_{X}^{(0)}\right|^{2}
$$

Born + n @ LO

$$
\sigma_{\mathrm{X}+1}^{\mathrm{LO}}(R)=\int_{R}\left|M_{X+1}^{(0)}\right|^{2}
$$

$X^{(2)}$	$X+I^{(2)}$	\ldots
$X^{(1)}$	$X+I^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$

$\mathrm{R}=$ some "Infrared Safe" phase space region (Often a cut on $p_{\perp}>X \mathrm{GeV}$) Careful not to take it too low!

$$
\frac{\left|M_{X+1}\right|^{2}}{\left|M_{X}\right|^{2}} \propto g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right]
$$

Infrared divergent (when s_{ij} and/or $\mathrm{s}_{\mathrm{jk}} \rightarrow 0$): Integral \rightarrow Logarithms

UNITARITY (at NLO)

NLO:

KLN Theorem (Kinoshita-Lee-Nauenberg)
Sum over 'degenerate quantum states' :
Singularities cancel at complete order (only finite terms left over)

$$
=\sigma_{\text {Born }}+\text { Finite }\left\{\int\left|M_{X+1}^{(0)}\right|^{2}\right\}+\text { Finite }\left\{\int 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0) *}\right]\right\}
$$

$$
\sigma_{\mathrm{NLO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=\sigma_{\mathrm{LO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\left(\frac{\alpha_{s}\left(E_{\mathrm{CM}}\right.}{\pi}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

(The Subtraction Idea)

How do I get finite\{Real\} and finite\{Virtual\} ?
First step: classify IR singularities using universal functions
EXAMPLE: factorization of amplitudes in the soft limit

Soft Limit $\left(E_{j} \rightarrow 0\right)$:

$\left|\mathcal{M}_{n+1}(1, \cdots, i, j, k, \cdots, n+1)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C}_{i j k} S_{i j k}\left|\mathcal{M}_{n}(1, \cdots, i, k, \cdots, n+1)\right|^{2}$

Universal
"Soft Eikonal"

$$
S_{i j k}\left(m_{I}, m_{K}\right)=\frac{2 s_{i k}}{s_{i j} s_{j k}}-\frac{2 m_{I}^{2}}{s_{i j}^{2}}-\frac{2 m_{K}^{2}}{s_{j k}^{2}}
$$

$$
s_{i j} \equiv 2 p_{i} \cdot p_{j}
$$

(The Subtraction Idea)

How do I get finite\{Real\} and finite\{Virtual\} ?

First step: classify IR singularities using universal functions
Add and subtract IR limits (SOFT and COLLINEAR)

$$
\mathrm{d} \sigma_{N L O}=\int_{\mathrm{d} \Phi_{m+1}} \frac{\underbrace{\left(\mathrm{~d} \sigma_{N L O}^{R}\right.}_{\text {Finite by Universality }}-\underbrace{\mathrm{d} \sigma_{N L O}^{S}}_{\text {Finite by KLN }}+\underbrace{\int_{\mathrm{d} \sigma^{\prime}} \mathrm{d}_{N L O}^{S}}_{\mathrm{d} \Phi_{m+1}}+\int_{N L O}]}{\sigma_{N}^{V}}
$$

Dipoles (CataniSeymour)
Global Antennae (Gehrmann,
Gehrmann-de Ridder, Glover)
Sector Antennae (Kosower)

Choice of subtraction terms:
Singularities mandated by gauge theory
Non-singular terms: up to you (added and subtracted, so vanish)

$$
\begin{array}{r}
\frac{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right] \\
\frac{\left|\mathcal{M}\left(H^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(H^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}+2\right)\right]
\end{array}
$$

Infrared Safety

Definition: an observable is infrared safe if it is insensitive to

SOFT radiation:

Adding any number of infinitely soft particles (zero-energy) should not change the value of the observable

COLLINEAR radiation:

Splitting an existing particle up into two comoving ones (conserving the total momentum and energy) should not change the value of the observable

Note: some people use the word "infrared" to refer to soft only. Hence you may also hear "infrared and collinear safety". Advice: always be explicit and clear what you mean.

Why do we care?

Collinear Safe

Virtual and Real go into same bins!

jet 1
$\alpha_{s}^{n} \times(-\infty)$

$\alpha_{s}^{n} \times(+\infty)$
Infinities cancel
(KLN: 'degenerate states')

Collinear Unsafe

Virtual and Real go into different bins!

$$
\underbrace{\text { jet } 2}_{\text {jet } 1 ~}
$$

$\alpha_{s}^{n} \times(-\infty)$
$\alpha_{s}^{n} \times(+\infty)$

Infinities do not cancel
Invalidates perturbation theory

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$
\alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \infty \rightarrow \alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \ln p_{t} / \Lambda \rightarrow \alpha_{\mathrm{s}}^{2}+\underbrace{\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{3}}_{\text {BOTH WASTED }}
$$

Summary

This Lecture:

Making Predictions: the Role of MC Generators
Jets: Factorisation of QCD amplitudes in soft/collinear limits
Harder Processes are Accompanied by Harder Jets
We collide - and observe - hadrons, with low-scale nonperturbative structure. They participate in hard processes, with Qhard hierarchically greater than mhad $\sim 1 \mathrm{GeV}$.

With (IR safe) jets, we get to replace mad by $\mathbf{p}_{\text {tjet }}$ Can be computed perturbatively (using PDFs for initial state) but hierarchies $\mathrm{Qhard}^{2} / \mathrm{P}_{\text {tJet }}$ can still \rightarrow need resummation

Next Two Lectures (Tuesday \& Friday)
Lecture 2: Parton showers + Matching \& Merging
Lecture 3: Hadronisation + BSM Signals and Backgrounds

Extra Slides

Easy to collect millions of events of "high-cross-section-physics"
\rightarrow Test models of
"known physics" to
high precision

Triggers target the needles in the haystack

proton - (anti)proton cross sections

PDFs: Factorisation Theorem

In DIS, there is a formal proof of PDF (collinear)

 factorisation(Collins, Soper, 1987)

Note: Beyond LO, f can be more than one parton
\rightarrow We really can write the cross section in factorized form :

$$
\begin{aligned}
& \sigma^{\ell h}=\sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}} \\
& \text { Sum over } \\
& \text { Initial (i) } \\
& \text { and final (f) } \\
& \text { parton flavors } \\
& \Phi_{f} \quad f_{i / h} \\
& =\text { Final-state } \quad=\text { PDFs } \\
& \text { phase space Assumption: } \\
& \mathrm{Q}^{2}=\mathrm{QF}^{2} \\
& \text { Differential partonic } \\
& \text { Hard-scattering } \\
& \text { Matrix Element(s) }
\end{aligned}
$$

There is no unique or "best" jet definition

YOU decide how to look at event
The construction of jets is inherently ambiguous

1. Which particles get grouped together?

JET ALGORITHM (+ parameters)
2. How will you combine their momenta?

RECOMBINATION SCHEME
(e.g., 'E' scheme: add 4-momenta)

Jet Definition

Ambiguity complicates life, but gives flexibility in one's view of events \rightarrow Jets non-trivial!

Types of Algorithms

1. Sequential Recombination

Take your 4-vectors. Combine the ones that have the lowest 'distance measure’

Different names for different distance measures
Durham $\mathrm{kT}_{\mathrm{T}}: \quad \Delta R_{i j}^{2} \times \min \left(k_{T i}^{2}, k_{T j}^{2}\right)$
Cambridge/Aachen: $\Delta R_{i j}^{2}$
Anti-kT: $\quad \Delta R_{i j}^{2} / \max \left(k_{T i}^{2}, k_{T j}^{2}\right)$
ArClus $(3 \rightarrow 2): \quad p_{\perp}^{2}=s_{i j} s_{j k} / s_{i j k}$

$$
\begin{aligned}
k_{T i}^{2} & =E_{i}^{2}\left(1-\cos \theta_{i j}\right) \\
\Delta R_{i j}^{2} & =\left(\eta_{i}-\eta_{j}\right)^{2}+\Delta \phi_{i j}^{2}
\end{aligned}
$$

+ Prescription for how to combine 2 momenta into 1 (or 3 momenta into 2)
\rightarrow New set of (n-I) 4-vectors
Iterate until A or B (you choose which):
A : all distance measures larger than something
B: you reach a specified number of jets
Look at event at:
specific resolution specific $\mathrm{n}_{\text {jets }}$

Why $\mathrm{k}_{\mathrm{T}}\left(\right.$ or p_{T} or $\left.\Delta \mathrm{R}\right)$?

Attempt to (approximately) capture universal jet-within-jet-witin-jet... behavior

Approximate full matrix element

$$
\frac{\left|M_{X+1}^{(0)}\left(s_{i 1}, s_{1 k}, s\right)\right|^{2}}{\left|M_{X}^{(0)}(s)\right|^{2}}=4 \pi \alpha_{s} C_{F}\left(\frac{2 s_{i k}}{s_{i 1} s_{1 k}}+\ldots\right)
$$

"Eikonal"
(universal, always there)
by Leading-Log limit of QCD \rightarrow universal dominant terms

Rewritings in soft/collinear limits

```
"smallest" kT (or PT or }\mp@subsup{0}{\textrm{ij}}{}\mathrm{ , or ...) }->\mathrm{ largest Eikonal
```


Types of Algorithms

2. "Cone" type

Take your 4-vectors. Select a procedure for which "test cones" to draw

Different names for different procedures
Seeded : start from hardest 4-vectors (and possibly combinations thereof, e.g., CDF midpoint algorithm) = "seeds"

Unseeded : smoothly scan over entire event, trying everything
Sum momenta inside test cone \rightarrow new test cone direction
Iterate until stable (test cone direction = momentum sum direction)

Warning: seeded algorithms are INFRARED UNSAFE

Safe vs Unsafe Jets

May look pretty similar in experimental environment ... But it's not nice to your theory friends ...

Unsafe: badly divergent in pQCD \rightarrow large IR corrections:
IR Sensitive Corrections $\propto \alpha_{s}^{n} \log ^{m}\left(\frac{Q_{\mathrm{UV}}^{2}}{Q_{\mathrm{IR}}^{2}}\right), m \leq 2 n$
Even if we have a hadronization model with which to compute these corrections, the dependence on it \rightarrow larger uncertainty

Safe \rightarrow IR corrections power suppressed:

$$
\text { IR Safe Corrections } \propto \frac{Q_{\mathrm{IR}}^{2}}{Q_{\mathrm{UV}}^{2}} \quad \begin{aligned}
& \text { Can still be computed (MC) but } \\
& \text { can also be neglected (pure pQCD) }
\end{aligned}
$$

Let's look at a specific example ...

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Longrightarrow perturbative calculations give ∞

Stereo Vision

Use IR Safe algorithms

To study short-distance physics

http://www.fastjet.fr/

These days, \approx as fast as IR unsafe algos and widely implemented (e.g., FASTJET), including
"Cone-like": SiSCone, Anti-kT, ...
"Recombination-like": $\mathrm{k}_{\mathrm{T}, \mathrm{Cambridge} / \text { Aachen,Anti- } \mathrm{k}_{\mathrm{T}} \ldots}$
Then use IR Sensitive observables
E.g., number of tracks, identified particles, ...

To explicitly check hadronization and models ot IK pnysics

