Monte Carlos and New Physics

Peter Skands (Monash University)

Lecture Notes: P. Skands, arXiv:1207.2389

The Phenomenology Pipeline

Making Predictions

Scattering LHC detector source **Experiments:** Cosmic-Ray detector $\Delta\Omega$ Neutrino detector X-ray telescope . . . → Integrate differential **cross sections** over specific phase-space regions $d\Omega = d\cos\theta d\phi$ $N_{\rm count}(\Delta\Omega) \propto \int_{\Delta\Omega} d\Omega \frac{{\rm d}\sigma}{{\rm d}\Omega}$ Predicted number of counts = integral over solid angle In particle physics: In nature, σ is all-orders S-Integrate over all quantum histories matrix element, integrated over 3 dimensions per (+ interferences) particle (with resonances, singularities, loops, nonperturbative dynamics, ...)

→ Monte Carlo

What is Monte Carlo?

Any technique that makes use of random sampling

Recap Convergence:

Monte Carlo: {A} converges to B if n exists for which the probability for |A_{i>n} - B| < ε, is > P, for any P[0<P<I] for any ε > 0

MC: prescribed for cases of **complicated / coupled integrands** in **high dimensions**

Numerical Uncertainty (after n function evaluations)	n _{eval} / bin	Conv. Rate (in 1D)	Conv. Rate (in D dim)
Trapezoidal Rule (2-point)	2 ^D	1/n ²	1/n ^{2/D}
Simpson's Rule (3-point)	3 D	1/n ⁴	1/n ^{4/D}
Monte Carlo	1	1/n ^{1/2}	1/n ^{1/2}

+ optimisations (stratification, adaptation), coupled/iterative solutions (Markov-Chain Monte Carlo)

The Role of MC Generators

Calculate Everything \approx solve QFT^{*} \rightarrow requires compromise!

Event Generators : start from elementary scattering process

Include the 'most significant' corrections: higher-order matrix elements, bremsstrahlung, resonance decays, hadronization, underlying event, beam remnants, ...

*QFT = Quantum Field Theory

Organising the Calculation

Divide and Conquer → Split the problem into many (nested) pieces

+ Quantum mechanics → Probabilities → Random Numbers

 $\mathcal{P}_{\mathrm{event}} \;=\; \mathcal{P}_{\mathrm{hard}} \,\otimes\, \mathcal{P}_{\mathrm{dec}} \,\otimes\, \mathcal{P}_{\mathrm{ISR}} \,\otimes\, \mathcal{P}_{\mathrm{FSR}} \,\otimes\, \mathcal{P}_{\mathrm{MPI}} \,\otimes\, \mathcal{P}_{\mathrm{Had}} \,\otimes\, \dots$

Hard Process & Decays:

Use process-specific (N)LO matrix elements (e.g., $gg \rightarrow H^0 \rightarrow \gamma\gamma$)

→ Sets "hard" resolution scale for process: Q_{MAX}

ISR & FSR (Initial- & Final-State Radiation):

Bremsstrahlung, driven by differential (DGLAP) evolution equations, dP/dQ^2 , as function of resolution scale; rom Q_{MAX} to $Q_{HAD} \sim 1$ GeV

MPI (Multi-Parton Interactions)

Protons contain lots of partons \rightarrow can have additional (soft) partonparton interactions \rightarrow Additional (soft) "Underlying-Event" activity

Hadronization

Non-perturbative modeling of partons \rightarrow hadrons transition

Challenges Beyond Fixed Order

QCD is more than just a perturbative expansion in α_s The relation between α_s , Feynman diagrams, and the full QCD dynamics involves spectacular "emergent" phenomena:

Jets (perturbative QCD, initial- and final-state radiation) \longleftrightarrow amplitude structures in quantum field theory \longleftrightarrow factorisation & unitarity. Precision jet (structure) studies.

Strings (strong gluon fields) \leftrightarrow quantum-classical correspondence. String physics. String breaks. Dynamics of hadronization phase transition.

Hadrons ↔ Spectroscopy (incl excited and exotic states), lattice QCD, (rare) decays, mixing, light nuclei. Hadron beams → multiparton interactions, diffraction, ...

- 1st jet: p_T = 520 GeV, η = -1.4, φ = -2.0
- 2nd jet: $p_T = 460$ GeV, $\eta = 2.2$, $\phi = 1.0$
- 4th jot: p = 50 GoV p = 1.0 $\phi = 20$
 - 4th jet: $p_T = 50$ GeV, $\eta = -1.0$, $\phi = -2.9$

What are Jets?

Think of jets as **projections** that provide a universal view of events

 I'm not going to cover the many different types of jet clustering algorithms (k_T, anti-k_T, C/A, cones, ...) – see e.g., lectures & notes by G. Salam.
 ▶ Focus instead on the physical origin and MC modeling of jets

The Structure of Jets

Most bremsstrahlung is

driven by divergent propagators → simple structure

Gauge amplitudes factorize

in singular limits (→ universal "conformal" or "fractal" structure)

Partons ab \rightarrow P(z) = "DGLAP" splitting kernels, with z = energy fraction = E_a/(E_a+E_b) "collinear": $|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)|^2 \xrightarrow{a||b} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots, a+b, \ldots)|^2$

 $\begin{array}{ll} \textbf{Gluon j} \rightarrow \textbf{``soft'':} & \textbf{Coherence} \rightarrow \textbf{Parton j really emitted by (i,k) ``colour antenna''} \\ |\mathcal{M}_{F+1}(\ldots,i,j,k\ldots)|^2 \stackrel{j_g \rightarrow 0}{\rightarrow} g_s^2 \mathcal{C} \, \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots,i,k,\ldots)|^2 \end{array}$

+ scaling *violation*: $g_s^2 \rightarrow 4\pi \alpha_s(Q^2)$

See e.g.: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times \rightarrow nested factorizations

Other Examples of Factorisation

Factorization of Production and Decay:

= "Narrow-width approximation"

Valid up to corrections $\Gamma/m \rightarrow$ breaks down for large Γ (More subtle when particle is coloured/charged/polarised)

Factorization of Long and Short Distances

Scale of fluctuations inside a hadron

 $\sim \Lambda_{QCD} \sim 200 \; MeV$

Scale of hard process $> \Lambda_{QCD}$

→ proton looks "frozen"

Instantaneous snapshot of long-

wavelength structure, independent of nature of hard process → PDFs

р

The Structure of Quantum Fields

What we actually see when we look at a "jet", or inside a proton An ever-repeating self-similar pattern of quantum fluctuations At increasingly smaller energies or distances : *scaling* (modulo α(Q) scaling violation) To our best knowledge, this is what a fundamental ('elementary') particle really looks like

The Structure of Quantum Fields

What we actually see when we look at a "jet", or inside a proton

- An ever-repeating self-similar pattern of quantum fluctuations At increasingly smaller energies or
- distances : *scaling* (modulo α (Q) scaling violation)
- To our best knowledge, this is what a fundamental ('elementary') particle really looks like

Nature makes copious use of such structures - **Fractals**

Fractal QFT

Bremsstrahlung

Rate of bremsstrahlung jets mainly depends on the RATIO of the jet p_T to the "hard scale"

Harder Processes are Accompanied by Harder Jets

Conformal QCD in Action

Naively, QCD radiation suppressed by $\alpha_s \approx 0.1$

→ Truncate at fixed order = LO, NLO, ...

But beware the jet-within-a-jet-within-a-jet

Example:

100 GeV can be "soft" at the LHC

SUSY pair production at LHC14, with $M_{SUSY} \approx 600 \text{ GeV}$

LHC - sps1a - m~600 Ge	V	F	Plehn, Ro	ninwater, P	S PLB645(2	2007)217	
FIXED ORDER pQCD	$\sigma_{\rm tot}[{\rm pb}]$	$\widetilde{g}\widetilde{g}$	$\tilde{u}_L \tilde{g}$	$\tilde{u}_L \tilde{u}_L^*$	$\tilde{u}_L \tilde{u}_L$	TT	
$p_{T,j} > 100 \text{ GeV}$	σ_{0j} $\rightarrow \sigma_{1j}$	4.83 2.89	$5.65 \\ 2.74$	$0.286 \\ 0.136$	$0.502 \\ 0.145$	$1.30 \\ 0.73$	σ for X + jets much larger than
inclusive X + 2 "jets" –	$\rightarrow \sigma_{2j}$	1.09	0.85	0.049	0.039	0.26	naive estimate
$p_{T,j} > 50 \text{ GeV}$	$\sigma_{0j} \ \sigma_{1j}$	4.83 5.90	5.65 5.37	0.286 0.283	0.502 0.285	1.30 1.50	σ for 50 GeV jets \approx larger than total cross section \rightarrow not under
	σ_{2j}	4.17	3.18	0.179	0.117	1.21	(fixed-order) control

(Computed with SUSY-MadGraph)

All the scales are high, Q >> 1 GeV, so perturbation theory **should** be OK

Apropos Factorisation

Why are Fixed-Order QCD matrix elements not enough?

F.O. QCD requires Large scales (α_s small enough to be perturbative - not too bad, since we anyway *often* want to consider large-scale processes)

F.O. QCD also requires **No hierarchies** Conformal jets-within-jets structure: integrated over phase space, bremsstrahlung poles \rightarrow logarithms

→ large if upper and lower integration limits are hierarchically different

Resummation to the Rescue

PDFs: connect incoming hadrons with the high-scale process

PDF evolution: sums the (leading, next-to-leading, ...) logarithms to all orders, between the high scale and the initial-state proton scale ↔ **initial-state radiation**

Fragmentation Functions: connect high-scale process with final-state hadrons FF evolution: sums the logarithms to all orders, between the high scale and the final-state hadronic (or more general observable) scale ↔ **final-state radiation**

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \sum_{a,b} \sum_{f} \int_{\hat{X}_{f}} f_{a}(x_{a}, Q_{i}^{2}) f_{b}(x_{b}, Q_{i}^{2}) \frac{\mathrm{d}\hat{\sigma}_{ab \to f}(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2})}{\mathrm{d}\hat{X}_{f}} D(\hat{X}_{f} \to X, Q_{i}^{2}, Q_{f}^{2})$$

PDFs: needed to compute inclusive cross sections

FFs: needed to compute (semi-)exclusive cross sections

Resummed pQCD: All resolved scales >> Λ_{QCD} AND X Infrared Safe

^{*)}pQCD = perturbative QCD

But can now include hierarchies

Interpretation

Naively, QCD radiation suppressed by $\alpha_s \approx 0.1$

→ Truncate at fixed order = LO, NLO, ...

But beware the jet-within-a-jet-within-a-jet

Example:

100 GeV can be "soft" at the LHC

SUSY pair production at 14 TeV, with $M_{\text{SUSY}}\approx 600~\text{GeV}$

LHC - sps1a - m~600 Ge	V	F	Plehn, Ro	ainwater, P	S PLB645(2	2007)217	
FIXED ORDER pQCD	$\sigma_{\rm tot}[{\rm pb}]$	${ ilde g}{ ilde g}$	$\tilde{u}_L \tilde{g}$	$\tilde{u}_L \tilde{u}_L^*$	$\tilde{u}_L \tilde{u}_L$	TT	
$p_{T,j} > 100 \text{ GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1.30	σ for X + jets much larger than
inclusive X + 1 "jet" — inclusive X + 2 "jets" —	σ_{1j} σ_{2j}	$2.89 \\ 1.09$	$2.74 \\ 0.85$	$\begin{array}{c} 0.136 \\ 0.049 \end{array}$	$\begin{array}{c} 0.145 \\ 0.039 \end{array}$	$0.73 \\ 0.26$	naive estimate
		4.00		0.000	0.500	1.00	
$p_{T,j} > 50 \text{ GeV}$	$\sigma_{0j} \ \sigma_{1j}$	4.83 5.90	5.65	0.286	0.502 0.285	1.30 1.50	σ for 50 GeV jets \approx larger than total cross section \rightarrow not under
	σ_{2j}	4.17	3.18	0.179	0.117	1.21	(fixed-order) control

(Computed with SUSY-MadGraph)

Interpretation : Most of these events will have more than one 50-GeV jet !

Parton Showers

So it's not like you can put a cut at X (e.g., 50, or even 100) GeV and say: "ok, now fixed-order matrix elements will be OK"

Harder Processes are Accompanied by Harder Jets

The hard scale Q_{HARD} of your process will start off the fractal

- Sooner or later you will resolve bremsstrahlung structure, for
- Q_{JET}/Q_{HARD} (or more generally $Q_{RESOLVED}/Q_{HARD}$) << 1
- Will generate corrections to your kinematics,
- Can be important combinatorial background if you are looking for decay jets of similar p_T scales (often, $\Delta M \ll M$)

This is what parton showers are made for

(as well as resolving the fractal structure inside each of the jets)

Bremsstrahlung

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \ldots$

Factorization in Soft and Collinear Limits

P(z): "DGLAP Splitting Functions"

$$|M(\ldots, p_i, p_j \ldots)|^2 \stackrel{i||j}{\to} g_s^2 \mathcal{C} \frac{P(z)}{s_{ij}} |M(\ldots, p_i + p_j, \ldots)|^2$$

$$M(\ldots, p_i, p_j, p_k \ldots) | \stackrel{2 \quad j_g \to 0}{\to} g_s^2 \mathcal{C} \frac{2s_{ik}}{s_{ij}s_{jk}} |M(\ldots, p_i, p_k, \ldots)|^2$$

"Soft Eikonal" : generalizes to Dipole/Antenna Functions

Bremsstrahlung

For any basic process $d\sigma_X = \checkmark$ (calculated process by process)

$$d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \quad \checkmark$$

$$d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \quad \checkmark$$

$$d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \dots$$

Singularities: mandated by gauge theory Non-singular terms: process-dependent

$$\begin{split} & \frac{|\mathcal{M}(Z^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(Z^0 \to q_I \bar{q}_K)|^2} = g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} \right) \right] \\ & \frac{|\mathcal{M}(H^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(H^0 \to q_I \bar{q}_K)|^2} = g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \\ & \text{SOFT} \quad \text{COLLINEAR} + \text{F} \end{split}$$

Bremsstrahlung

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \ldots$

Iterated factorization

Gives us a universal approximation to ∞ -order tree-level cross sections. Exact in singular (strongly ordered) limit.

Finite terms (non-universal) \rightarrow Uncertainties for non-singular (hard) radiation

But something is not right ... Total σ would be infinite ...

Loops and Legs

Coefficients of the Perturbative Series

Cross sections at LO

), NLO, etc

UNITARITY (at NLO)

(The Subtraction Idea)

How do I get finite{Real} and finite{Virtual} ?

First step: classify IR singularities using universal functions

EXAMPLE: factorization of amplitudes in the soft limit

 $|\mathcal{M}_{n+1}(1,\cdots,i,j,k,\cdots,n+1)|^2 \xrightarrow{j_g \to 0} g_s^2 \mathcal{C}_{ijk} S_{ijk} |\mathcal{M}_n(1,\cdots,i,k,\cdots,n+1)|^2$

Universal
"Soft Eikonal"
$$S_{ijk}(m_I, m_K) = \frac{2s_{ik}}{s_{ij}s_{jk}} - \frac{2m_I^2}{s_{ij}^2} - \frac{2m_K^2}{s_{jk}^2} \qquad s_{ij} \equiv 2p_i \cdot p_j$$

(The Subtraction Idea)

How do I get finite{Real} and finite{Virtual} ?

First step: classify IR singularities using universal functions

Add and subtract IR limits (SOFT and COLLINEAR)

$$d\sigma_{NLO} = \int_{d\Phi_{m+1}} \left(\frac{d\sigma_{NLO}^R}{d\sigma_{NLO}} - \frac{d\sigma_{NLO}^S}{d\sigma_{NLO}} + \left[\int_{d\Phi_{m+1}} \frac{d\sigma_{NLO}^S}{d\sigma_{NLO}} + \int_{d\Phi_m} \frac{d\sigma_{NLO}^V}{d\sigma_{NLO}} \right]$$

Finite by Universality Finite by KLN

Choice of subtraction terms:

Singularities mandated by gauge theory

Non-singular terms: up to you (added and subtracted, so vanish)

$$\frac{|\mathcal{M}(Z^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(Z^0 \to q_I \bar{q}_K)|^2} = g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}}\right)\right]$$

$$\frac{|\mathcal{M}(H^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(H^0 \to q_I \bar{q}_K)|^2} = g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2\right)\right]$$

. . .

Infrared Safety

Definition: an observable is **infrared safe** if it is *insensitive* to

SOFT radiation:

Adding any number of infinitely *soft* particles (zero-energy) should not change the value of the observable

COLLINEAR radiation:

Splitting an existing particle up into two *comoving* ones (conserving the total momentum and energy) should not change the value of the observable

Note: some people use the word "infrared" to refer to soft only. Hence you may also hear "infrared and collinear safety". Advice: always be explicit and clear what you mean.

Why do we care?

(example by G. Salam)

jet 2

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$\alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \infty \to \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \ln p_t / \Lambda \to \alpha_{\rm s}^2 + \underbrace{\alpha_{\rm s}^3 + \alpha_{\rm s}^3}_{\text{BOTH WASTED}}$$

Summary

This Lecture:

- Making Predictions: the Role of MC Generators
- Jets: Factorisation of QCD amplitudes in soft/collinear limits
 - Harder Processes are Accompanied by Harder Jets
- We collide and observe hadrons, with low-scale nonperturbative structure. They participate in hard processes, with Q_{HARD} hierarchically greater than $m_{HAD} \sim 1$ GeV.
 - With (IR safe) **jets**, we get to replace m_{HAD} by **PTJET** Can be computed perturbatively (using PDFs for initial state) but hierarchies Q_{HARD}/P_{TJET} can still \rightarrow need resummation

Next Two Lectures (Tuesday & Friday)

Lecture 2: Parton showers + Matching & Merging Lecture 3: Hadronisation + BSM Signals and Backgrounds

Extra Slides

Easy to collect millions of events of "highcross-section-physics"

→ Test models of
 "known physics" to
 high precision

Triggers target the *needles in the haystack*

Trigger on signatures of decays of heavy particles, violent reactions

PDFs: Factorisation Theorem

In DIS, there is a formal proof of PDF (collinear) (Collins, Soper, 1987)

→ We really can write the cross section in factorized form :

$$\sigma^{\ell h} = \sum_{i} \sum_{f} \int dx_{i} \int d\Phi_{f} f_{i/h}(x_{i}, Q_{F}^{2}) \frac{d\hat{\sigma}^{\ell i \to f}(x_{i}, \Phi_{f}, Q_{F}^{2})}{dx_{i} d\Phi_{f}}$$
Sum over
$$\int_{\substack{\text{Note: Initial (i)} \\ \text{and final (f)} \\ \text{parton flavors}}} \Phi_{f} \int d\Phi_{f} f_{i/h} \\ \int d\Phi_{f} f_{i/h} \\ \text{Sum over} \\ \text{Final-state} \\ \text{PDFs} \\ \text{Assumption:} \\ Q^{2} = Q_{F}^{2}} \end{pmatrix} \frac{d\hat{\sigma}^{\ell i \to f}(x_{i}, \Phi_{f}, Q_{F}^{2})}{dx_{i} d\Phi_{f}}$$
Differential partonic Hard-scattering Matrix Element(s)

There is no unique or "best" jet definition

YOU decide how to look at event

The construction of jets is inherently ambiguous

- 1. Which particles get grouped together? **JET ALGORITHM (+ parameters)**
- 2. How will you combine their momenta? **RECOMBINATION SCHEME**
 - (e.g., 'E' scheme: add 4-momenta)

Ambiguity complicates life, but gives flexibility in one's view of events \rightarrow Jets non-trivial!

n ones view of events \rightarrow Jets non-trivial:

Types of Algorithms

1. Sequential Recombination

Take your 4-vectors. Combine the ones that have the lowest 'distance measure'

Different names for different distance measures Durham k_T : $\Delta R_{ij}^2 \times \min(k_{Ti}^2, k_{Tj}^2)$ Cambridge/Aachen : ΔR_{ij}^2 Anti- k_T : $\Delta R_{ij}^2 / \max(k_{Ti}^2, k_{Tj}^2)$ ArClus (3-2): $p_{\perp}^2 = s_{ij}s_{jk}/s_{ijk}$

+ Prescription for how to combine 2 momenta into 1 (or 3 momenta into 2)

New set of (n-1) 4-vectors

Iterate until A or B (you choose which): A: all distance measures larger than something B: you reach a specified number of jets

Why k_T (or p_T or ΔR)?

Attempt to (approximately) capture universal jet-within-jetwitin-jet... behavior

Approximate full matrix element

$$\frac{|M_{X+1}^{(0)}(s_{i1}, s_{1k}, s)|^2}{|M_X^{(0)}(s)|^2} = 4\pi\alpha_s C_F \left(\frac{2s_{ik}}{s_{i1}s_{1k}} + \dots\right)$$
(university)

"Eikonal" (universal, always there)

by Leading-Log limit of QCD → universal dominant terms

$$\frac{\mathrm{d}s_{i1}\mathrm{d}s_{1k}}{s_{i1}s_{1k}} \xrightarrow{\rightarrow} \frac{\mathrm{d}p_{\perp}^2}{p_{\perp}^2} \frac{\mathrm{d}z}{z(1-z)} \xrightarrow{\rightarrow} \frac{\mathrm{d}E_1}{\min(E_i, E_1)} \frac{\mathrm{d}\theta_{i1}}{\theta_{i1}} \quad (E_1 \ll E_i, \, \theta_{i1} \ll 1) \quad , \dots$$
Rewritings in soft/collinear limits

"smallest" k_T (or p_T or θ_{ij} , or ...) \rightarrow largest Eikonal

Types of Algorithms

2. "Cone" type

Take your 4-vectors. Select a procedure for which "test cones" to draw

Different names for different procedures

Seeded : start from hardest 4-vectors (and possibly combinations thereof, e.g., CDF midpoint algorithm) = "seeds"

Unseeded : smoothly scan over entire event, trying everything

Sum momenta inside test cone \rightarrow new test cone direction

Iterate until stable (test cone direction = momentum sum direction)

Warning: seeded algorithms are INFRARED UNSAFE

Safe vs Unsafe Jets

May look pretty similar in experimental environment ... But it's not nice to your theory friends ...

Unsafe: badly divergent in $pQCD \rightarrow large IR$ corrections:

IR Sensitive Corrections
$$\propto \alpha_s^n \log^m \left(\frac{Q_{\rm UV}^2}{Q_{\rm IR}^2}\right)$$
, $m \le 2n$

Even if we have a hadronization model with which to compute these corrections, the dependence on it \rightarrow larger uncertainty

Safe \rightarrow IR corrections power suppressed:

IR Safe Corrections $\propto \frac{Q_{IR}^2}{Q_{IW}^2}$ Can still be computed (MC) but can also be neglected (pure pQCD)

Let's look at a specific example ...

Iterative Cone Progressive Removal

Iterative Cone Progressive Removal

Iterative Cone Progressive Removal

Iterative Cone Progressive Removal

Iterative Cone Progressive Removal

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

Iterative Cone Progressive Removal

Collinear splitting can modify the hard jets: ICPR algorithms are **collinear unsafe** \implies perturbative calculations give ∞

Stereo Vision

Use IR Safe algorithms

To study short-distance physics

http://www.fastjet.fr/

These days, \approx as fast as IR unsafe algos and widely implemented (e.g., FASTJET), including

"Cone-like": SiSCone, Anti- k_T , ... "Recombination-like": k_T , Cambridge/Aachen, Anti- k_T ...

Then use IR Sensitive observables

E.g., number of tracks, identified particles, ...

To explicitly check hadronization and models of IK physics

More about IR in lecture on soft QCD ...