Parton-shower \& hadronisation uncertainties in top physics How can we do better?

Parton Showers

 Hadronisation Underlying Event Physics \& Uncertainties How can we help you? How can you help us?

CMS Workshop on Top Physics with $100 \mathrm{fb}^{-1}$

Parton Showers \& Hadronisation

Fragmentation (of a hard parton into a jet of hadrons)

Parton Showers \longleftrightarrow Perturbative QCD
Purpose: compute the effect of (any number of) perturbative QCD emissions / branchings - on any final-state observable Between the hard-process scale, Q_{F}, and $\mathrm{Q}_{\mathrm{Had}} \sim 1 \mathrm{GeV}$ Starting Point: fixed-order matrix elements (at scale Q_{F}) End Result: multi-parton state, resolved at scale ~ Q Had

Hadronisation \longleftrightarrow Non-Perturbative QCD

Purpose: compute the effect on final-state observables of the transition from partons to hadrons

Starting Point: parton-shower final state, resolved at scale ~ Q Had End Result: stable (long-lived) hadrons \rightarrow GEANT
Must model confinement (strings/clusters), hadron decays, + what else?
What about the Underlying Event? Colour Reconnections? ...

Disclaimer

This discussion is as much a chance for me to catch up with what you're doing, as a chance to provide my input

I have not been following top physics closely in the last few years. May not be fully up to date on all aspects, especially experimental developments.

State of the art for precision MC calculations nowadays is matching \& merging (@NLO). Not my main area of expertise, but will attempt to comment where relevant

Focus on Parton Showers
Hadronisation (incl Colour Reconnections)

Underlying Event

What can we learn from top?
How can we improve for top?

Parton Shower Basics

LO: Dipole Phase Space

PS kernels generate

 approximations to QCD matrix elementsExact in the collinear limits (DGLAP)
Soft limits also captured by coherent showers

Shower Ambiguities \& Uncertainties

Expect differences mainly at subleading levels

\rightarrow Interested in observables \& constraints that can probe
[Precision Substructure, Multi-parton \& initial-final coherence, Scaling (violation), Multiple-emission (compressed) hierarchies]

The final states generated by a shower algorithm will depend

\author{

1. The choice of perturbative evolution variable(s) $t^{[i]}$.
}
\qquad Ordering \& Evolutionscale choices
2. The choice of phase-space mapping $\mathrm{d} \Phi_{n+1}^{[i]} / \mathrm{d} \Phi_{n}$.
3. The choice of radiation functions a_{i}, as a function of the phase-space variables.
main focus (for now)
4. The choice of renormalization scale function μ_{R}.

Non-singular terms,
Reparametrizations,
Subleading Colour
(5. Choices of starting and ending scales. (matching to hard process and to hadronisation)

Estimating the uncertainties of Parton Showers

Note: several (very) recent papers on this topic, by essentially all the main general-purpose MC groups.

Useful for understanding issues, recommendations, efficient MC (+ each group uses slightly different language)

Herwig

Benchmark Studies: arXiv:1605.01338
Automated Shower Uncertainties: arXiv:1605.08256

```
\mu
\muF
PDFs
```


Pythia

Baseline Tune in 8.2: Monash Tune: arXiv:1404.5630
Automated Shower Uncertainties: arXiv:1605.08352 $\left\{\begin{array}{l}\mu_{R} \\ \pm \text { finite }\end{array}\right.$
Sherpa
Automated Shower Uncertainties:

In all cases: still only a partial set, but at least a beginning \rightarrow Feedback!

Our Reference Processes

Dijets
Jet Shapes
Substructure
Azimuth Decorr.
Gamma+Jet
JES Calibration
Drell-Yan
ISR with welldefined Qf scale Off resonance: extend to higher Q^{2}

Scales in PYTHIA: Drell-Yan: $Q_{F}=\hat{m} 2 \rightarrow 2: Q_{F}=m_{\perp}=\sqrt{p_{\perp}^{2}+m^{2}}$

Top: Production

Importantly, top production involves Initial-Final colour flows

Not present in main ISR shower constraint: Drell-Yan

Not present in main FSR shower constraint: LEP

Expect strong dependence on top boosts
At threshold: no radiation from tops (only initial-state ends active)
At high boosts: soft \& quasi-collinear enhancements from tops
IF present in $\gamma+$ Jet and Dijets as well (without mass/boost effect)

Some consequences of IF colour flow

Example: quark-quark scattering in hadron collisions

Consider one specific phase-space point (eg scattering at 45°)
2 possible colour flows: A and \mathbf{B}

> Kinematics (e.g., Mandelstam variables) are identical. The only difference is the colour-flow assignment.

Figure 4: Angular distribution of the first gluon emission in $q q \rightarrow q q$ scattering at 45°, for the two different color flows. The light (red) histogram shows the emission density for the forward flow, and the dark (blue) histogram shows the emission density for the backward flow.

$\mathrm{p}_{\mathrm{T}}($ ttbar) (\& related measurements)

Tests initial-state side of radiation in association with production, similarly to p_{T} (dilepton) in Drell-Yan

Hard tail: matching to matrix elements

Would be nice to get these top measurements onto mcplots.cern.ch

Uncertainties

Tests initial-state side of radiation in association with production, similarly to p_{T} (dilepton) in Drell-Yan

Hard tail: matching to matrix elements

Would be nice to get these top measurements onto mcplots.cern.ch

What causes these differences?

Suspect significant differences from alphaStrong choices (both central values and scales);

Could be (has been?) checked/validated
Treatment of Phase Space (and coherence conditions) for Initial-Final dipoles; e.g., PYTHIA 8 currently has "noncoherent" starting condition for QCD processes

See e.g., arXiv:1205.1466
Matching to hard region \longleftrightarrow soft region via unitarity
See e.g., arXiv:1003.2384

Recoil Strategies

Model differences should ideally be reduced/resolved by showers beyond LL
... work in progress. In short term: constraints + pheno + tuning

(The Future of Showers: a preview!)

Last week on arXiv: 1611.00013

H. T. Li \& PS "A framework for second-order parton showers"

Combine $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$-corrected $2 \rightarrow 3$ branchings for "ordered" shower emissions with direct $2 \rightarrow 4$ branchings for "unordered" ones, evolved in a common $p_{\text {T }}$ measure $\rightarrow 2^{\text {nd }}$-order Sudakovs
Still at proof-of-concept level, but looks encouraging

See also Hartgring, Laenen, PS: arXiv:1303.4974

Top Decay

Unique: decay of a (very) massive coloured particle

 Will be the go-to reference case for a lot of BSM cases

Is use of narrow-width approximation justified?
(Some ME generators allow to go beyond)
Expect cross talk for scales below $\Gamma_{\text {top }} \sim 1.5 \mathrm{GeV}$; essentially no perturbative overlap

Keep in mind though, that in a generator like PYTHIA, we also average over the polarisations in the intermediate step, so any ttbar spin correlations are washed out

Top Decay

Unique: decay of a (very) massive coloured particle

Will be the go-to reference case for a lot of BSM cases

This can be seen as a different kind of IF dipole, but not modelled as such (yet)

In PYTHIA, the b end of a fictitious bW dipole emits; equivalent to IF setup for first emission but not for subsequent ones

Importantly, this preserves bW invariant mass (i.e., top Breit-Wigner)
But would expect recoil effects wrong/exaggerated to some extent inside the b-gluon-W system. Develop experimental / in-situ cross checks of structure?

Solution: now working (with S. Mrenna) on an antenna-based (IF) model for radiation in decays of massive resonances. But this will take time.

Top Decay

Unique: decay of a (very) massive coloured particle Will be the go-to reference case for a lot of BSM cases

B hadronisation constraints

My comments:

- b fragmentation in principle well constrained by LEP \& SLD measurements; some tension between the two, may now have been resolved? Rivet 2.5.2 update includes : OPAL_2003_1599181 "Inclusive analysis of the b quark fragmentation function in Z decays" \& modified DELPHI_2011_I890503, but have not yet propagated to tunes : should be checked)
- In pp, the b quark is connected to the initial state, and is embedded in the UE (is lifetime + boost from top enough to escape (most of) CR? Compare with incl b jets?)

Example: Monash Tune @ LEP

Slight tension between SLD and DELPHI on E(B)/E(jet)

Controlled by fragmentation r_{b} parameter (in addition to flavour-blind fragmentation parameters) Could use the RIVET plots to define b-specific N.P. variations

Track multiplicity in b jets appears to have a tail to too high multiplicities

Top Decay

Further possibilities for hadronisation studies in top

In-situ reference constraints on fragmentation of hard strange quarks Connects with hadronisation, which is looking strange at LHC ...

Hadronisation - What do we know?

Quark-Antiquark Potential
As function of separation distance

~Force required to lift a 16-ton truck

Which Charges? Colour Flow

After the parton shower finishes, there can be lots of parton, $\mathcal{O}(10-100)$. The main question is therefore:
Between which parton do confining potentials arise?
MC generators use a simple set of rules for colour flow, based

$g \rightarrow q \bar{q}$

$$
\begin{aligned}
& g \rightarrow g g \\
& \text { cere } \rightarrow \text {, }
\end{aligned}
$$

Colour Flow

For an entire Cascade

For a single fragmenting system:
Coherence of pQCD cascades (angular ordering or boosted dipoles/antennae)
\rightarrow not much "overlap" between strings
\rightarrow Leading-colour approximation pretty good
(The trouble at LHC: MPI \& ISR \rightarrow many such systems; overlapping)

The (Lund) String Model

Map:

- Quarks \rightarrow String Endpoints
- Gluons \rightarrow Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break (by quantum tunneling) constant per unit area \rightarrow AREA LAW

Gluon = kink on string, carrying energy and momentum
\rightarrow STRING EFFECT

Simple space-time picture

Details of string breaks more complicated (e.g., baryons, spin multiplets)

Colour Confusion?

Next-to-simplest: 2 string systems

Several studies at LEP2 (ee \rightarrow WW $\rightarrow 4$ jets)

 CR implied a non-perturbative uncertainty on the W mass measurement, $\Delta \mathrm{M}_{\mathrm{W}} \sim 40 \mathrm{MeV}$

CR strength best fit $\sim 10 \% \sim 1 / N_{C}{ }^{2}$
But in WW, overlaps are expected to be suppressed by kinematics, and there are "only" two strings; In pp, MPI can create (many) more ... ?

Proton-Proton (LHC)

A lot more colour kicked around (\& also colour in initial state)

Include "Beam Remnants"
Still might look relatively simple, to begin with

With several parton-parton interactions (MPI \rightarrow UE):

How to make sense of the colour structure?
(+baryon beam remnants \rightarrow "string junctions")

Colour: What's the Problem?

(including MPI: Multiple Parton-Parton Interactions ~ the "underlying event")

Without Colour Reconnections

Each MPI hadronizes independently of all others

Beam Direction

Colour: What's the Problem?

(including MPI: Multiple Parton-Parton Interactions ~ the "underlying event")
Without Colour Reconnections
Each MPI hadronizes independently of all others

Colour Reconnections

(including MPI: Multiple Parton-Parton Interactions ~ the "underlying event")
With Colour Reconnections MPI hadronize collectively

See also Ortiz et al., Phys.Rev.Lett. 111 (2013) 4, 042001

Do long-lived or highly boosted particles "escape"? Naively, $\Gamma_{\text {top, }} \Gamma_{\mathrm{W}}>\Lambda_{\mathrm{QCD}}$

Or Higher String Tension? E.g., DIPSY rope

What do we see in pp collisions?

$<\mathrm{p}_{\mathrm{T}}>$ vs Number of Particles

<pT> vs Particle Mass

Average pT increases with particle multiplicity and (faster than predicted) with particle mass

The "CMS Ridge"

High-Multiplicity pp collisions
[CMS PRL 116(2016)172302][ATLAS PRL 116(2016)172301]

Back to Strangeness

This is the data used to tune the models

CMS

1.5

Strangeness Spectra

Note: rates normalised to unity now
Kaon spectrum at LEP

(+ Several measurements by ALICE, LHCb)

Strangeness Spectra

Note: rates normalised to unity now

Lambda spectrum at LEP

CMS: Strangeness in the Underlying Event

Effect also present in UE (note: effect enhanced by p_{T} cuts, of spectra)

\rightarrow Extensions of CMS UE Study?

Probing Collective Effects in Hadronisation with the Extremes of the Underlying Event
T. Martin, P. Skands, S. Farrington, Eur.Phys.J. C76 (2016) no.5, 299

The main ICHEP 2016 "Discovery" ?

D.D. Chinellato - 38th International Conference on High Energy Physics

A clear enhancement of strangeness with (pp) event multiplicity is observed

Especially for multi-strange baryons
No corresponding enhancement for protons \rightarrow this really must be a strangeness effect
Cross-check measurements of the phi meson are now underway

Jet universality: jets at LHC modelled the same as jets at LEP

Flat line! (cf PYTHIA)
DIPSY includes "colour ropes"
EPOS includes hydrodynamic "core"

The Plot Thickens

Looks like the effect, whatever it is, continues smoothly into $\mathrm{p}-\mathrm{Pb}$

The Plot Thickens

D.D. Chinellato - 38th International Conference on High Energy Physics

Looks like the effect, whatever it is, continues smoothly into $\mathrm{p}-\mathrm{Pb}$
... and into $\mathrm{Pb}-\mathrm{Pb}$!
Looks like jet universality and hadronisation in pp is up for revision.

Is it thermal? Stringy? Both?
Collective? Flowy? ...
High-pt processes (like dijets, Drell-Yan, top), should correspond to (very) high-multiplicity.

Do you see this?
In top jets? the UE? the W jets?

