Pythia Overview : 2013-2016

Peter Skands (Monash University)

On behalf of:

TS Torbjörn Sjöstrand
ND Nishita Desai
NF Nadine Fischer
IH Ilkka Helenius
PI Philip Ilten
LL Leif Lönnblad
SM Stephen Mrenna
SP Stefan Prestel
CR Christine Rasmussen
PS Peter Skands
$+$
SA Spyros Argyropoulos
JC Jesper Roy Christiansen
RC Richard Corke
See T. Sjöstrand et al., CPC 191 (2015) 159

MCnet Network Meeting
CERN, November 2016

2013: Freezing of the Fortran Pythia

Dear Pythia Users and Supporters,

A key request of the LHC community has been for us to transition from Fortran to C++. We have been manpower-limited, so that project has taken much longer than it ought to have. However, since some time now, the new Pythia 8 code should be able to do just about everything the old Pythia 6 code could, and then some more.

Development of Pythia 6 now stops. We will still provide support and urgent fixes to the code, if necessary, until 1 March 2013. At this point, the Pythia 6 code will be frozen, and a final legacy version will be released later in 2013. We will then continue to answer questions regarding the behaviour of Pythia 6 until 1 July 2013, after which only Pythia 8 will be actively developed and supported.

Beginning of 2013:
Pythia 8 (C++) ~ similar level of
capabilities as Pythia 6 (F77)
(Too) Demanding to develop \& support two separate large codes.

Decision to freeze PYTHIA 6.
Staggered \rightarrow September 2013
First development stopped, then support
By now, usage (slowly) declining
Pythia 6.4 remains widely used
Despite lack of support
Pythia 8 usage is increasing
But does not appear to have overtaken Pythia 6 yet ...

2014: Release of Pythia 8.2

CPC writeup (on arXiv: Oct 2014)

First attempt to provide more than "coversheet" for Pythia 8 release \rightarrow arXiv paper expanded by ~ factor 2 (to 45 pages)
Still nowhere close to Pythia 6 manual (576 p) but supplemented by extensive HTML manual

Computer Physics Communications

An introduction to PYTHIA 8.2

Torbjörn Sjöstrand ${ }^{\text {a,*, }}$, Stefan Ask ${ }^{\mathrm{b}, 1}$, Jesper R. Christiansen ${ }^{\text {a }}$, Richard Corke ${ }^{\text {a,2 }}$, Nishita Desai ${ }^{\text {c }}$, Philip Ilten ${ }^{\mathrm{d}}$, Stephen Mrenna ${ }^{\mathrm{e}}$, Stefan Prestel ${ }^{\mathrm{f}, \mathrm{g}}$, Christine O. Rasmussen ${ }^{\text {a }}$, Peter Z. Skands ${ }^{\text {h,i }}$

2014: Release of Pythia 8.2

Code \& Build Restructuring

Revamped configure+make (+simplify linking of external libs); Auxiliary files moved to share/Pythia; Dynamical loading of LHAPDF interface when requested (v5 or v6)

Significant News (continued on next slides)

Weak Showers (since 8.176): W/Z emissions from $q, \ell, \vee \quad$ JCTS JHEP 1404 (2014) 115

$$
\begin{aligned}
& \text { Improved handling of (helicity-dependent) tau decays (since 8.150) PI } \\
& \text { All decays with } B R>0.1 \% \text { fully modelled with MEs and Form Factors (since 8.170) } \\
& \text { Extended to correlations between known resonances in LHEF input (since 8.200) } \\
& \text { Extended to set up tau spin information in } W^{\prime} \text { and } Z^{\prime} \text { decays (since 8.209) }
\end{aligned}
$$

Significant extensions to colour-octet cc \& bb onium states (since 8.185) Pl
Several New Models for Colour Reconnections SA, TS JHEP 1411 (2014) 043/ JC.PS JHEP 1508 (2015) 003
Comprehensive update of baseline tune
+implementation of SK models for ee (since 8.209)
From 4C RC,TS JHEP 1103 (2011) 032 to Monash 2013 (still default) PS et al., EPJ C74 (2014) 3024
Including new ee tune to (revised) LEP/SLD data \& new internal NNPDF 2.3 implementation

+ Several further options from ATLAS and CMS (A14 + MonashStar added in 8.205)

No internal ME generator \rightarrow rely on (LHEF) interfaces
8.2: aMC@NLO matching added to the list of implemented schemes

With Torielli, Frixione; required addition of "global recoil" option
\rightarrow A comprehensive suite of approaches (+ examples \& tutorial) aMC@NLO Matching
POWHEG Merging
CKKW-L Merging
NL3 Merging (~ CKKW-L @ NLO)
UMEPS Merging
UNLOPS Merging (~ UMEPS @ NLO)
FxFx See e.g., Frederix, Frixione, Papaefstathiou, Prestel, Torrielli: JHEP 1602 (2016) 131
Jet Matching (aka MLM)

+ MECs (matrix-element corrections)
Often forgotten that standalone Pythia includes LO MECs for the $1^{\text {st }}$ emission in all SM (and many BSM) decay processes (e.g., $t \rightarrow b W+g$) + a few production processes (Drell-Yan \& Higgs production)

Matrix Elements contain singularities beyond LL; not canceled by pure shower Sudakov. Imposing detailed balance (unitarity) restores explicit real-virtual cancellation Extreme example: choosing very low matching scales (~ in Sudakov peak region)

Figure: p_{\perp} of the W-boson in the Sudakov region (for 2-jet merging, $E_{C M}=7 \mathrm{TeV}$). Lower inset shows the comparison to default PYTHIA 8.
\Rightarrow CKKW-L overshoots for (very) low merging scales due to uncancelled terms.
\Rightarrow UMEPS describes the Sudakov peak nicely.

Unitarised Merging @ NLO

NLO merged results for $\mathbf{H}+$ jets

(based on LHEF input files generated in the POWHEG framework)

Figure: Ratio of the inclusive cross section for $\mathrm{gg} \rightarrow \mathrm{H}$ after merging $(\mathrm{H}+0)$ @NLO, $(\mathrm{H}+1) @ \mathrm{NLO}$ and $(\mathrm{H}+2) @ L O$, compared to the NLO inclusive cross section.
$\Rightarrow \mathrm{NL}^{3}$ ($=$ CKKW-L@NLO) has problems for processes with large, loop-driven NLO corrections. UNLOPS does not.

Unitarised Merging @ NLO

NLO merged results for $\mathrm{H}+$ jets

(based on LHEF input files generated in the POWHEG framework)

Figure: $p_{\perp, H}$ and $\Delta \phi_{12}$ for $g g \rightarrow H$ after merging $(\mathrm{H}+0) @ \mathrm{NLO},(\mathrm{H}+1) @ \mathrm{NLO}$, $(\mathrm{H}+2) @ \mathrm{NLO},(\mathrm{H}+3) @ L O$, compared to other generators.
\Rightarrow The generators come closer together if enough fixed-order matrix elements are employed. The uncertainties after cuts are still very large.

Further Matching \& Merging Aspects

Combining resonant "signals" and non-resonant "backgrounds"

 (a.k.a. "resonance-aware" matching)Recent exploration for single-top production

JHEP1606(2016)027

Matching Wbj with MC@NLO

Introducing "resonance histories" (from kinematical considerations, or from partial amplitudes)

Electroweak Merging Jcasp Epsc 76 (2016) 1, 39

Drell-Yan

> Weak Showers JC,TS JHEP 1404 $(2014) 115$

Assumption that every jet is a correction to Drell-Yan not reliable.

New Colour-Reconnection Models

Brief History

> 1980'ies: MPI + CR : rise of $\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$ vs N_{ch} TS, vZIII Phys.Rev. D36(1987) 2019 (+ not mentioned here: rapidity gaps, onium production, ...)

1990'ies: CR at LEP2: string drag effect on m_{W}
2000's: Tevatron "Tune A": needed $\sim 100 \%$ colour correlations $+\mathrm{O}(0.5 \mathrm{GeV}) \mathrm{CR}$ uncertainty on Tevatron top quark mass Best LEP2 fit (2013) excluded no-CR at 99.5\% CL
J. Christiansen \& P. Skands, JHEP 1508 (2015) 003:

New model relies on two main principles

* $\mathbf{S U (3)}$ colour rules give allowed reconnections

(qव: $1 / 9$, gg: $1 / 8$, model: $1 / 9$)

(qव: $1 / 27$, gg: $5 / 256$, model: $2 / 81$)

Double junction reconnection

(qq: $1 / 3, \mathrm{gg}: 10 / 64$, model: $2 / 9$)

Zipping reconnection

(Depends on number of gluons)

+ "Gluon-Move Model" (and a few variants) mainly intended for conservative (maximal) effect on top quark mass:

SA,TS JHEP 1411 (2014) 043
Still $\Rightarrow \Delta \mathrm{m}_{\mathrm{t}} \sim 500 \mathrm{MeV}$
ATLAS \& CMS : ~ 100 MeV ?

+ Superconductor-inspired SK-I and SK-II models reimplemented in Pythia 8
* minimal λ measure gives preferred reconnections

2015-2016: Further Recent News

Runtime interface to POWHEG BOX (PI)

Can run MadGraph5_aMC@NLO from within Pythia (PI)
New machinery for hard diffraction + physics studies
Partonic substructure of Pomeron: diffractive jets MPI-based gap survival probability

Extended options for damped ISR/FSR above hard scale
Reweighting machinery for ISR/FSR branchings (SP)
Interface to the Python programming language (PI)
Various PDF upgrades (TS) \& SUSY/SLHA updates (ND)
Thermal Hadronisation, Close-Packing Effects, and Hadron Rescattering Options NE\&TSaxiv161009818

See talk by
Nadine Fischer

New: Automated Shower Uncertainties

Based on original proposal for VINCIA: Giele, Kosower, PS PRD84(2011)054003

Pythia 8 implementation (+ All-orders proof) SM, PS Phys. Rev. D94 (2016) no.7, 074005
(\sim Simultaneously with same principle in Herwig++, Sherpa)
For each trial branching, with splitting variables, $\{t\}$:

If accepted, compute alternative weight for different α_{s} or splitting kernel:

$$
R_{\mathrm{acc}}^{\prime}(t)=\frac{P_{\mathrm{acc}}^{\prime}(t)}{P_{\mathrm{acc}}(t)}=\frac{P^{\prime}(t)}{P(t)}
$$

If rejected, compute alternative noemission weight:

$$
R_{\mathrm{rej}}^{\prime}(t)=\frac{P_{\mathrm{rej}}^{\prime}(t)}{P_{\mathrm{rej}}(t)}=\frac{1-P_{\mathrm{acc}}^{\prime}(t)}{1-P_{\mathrm{acc}}(t)}=\frac{\hat{P}(t)-P^{\prime}(t)}{\hat{P}(t)-P(t)}
$$

New Shower Plug-Ins: DIRE \& VINCIA

Cross-validation example: Jet scales in DIS
DIRE is a new shower for both PYTHIA and SHERPA
Combines "traditional" parton showers and dipole showers: Ordering in "soft" dipole-antenna $p_{\perp} .1 / p_{\perp}^{2}$ contains all divergences. Antenna radiation pattern still partial-fractioned into parton shower kernels \Rightarrow Kernels act to project collinear enhancements out of $1 / p_{\perp}^{2}$.

Ensure wide phase space coverage
Choose two-particle symmetric ordering variable, normalized to the largest scale in the branching.

Use simple phase space boundaries:
Phase space integration manageable \rightarrow hopefully allows comparison to known anomalous dimensions.

Extensive cross-validation possible
...and done at permille-level for each individual splittting.

New: PYTHIA 8 showers now capable of handling DIS

VINCIA is an Antenna Shower

Splittings are fundamentally $2 \rightarrow 3$

Each colour antenna undergoes a sequence of splittings
Proof of concept for one-loop corrections Hartgring, Laenen, PS JHEP 1310 (2013) 127

+ Framework for $2^{\text {nd }}$-order kernels, implementation of $2 \rightarrow 4 \quad$ Li \& PS, arxiv:1611.00013
See talk by Hai Tao Li

Antenna radiation functions \& phase-space factorisations

Collinear Limits \rightarrow DGLAP kernels (\rightarrow collinear factorisation)
Soft Limits \rightarrow Eikonal factors (\rightarrow Leading-Colour coherence)
$2 \rightarrow 3$ phase-space maps = exact, on-shell factorisations of the $(n+1) / n$-parton phase spaces $\left(\rightarrow\right.$ Lorentz invariant, p_{μ} conserving, and valid over all of phase space - not just in limits)

+ Non-perturbative limit of colour dipoles/antennae \rightarrow string pieces
\rightarrow natural matching onto (string) hadronisation models
What's new in our approach? (e.g., not in ARIADNE)
+ Iterated (tree-level) MECs: matrix-element corrections (since v1.x)
+ Backwards antenna evolution for ISR (new in v2.0) N Fischer.Ritzmann.SP. PS arxiv:1605.06142
+ Automated uncertainty bands/weights (\& runtime ROOT displays)

[^0]
Example: quark-quark scattering in hadron collisions

Consider one specific phase-space point (eg scattering at 45°)
2 possible colour flows: A and B

Kinematics (e.g., Mandelstam variables) are identical. The only difference is the colour-flow assignment.

Figure 4: Angular distribution of the first gluon emission in $q q \rightarrow q q$ scattering at 45°, for the two different color flows. The light (red) histogram shows the emission density for the forward flow, and the dark (blue) histogram shows the emission density for the backward flow.

(New: Photon-Photon Interactions)

Currently included (version 8.219):
Hard processes in resolved photonphoton collisions of real photons : $\gamma \gamma \rightarrow X$; with parton showers and beam remnants

Hard processes in resolved $\gamma \gamma$ interactions can also be generated in $e^{+} e^{-}$collisions by convolution of EPA and photon PDFs
One set of PDFs for resolved photons (CJKL)

Will be included soon (next version):
Further kinematic cuts (e.g. on $m_{\gamma \gamma}$)

See talk by Ilkka Helenius

Direct (unresolved) processes with scattered leptons
Soft processes and MPIs for resolved photon-photon collisions including also these processes in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions

Summary

[^0]: Giele, Kosower, PS PRD84 (2011) 054003
 (same principle as now in Herwig++, Pythia 8, Sherpa)

