Fractals, Strings, and Particle Collisions

Peter Skands (Monash University)

Physics Colloquium, Adelaide University
May 6, 2016

Quantum Chromodynamics (QCD)

The theory of quarks and gluons; the strong nuclear force

The elementary interactions are encoded in the Lagrangian EFT \rightarrow Feynman Diagrams \rightarrow Perturbative Expansions (in $\boldsymbol{\alpha}_{s}$)

THE BASIC ELEMENTS OF RCD: QUARKS AND GLUONS

$$
g_{s}^{2}=4 \pi \alpha_{s}
$$

$$
\psi_{q}^{j}=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)
$$

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

$$
D_{\mu i j}=\delta_{i j} \partial_{\mu}-i g_{s} T_{i j}^{a} A_{\mu}^{a} \underset{\substack{m_{q}: \\ \text { (Figs + QCD Cork condensates) }}}{\substack{\text { Cluon-Field Kinetic Terms } \\ \text { and Sel-Itheractions }}}
$$

Gauge Covariant Derivative: makes L invariant under $\mathrm{SU}(3)_{\mathrm{C}}$ rotations of Ψ_{q}

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

More than just a (fixed-order perturbative) expansion in $\alpha_{\text {s }}$

Two sources of fascinating multi-particle structures

Scale Invariance (apparent from the massless Lagrangian)
Confinement (win \$1,000,000 if you can prove)

Jets (the fractal of perturbative QCD) \leftrightarrow amplitude structures in quantum field theory \leftrightarrow factorisation \& unitarity. Precision jet (structure) studies.

Strings (strong gluon fields) \leftrightarrow quantum-classical correspondence. String physics. String breaks. Dynamics of hadronization phase transition.

Hadrons \leftrightarrow Spectroscopy (incl excited and exotic states), lattice QCD, (rare) decays, mixing, light nuclei. Hadron beams \rightarrow multiparton interactions, diffraction, ...

Ulterior Motives for Studying QCD

There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy

$$
\text { Run } 2 \text { now underway ... }
$$

$$
\text { Almost twice the energy (} 13 \mathrm{TeV} \text { vs } 8 \mathrm{TeV} \text {) }
$$

Higher intensities ... (at least until last Friday)

LHC Run 1: still no explicit "new physics"
\rightarrow we're still looking for deviations from SM
Accurate modelling of QCD improve searches \& precision

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& \frac{\overline{\mathrm{b}}}{\frac{0}{2}}+i \bar{\psi} \phi \psi+h . c \text {. } \\
& +\bar{\psi}_{i} y_{i j} \psi_{i} \phi+h . c . \\
& +\left.\phi_{r} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

Ulterior Motives for Studying QCD

There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& \frac{\bar{\circ}}{\frac{0}{\delta}}+i \bar{\psi} \phi \psi+h \cdot c \text {. } \\
& +\bar{\psi}_{i} y_{i j} \psi_{i} \phi+h . c . \\
& +\left.b_{r} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

Large Hadron Collider: Weasel causes shutdown © 29 Apn 2016 Europe

LHC Run 1: still no explicit "new physics"
\rightarrow we're still looking for deviations from SM
Accurate modelling of QCD improve searches \& precision

ATLAS Li EXPERIMENT

Run Number: 162620, Event Number: 16060241

QCD in the Ultraviolet

The "running" of α_{s} :

$$
Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=-\alpha_{s}^{2}\left(b_{0}+b_{1} \alpha_{s}+b_{2} \alpha_{s}^{2}+\ldots\right)
$$

$$
b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi} \quad C_{A}=3 \text { for } \mathrm{SU}(3)
$$

At high scales $\mathrm{Q} \gg 1 \mathrm{GeV}$
Coupling $\alpha_{s}(\mathrm{Q}) \ll 1$
Perturbation theory in α_{s} should be reliable: LO, NLO, NNLO, ...
E.g., in event shown on previous slide:

- 1st jet: $p_{T}=520 \mathrm{GeV}$
- 2nd jet: $p_{T}=460 \mathrm{GeV}$
- 3rd jet: $p_{T}=130 \mathrm{GeV}$
- 4th jet: $p_{T}=50 \mathrm{GeV}$

The Infrared Strikes Back

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0.1$

Truncate at fixed order $=$ LO, NLO, \ldots
E.g., $\sigma(X+j e t) / \sigma(X) \propto \alpha_{s}$

Example: Pair production of SUSY particles at LHC_{14}, with $\mathrm{Msusy} \approx 600 \mathrm{GeV}$

LHC -		ehn, Rainwater, PS PLB645(2007)217				
FIXED ORDER PQCD	$\sigma_{\text {tot }}[\mathrm{pb}]$	$\tilde{g} \tilde{g}$	$\tilde{u}_{L} \tilde{g}$	$\tilde{u}_{L} \tilde{u}_{L}^{*}$	$\tilde{u}_{L} \tilde{u}_{L}$	TT
$p_{T, j}>100 \mathrm{GeV}$	oj	4.83	5.65	0.286	0.502	1.30
inclusive $\mathbf{X}+$	\rightarrow	2.89	2.74	0.136	0.145	0.73
inclusive $\mathrm{X}+2$ "jets"	$\rightarrow \sigma_{2 j}$	1.09	0.85	0.049	0.039	0.26
$p_{T, j} \ngtr 50 \mathrm{GeV}$	$\begin{aligned} & \sigma_{0 j} \\ & \sigma_{1 j} \end{aligned}$	4.83	5.65	0.286	0.502	1.30
		5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

```
\sigma for X + jets much larger than
    naive estimate
    \mp@subsup{\sigma}{50}{}~\mp@subsup{\sigma}{\mathrm{ tot tells us that there will }}{\mathrm{ "always" be a }~50-GeV jet }
```

(Computed with SUSY-MadGraph)

All the scales are high, $\mathrm{Q} \gg 1 \mathrm{GeV}$, so perturbation theory should be $\mathrm{OK} \ldots$

Jets have fractal substructure

see PS, Introduction to QCD, TASI 2012, arXiv:1207.2389
Most bremsstrahlung is driven by divergent propagators
\rightarrow simple structure

Gauge amplitudes factorize

 in singular limits (\rightarrow universal "conformal" or "fractal" structure)

Partons ab

\rightarrow collinear:

$$
\begin{gathered}
\mathrm{P}(\mathrm{z})=\text { Altarelli-Parisi splitting kernels, with } \mathrm{z}=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right) \\
\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{gathered}
$$

Gluon j
\rightarrow soft:

$$
\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

+ scaling violation: $g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(\mathrm{Q}^{2}\right)$

Jets have fractal substructure

Can apply this many times \rightarrow nested factorizations \rightarrow iteratively build up fractal structure

Can be cast as a differential evolution in the resolution scale, dProb/dQ ${ }^{2}$
It's a quantum fractal: P is probability to resolve another jet as we decrease the scale Eventually, it becomes more unlikely not to resolve a jet, than to resolve one
That's what the $\mathrm{X}+\mathrm{jet}$ cross sections were trying to tell us earlier: $\sigma(X+j e t)>\sigma(X)$

Monte Carlo Event Generators:
 Divide and Conquer

Factorization \rightarrow Split the problem into many (nested) pieces

+ Quantum mechanics \rightarrow Probabilities \rightarrow Random Numbers

$$
\mathcal{P}_{\text {event }}=\mathcal{P}_{\text {hard }} \otimes \mathcal{P}_{\text {dec }} \otimes \mathcal{P}_{\mathrm{ISR}} \otimes \mathcal{P}_{\mathrm{FSR}} \otimes \mathcal{P}_{\mathrm{MPI}} \otimes \mathcal{P}_{\mathrm{Had}} \otimes \ldots
$$

Hard Process \& Decays:
Use process-specific (N)LO matrix elements
\rightarrow Sets "hard" resolution scale for process: Qmax
ISR \& FSR (Initial \& Final-State Radiation):
Universal DGLAP equations \rightarrow differential evolution, $d P / \mathrm{dQ}^{2}$, as function of resolution scale; run from Qmax to Qconfinement ~ 1 GeV (More later)
MPI (Multi-Parton Interactions)
Additional (soft) parton-parton interactions: LO matrix elements
\rightarrow Additional (soft) "Underlying-Event" activity (Not the topic for today)
Hadronization
Non-perturbative model of color-singlet parton systems \rightarrow hadrons

This is just the physics of Bremsstrahlung

The harder they get kicked, the harder the
fluctations that continue to become strahlung
The harder they get kicked, the harder the
fluctations that continue to become strahlung

From Legs to Loops

Unitarity: sum(probability) $=1$

Kinoshita-Lee-Nauenberg:
(sum over degenerate quantum states = finite: infinities must cancel!)

Neglect non-singular piece, $F \rightarrow$ "Leading-Logarithmic" (LL) Approximation
\rightarrow Can also include loops-within-loops-within-loops ...
\rightarrow Bootstrap for approximate All-Orders Quantum Corrections!

Parton Showers: reformulation of pQCD corrections as gain-loss diff eq.
Iterative (Markov-Chain) evolution algorithm, based on universality and unitarity
With evolution kernel $\sim \frac{\left|\mathcal{M}_{n+1}\right|^{2}}{\left|\mathcal{M}_{n}\right|^{2}}$ (or soff/collinear approx thereof)
Generate explicit fractal structure across all scales (via Monte Carlo Simulation)
Evolve in some measure of resolution \sim hardness, virtuality, 1/time $\ldots \sim$ fractal scale

+ account for scaling violation via quark masses and $g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(Q^{2}\right)$

Parton Showers are based on $1 \rightarrow 2$ splittings

E.g., PYTHIA (also HERWIG, SHERPA)
I.e., each parton undergoes a sequence of splittings

Dipole coherence effects can be included via "angular ordering" or via "dipole radiation functions" (\sim dipole partitioned into 2 monopole terms) Recoil effects needed to impose (E,p) conservation ("local" or "global")

At Monash, we develop an Antenna Shower, in which splittings are fundamentally $2 \rightarrow 3$ (+ working on $2 \rightarrow 4 \ldots$)

Each colour dipole/antenna undergoes a sequence of splittings

+ Intrinsically includes dipole coherence (leading N_{C})
+ Lorentz invariance and explicit local (E,p) conservation
+ The non-perturbative limit of a colour dipole is a string piece Roots in Lund ~ mid-80ies: Gustafson \& Petterson, Nucl.Phys. B306 (1988) 746
What's new in our approach?
Higher-order perturbative effects can be introduced via calculable corrections in an elegant and very efficient way
+ Writing a genuine antenna shower also for the initial state evolution

New: Hadron Collisions

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Example: quark-quark scattering in hadron collisions

Consider one specific phase-space point (eg scattering at 45°)
2 possible colour flows: a and b

Figure 4: Angular distribution of the first gluon emission in $q q \rightarrow q q$ scattering at 45°, for the two different color flows. The light (red) histogram shows the emission density for the forward flow, and the dark (blue) histogram shows the emission density for the backward flow.

[^0]
VINCIA: Markovian pQCD*

*) pQCD : perturbative QCD

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
"An Introduction to PYTHIA 8.2"
Sjöstrand et al., Comput.Phys.Commun. 191 (2015) 159

Matrix-Element Corrections for ISR

Matrix-Element Corrections for ISR

Work done by my PhD student Nadine Fischer (from whom I also stole these slides)

CMS, $\Delta \phi(\mathrm{Z}, \mathrm{JI}), \sqrt{s}=7 \mathrm{TeV}$
LHC: pp \rightarrow Z + jet(s)

Angle between Z and the hardest jet

Matrix-Element Corrections for ISR

+ Future Applications (why other people care)

Example: The Top Quark

Heaviest known elementary particle:
$\mathrm{m}_{\mathrm{t}} \sim 187 u\left(\sim \mathrm{~m}_{\mathrm{Au}}\right)$
Lifetime: $10^{-24} \mathrm{~s}$
Complicated decay chains:

$$
\begin{gathered}
t \rightarrow b W^{+} \quad \bar{t} \rightarrow \bar{b} W^{-} \\
W \rightarrow\left\{q \bar{q}^{\prime}, \ell \nu\right\} \\
\text { quarks } \rightarrow \text { jets } \\
\text { b-quarks } \rightarrow \text { b-jets } \\
m_{t}^{2} \approx\left(p_{b}+p_{W^{+}}\right)^{2} \\
\approx\left(p_{b-\mathrm{jet}}+p_{q-\mathrm{jet}}+p_{\bar{q}-\mathrm{jet}}\right)^{2}
\end{gathered}
$$

Accurate jet energy calibrations $\rightarrow \mathrm{m}_{\mathrm{t}}$
Analogously for any process / measurement involving coloured partons

Decays of coloured massive particles is the most important remaining step

The Ultimate Limit: Wavelengths $>10^{-15} \mathrm{~m}$

Quark-Antiquark Potential

As function of separation distance

~ Force required to lift a 16-ton truck

String Breaks

In QCD, strings can (and do) break!

(In superconductors, would require magnetic monopoles) In QCD, the roles of electric and magnetic are reversed Quarks (and antiquarks) are "chromoelectric monopoles" There are at least two possible analogies \sim tunneling:

String Breaks

In QCD, strings can (and do) break!

(In superconductors, would require magnetic monopoles) In QCD, the roles of electric and magnetic are reversed Quarks (and antiquarks) are "chromoelectric monopoles" There are at least two possible analogies \sim tunneling:

The "Lund" String

- Quarks \rightarrow String Endpoints
- Gluons \rightarrow Transverse Excitations (kinks)

snapshots of string position
$\overline{\mathrm{q}}(\bar{b})$
strings stretched from q (or वव) endpoint via a number of gluons to \bar{q} (or qq) endpoint

Gluon = kink on string, carrying energy and momentum

String Breaks
by Tunneling (Schwinger Type)

- Probability of string break constant per unit area \rightarrow AREA LAW
- Breakup vertices causally disconnected \rightarrow order is irrelevant \rightarrow iterative algorithm

Colour Confusion

Between which partons do confining potentials arise?

$\mathrm{e}^{+} \mathrm{e}^{-}$: too easy
(still quite simple even after including bremsstrahlung etc.)

At $\mathrm{e}^{+} \mathrm{e}^{-}$colliders (eg LEP) : generally good agreement between measured particle spectra and models based on parton/antenna showers + strings
Basically a single 3-3bar system, very close to the original lattice studies motivating the string model.
(+ extensions to WW reasonable to $\sim \mathrm{O}\left(1 / \mathrm{N}_{\mathrm{c}}{ }^{2}\right)$)
\rightarrow re-use same models as input for LHC (universality) ?

Proton-Proton (LHC)
A lot more colour kicked around (\& also colour in initial state)

Include "Beam Remnants"
Still might look relatively simple, to begin with

(+baryon beam remnants \rightarrow "string junctions")
String-fragmentation of junctions: Sjöstrand \& Skands Nucl.Phys. B659 (2003) 243

But no law against several parton-parton interactions

In fact, can easily be shown to happen frequently Included in all (modern) Monte Carlo models But how to make sense of the colour structure?

Colour: What's the Problem?

(including MPI: Multiple Parton-Parton Interactions ~ the "underlying event")

Without Colour Reconnections

Each MPI hadronizes independently of all others

Colour: What's the Problem?

(including MPI: Multiple Parton-Parton Interactions ~ the "underlying event")

Without Colour Reconnections

Each MPI hadronizes independently of all others

Colour Reconnections

(including MPI: Multiple Parton-Parton Interactions ~ the "underlying event")

With Colour Reconnections MPI hadronize collectively

See also Ortiz et al., Phys.Rev.Lett. 111 (2013) 4, 042001
Highly interesting theory questions now. Is there collective flow in pp? Or not?

If yes, what is its origin?
Is it stringy, or hydrodynamic? (or ...?)

Beam Direction

String-Length Minimisation E.g., PYTHIA, HERWIG Or Thermal? E.g., EPOS

Or Higher String Tension?
E.g., DIPSY rope

What are "Colour Reconnections"?

Simple example: $e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow$ hadrons Intensely studied at LEP2.

CR implied a non-perturbative uncertainty on the W mass measurement, $\triangle \mathrm{MW} \sim 40 \mathrm{MeV}$
CR constrained to $\sim 10 \% \sim 1 / \mathrm{NC} 2$
Simple two-string system. What about pp?

Several modelling attempts

Based on "just" minimising the string action

String interactions (Khoze, Sjostrand)
Generalized Area Law (Rathsman et al.)
Colour Annealing (Skands et al.)
Gluon Move Model (Sjostrand et al.)
More recently: $\mathrm{SU}(3)_{C}$ group multiplet weights
Dipole Swing (Lonnblad et al.)
String Formation Beyond Leading Colour (Skands et al.)

What do we see?

Plots from mcplots.cern.ch (powered by LHC@home)

What do we see?

<pT> vs Number of Particles

<pT> vs Particle Mass

Average pT increases with particle multiplicity and (faster than predicted) with particle mass

Fundamental Questions

(Reflections upon yesterday's curry dinner ...)

Multiple Strings: String interactions?

Like Type I Superconductor?
Like Type II Superconductor? Something else?

Potential between two triplets:
antitriplet is attractive (diquarks); sextet is repulsive
We can treat anti-triplet via $C R \rightarrow$ junction-junction structure But we do nothing for the sextet

Figure 1. The ratios of the string tensions of flux tubes for various $\mathrm{SU}(3)$ representations, $d_{D}=\sigma_{D} / \sigma_{\mathbf{3}}$ for the GL parameters $\kappa=1,3$ and 9 (represented by crosses, each case connected by lines to guide the eye). The ratios of eigenvalues of the quadratic Casimir operators are shown as black bars. For comparison the lattice data of Ref. [2] are also plotted (diamonds with error bars). Boldface numbers and brackets $[p, q]$ denote the dimension and the Dynkin indices of each representation D, respectively

+ Newer results from Cardoso, Cardoso, Bicudo seem to support Casimir scaling (Type II): arXiv:1102.1542

Quo Vadis?

All sights are on Run 2 of the LHC

Next order of precision for jet rates and structure Aid precision measurements and enhance discovery reach Vast multi-jet phase spaces to explore with LHC Merging and MHV corrections (S. Prestel, A. Lifson, N. Fischer)

Beyond the Leading-Logarithmic approximation (with post doc Hai Tao Li)

+ systematic and automated theory uncertainties
Part of being precise is knowing how precise. Our job to give an answer.
Automated uncertainty bands in both VINCIA and PYTHIA 8 (Mrenna+Skands)

Strings

Understand the physics of colour reconnections
What are the dynamics of multi-string environments?

Get this research going in Australia

Phenomenology: Modern revisions of the Lund string model
What measurements are crucial to shed more light?
Possible to get more information from lattice? Multi-string systems?

New research at Monash

PRECISION LHC PHENOMENOLOGY PYTHIA \& VINCIA
NLO Event Generators
QCD STRINGS, HADRONISATION

SUPPORT LHC EXPERIMENTS,

 ASTRO-PARTICLE COMMUNITY, AND FUTURE ACCELERATORS +OUTREACH AND Citizen Science+ Partnerships: Warwick Alliance, MCnet, CoEPP New joint research program with Warwick ATLAS, on developing and testing advanced colllider-QCD models. Opportunities for PhD students based at Monash + exchange to UK/CERN.

MCnet is an EU Marie Curie "Innovative Training Network" (ITN) on MC generators for LHC (Herwig, Pythia, Sherpa). Funded last week!

[^0]: Note: coherence also influences the Tevatron top-quark forwardbackward asymmetry: see PS, Webber, Winter, JHEP 1207 (2012) 151

