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simulation), without much evidence of the inputs into those simulations.”

Account for parameters + pertinent cross-checks and validations
Do serious effort to estimate uncertainties, by salient MC variations
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Resources

Data Preservation: HEPDATA
Online database of experimental results
Please make sure published results make it there

Analysis Preservation: RIVET
Large library of encoded analyses + data comparisons
Main analysis & constraint package for event generators
All your analysis are belong to RIVET

Updated validation plots: MCPLOTS.CERN.CH
Online plots made from Rivet analyses
Want to help? Connect to Test4Theory (LHC@home 2.0)

Reproducible tuning: PROFESSOR
Automated tuning (& more)

3

http://durpdg.dur.ac.uk/%E2%80%8E%0Arivet.hepforge.org/%E2%80%8E%0A
http://durpdg.dur.ac.uk/%E2%80%8E%0Arivet.hepforge.org/%E2%80%8E%0A
http://rivet.hepforge.org/%E2%80%8E%0Arivet.hepforge.org/%E2%80%8E%0A
http://rivet.hepforge.org/%E2%80%8E%0Arivet.hepforge.org/%E2%80%8E%0A
http://mcplots.cern.ch
http://mcplots.cern.ch
http://professor.hepforge.org/
http://professor.hepforge.org/
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(Test4Theory)

4

New 
Users/
Day

May June July Aug Sep

July 4th 
2012

Monday Feb 18 2013 9:28 PM

The	  LHC@home	  2.0	  project	  Test4Theory	  allows	  users	  to	  par:cipate	  in	  running	  
simula:ons	  of	  high-‐energy	  par:cle	  physics	  using	  their	  home	  computers.

The	  results	  are	  submiAed	  to	  a	  database	  which	  is	  used	  as	  a	  common	  resource	  by	  both	  
experimental	  and	  theore:cal	  scien:sts	  working	  on	  the	  Large	  Hadron	  Collider	  at	  CERN.

http://lhcathome2.cern.ch/test4theory
http://lhcathome2.cern.ch/test4theory
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://mcplots.cern.ch/
http://mcplots.cern.ch/
http://public.web.cern.ch/public/en/lhc/lhc-en.html
http://public.web.cern.ch/public/en/lhc/lhc-en.html
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•Explicit tables of data & MC points
•Run cards for each generator
•Link to experimental reference paper
•Steering file for plotting program
• (Will also add link to RIVET analysis)

http://mcplots.cern.ch
http://mcplots.cern.ch
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What is Tuning?

The value of the strong coupling at the Z pole 
Governs overall amount of radiation

Renormalization Scheme and Scale for αs 
1- vs 2-loop running, MSbar / CMW scheme, µR ~ pT2

Additional Matrix Elements included?
At tree level / one-loop level?  Using what matching scheme? 

Ordering variable, coherence treatment, 
effective 1→3 (or 2→4), recoil strategy, …

Branching Kinematics (z definitions, local vs global 
momentum conservation), hard parton starting scales / 
phase-space cutoffs, masses, non-singular terms, …

6

FSR pQCD Parameters
αs(mZ)

αs Running

Matching

Subleading Logs
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String Tuning

Lund Symmetric Fragmentation Function
The a and b parameters

Scale of string breaking process
IR cutoff and <pT> in string breaks

Mesons
Strangeness suppression, Vector/Pseudoscalar, η, 
η’, … 

Baryons
Diquarks, Decuplet vs Octet, popcorn, junctions, 
… ?

7

Longitudinal FF = f(z)

pT in string breaks

Meson Multiplets

Baryon Multiplets
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Initial-State Radiaton

Value and running of the strong coupling 
Governs overall amount of radiation (cf FSR)

Starting scale & Initial-Final interference 
Relation between QPS and QF (vetoed showers? cf matching)

I-F colour-flow interference effects (cf ttbar asym) & interleaving

8

αs

Size of Phase Space

Matching

“Primordial kT”

Main ISR Parameters
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Initial-State Radiaton

Value and running of the strong coupling 
Governs overall amount of radiation (cf FSR)

Starting scale & Initial-Final interference 
Relation between QPS and QF (vetoed showers? cf matching)

I-F colour-flow interference effects (cf ttbar asym) & interleaving

Additional Matrix Elements included?
At tree level / one-loop level?  What matching scheme? 

A small additional amount of “unresolved” kT
Fermi motion + unresolved ISR emissions + low-x effects?

8

αs

Size of Phase Space

Matching

“Primordial kT”

Main ISR Parameters
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Min-Bias & Underlying Event

9

Number of MPI

Pedestal Rise

Strings per 
Interaction

Main IR Parameters
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(Rutherford) scattering used for multiple parton interactions 
(often called pT0) → size of overall activity
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Fragmentation Tuning

10

Multiplicity Distribution
of Charged Particles (tracks)

at LEP (Z→hadrons)

Momentum Distribution
of Charged Particles (tracks)

at LEP (Z→hadrons)

<Nch(MZ)> ~ 21 ξp = Ln(xp) = Ln( 2|p|/ECM )

Note: use infrared-unsafe observables - sensitive to hadronization (example)

x=2|p|/mZ
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Fragmentation Tuning
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Momentum Distribution
of Charged Particles (tracks)

at LEP (Z→hadrons)

ξp = Ln(xp) = Ln( 2|p|/ECM )

Note: use infrared-unsafe observables - sensitive to hadronization (example)
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Know what physics goes in
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Identified Particles
S1/S0, B/M, B3/2/B1/2, strange/unstrange, Heavy

12
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Compare with what you see at LHC
Correlate with what you see at LHC

Can variations within uncertainties explain differences? Or not?
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PYTHIA 8 (hadronization off)

Need IR Corrections?

13

vs LEP: Thrust
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Significant Discrepancies (>10%)
for T < 0.05, Major < 0.15, Minor < 0.2, and for all values of Oblateness

These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.

– 3 –

1� T ! 1

2
1� T ! 0

Major

Minor

Oblateness
= Major - MinorMinorMajor1-T
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These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.

– 3 –
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+ cross checks: different eCM energies (HAD and FSR scale differently)
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These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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Figure 15. L3 light-flavour event shapes: Thrust, C, and D.

The three main event-shape variables that were used to determine the value of ↵
s

(M
Z

)

are shown in figure 15, with upper panes showing the distributions themselves (data and MC)

and lower panes showing the ratios of MC/data, with one- and two-sigma uncertainties on

the data shown by darker (green) and lighter (yellow) shaded bands, respectively. The Thrust

(left) and C-parameter (middle) distributions both have perturbative expansions that start

at O(↵
s

) and hence they are both explicitly sensitive to the corrections considered in this

paper. The expansion of the D parameter (right) begins at O(↵2
s

). It is sensitive to the NLO

3-jet corrections mainly via unitarity, since all 4-jet events begin their lives as 3-jet events in

our framework. It also represents an important cross-check on the value extracted from the

other two variables.

For a pedagogical description of the variables, see [63]. Pencil-like 2-jet configurations are

to the left (near zero) for all three observables. This region is particularly sensitive to non-

perturbative hadronization corrections. More spherical events, with several hard perturbative

emissions, are towards the right (near 0.5 for Thrust and 1.0 for C and D). The maximal ⌧ =

1�T for a 3-particle configuration is ⌧ = 1/3 (corresponding to the Mercedes configuration),

beyond which only 4-particle (and higher) states can contribute. This causes a noticeable

change in slope in the distribution at that point, see the left pane of figure 15. The same thing

happens for the C parameter at C = 3/4, in the middle pane of figure 15. The D parameter

is sensitive to the smallest of the eigenvalues of the sphericity tensor, and is therefore zero for

any purely planar event, causing it to be sensitive only to 4- and higher-particle configurations

over its entire range.

Both the new NLO tune (solid blue line with filled-dot symbols) and the old LO one

(dashed magenta line with open-triangle symbols) reproduce all three event shapes very well.

With the NLO corrections switched o↵ (solid red line with open-circle symbols), the new tune

produces a somewhat too soft spectrum, consistent with its low value of ↵
s

(M
Z

) not being

– 59 –

First LEP tune with NLO 3-jet corrections
LO tune: αs(MZ) = 0.139 (1-loop running, MSbar)

NLO tune: αs(MZ) = 0.122 (2-loop running, CMW)

      Hartgring, Laenen, Skands, arXiv:1303.4974

http://arxiv.org/abs/arXiv:1303.4974
http://arxiv.org/abs/arXiv:1303.4974
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Determine 
pT0 : IR regularization scale for MPI
Impact-parameter distribution (b-shape), 
Colour-reconnection strength (~Nhadrons/string)

We use: 
P(Nch)
pT
<pT>(Nch)
dNch/dη (~ constant in y, except in forward region)

UE (including dNch/d∆φ)

MPI and Beam Remnants

20
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36 A MULTIPLE-INTERACTION MODEL FOR THE EVENT. . . 2031

diffractive system. Each system is represented by a string
stretched between a diquark in the forward end and a
quark in the other one. Except for some tries with a dou-
ble string stretched from a diquark and a quark in the for-
ward direction to a central gluon, which gave only modest
changes in the results, no attempts have been made with
more detailed models for diHractive states.

V. MULTIPLICITY DISTRIBUTIONS

The charged-multiplicity distribution is interesting,
despite its deceptive simplicity, since most physical
mechanisms (of those playing a role in minimum bias
events) contribute to the multiplicity buildup. This was
illustrated in Sec. III. From now on we will use the
complete model, i.e., including multiple interactions and
varying impact parameters, to look more closely at the
data. Single- and double-difFractive events are now also
included; with the UA5 triggering conditions roughly —,

of the generated double-diffractive events are retained,
while the contribution from single diffraction is negligi-
ble.

A. Total multiplicities

A final comparison with the UA5 data at 540 GeV is
presented in Fig. 12, for the double Gaussian matter dis-
tribution. The agreement is now generally good, although
the value at the peak is still a bit high. In this distribu-
tion, the varying impact parameters do not play a major
role; for comparison, Fig. 12 also includes the other ex-

treme of a ftx overlap Oo(b) (with the use of the formal-
ism in Sec. IV, i.e., requiring at least one semihard in-
teraction per event, so as to minimize other differences).
The three other matter distributions, solid sphere, Gauss-
ian and exponential, are in between, and are all compati-
ble with the data.
Within the model, the total multiplicity distribution

can be separated into the contribution from (double-)
diffractive events, events with one interaction, events
with two interactions, and so on, Fig. 13. While 45% of
all events contain one interaction, the low-multiplicity
tail is dominated by double-diffractive events and the
high-multiplicity one by events with several interactions.
The average charged multiplicity increases with the
number of interactions, Fig. 14, but not proportionally:
each additional interaction gives a smaller contribution
than the preceding one. This is partly because of
energy-momentum-conservation effects, and partly be-
cause the additional messing up" when new string
pieces are added has less effect when many strings al-
ready are present. The same phenomenon is displayed in
Fig. 15, here as a function of the "enhancement factor"f (b), i.e., for increasingly central collisions.
The multiplicity distributions for the 200- and 900-GeV

UA5 data have not been published, but the moments
have, ' and a comparison with these is presented in Table
I. The (n, t, ) value was brought in reasonable agreement
with the data, at each energy separately, by a variation of
the pro scale. The moments thus obtained are in reason-
able agreement with the data.

B. Energy dependence

10
I I I I I I I i.

UA5 1982 DATA

UA5 1981 DATA

Extrapolating to higher energies, the evolution of aver-
age charged multiplicity with energy is shown in Fig. 16.
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FIG. 12. Charged-multiplicity distribution at 540 GeV, UA5
results (Ref. 32) vs multiple-interaction model with variable im-
pact parameter: solid line, double-Gaussian matter distribution;
dashed line, with fix impact parameter [i.e., 00(b)]

FIG. 13. Separation of multiplicity distribution at 540 GeV
by number of interactions in event for double-Gaussian matter
distribution. Long dashes, double diffractive; dashed-dotted
one interaction; thick solid line, two interactions; dashed line,
three interactions; dotted line, four or more interactions; thin
solid line, sum of everything.

Why dN/dη is useless (by itself)

without multiple interactions

Sjöstrand & v. Zijl, 
Phys.Rev.D36(1987)2019

Number of 
Charged Tracks

Number of 
Charged Tracks
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Can get <N> right with completely wrong models. Need RMS at least.
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Underlying Event

UE - LHC from 900 to 7000 GeV - ATLAS

22

… until you reach a plateau (“max-bias”)
Interpreted as impact-parameter effect

Qualitatively reproduced by MPI models

As you trigger on progressively higher pT, the entire event increases …

Relative size of this plateau / min-bias depends on pT0 and b-profile
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Image Credits: istockphoto

Matching
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P. Skands

Born + Shower

Example:              .

24

22

+

Shower Approximation
to Born + 1

+ … 
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Born + Shower

Born + 1 @ LO 

Example:              .

24

22

+

+

2

Shower Approximation
to Born + 1

+ … 
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Born + Shower

Born + 1 @ LO 

1

Example:              .

25

2

+
|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF
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+
1

sIK

✓
sij
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|M(H0 ! qI q̄K)|2 = g2s 2CF
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Born + Shower

Born + 1 @ LO 

1

Example:              .

25

2

+
|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

◆�

|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

+ 2

◆�

Total Overkill to add these two.  All I really need is just that +2 … 

2

+ …
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Adding Calculations

Born × Shower X+1 @ LO

26

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut
& nothing below

X+1(2) …

X+1(1) X+2(1) X+3(1) …

X+1(0) X+2(0) X+3(0) …

(see lecture 3) (with pT cutoff, see lecture 2)
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Born × Shower X+1 @ LO × Shower

27

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut
& nothing below

X+1(2) …

X+1(1) X+2(1) X+3(1) …

X+1(0) X+2(0) X+3(0) …

Adding Calculations

(see lecture 3)

…
Shower approximation above pT cut
& nothing below

(with pT cutoff, see lecture 2)
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→ Double Counting

Born × Shower + (X+1) × shower

28

…

… 

Fixed-Order Matrix Element

Shower Approximation

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Double Counting of 
terms present in 
both expansions

Worse than useless

…
Double counting above pT cut
& shower approximation below
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Interpretation
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► A (Complete Idiot’s) Solution – Combine 
1. [X]ME + showering 
2. [X + 1 jet]ME + showering 

3. … 

► Doesn’t work 
•  [X] + shower is inclusive 

•  [X+1] + shower is also inclusive 

≠ 

Run generator for X (+ shower) 

Run generator for X+1 (+ shower) 

Run generator for … (+ shower) 

Combine everything into one sample 

What you 
get 

What you 
want 

Overlapping “bins” One sample 
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Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, …)

UNITARITY (a.k.a. multiplication, PYTHIA, VINCIA, …)

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

Cures
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Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, …)

UNITARITY (a.k.a. multiplication, PYTHIA, VINCIA, …)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO)

UNITARITY + SUBTRACTION (a.k.a. POWHEG, VINCIA)

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

Cures
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Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, …)

UNITARITY (a.k.a. multiplication, PYTHIA, VINCIA, …)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO)

UNITARITY + SUBTRACTION (a.k.a. POWHEG, VINCIA)

+ WORK IN PROGRESS … 

NLO + multileg tree-level matrix elements

NLO multileg matching

Matching at NNLO

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Cures
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Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, …)

UNITARITY (a.k.a. multiplication, PYTHIA, VINCIA, …)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO)

UNITARITY + SUBTRACTION (a.k.a. POWHEG, VINCIA)

+ WORK IN PROGRESS … 

NLO + multileg tree-level matrix elements

NLO multileg matching

Matching at NNLO

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Cures
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Matching 1: Slicing

31

Examples: MLM, CKKW, CKKW-L
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Matching 1: Slicing
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First emission: “the HERWIG correction”
Use the fact that the angular-ordered HERWIG parton shower has a 
“dead zone” for hard wide-angle radiation (Seymour, 1995)

Many emissions: the MLM & CKKW-L prescriptions 

P. Skands Introduction to QCD

F @ LO⇥LL-Soft (HERWIG Shower)
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Figure 23: HERWIG’s original matching scheme [112, 113], in which the dead zone of the
HERWIG shower was used as an effective “matching scale” for one emission beyond a basic
hard process.

since been generalized by several independent groups to include arbitrary numbers of addi-
tional legs, the most well-known of these being the CKKW [114], CKKW-L [115, 116], and
MLM [117, 118] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the
presence of explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions
above a certain matching scale, as in the (L)-CKKW and MLM approaches. The empty part of
phase space can then be filled by separate events generated according to higher-multiplicity
tree-level matrix elements (MEs). In the (L)-CKKW and MLM schemes, this process can be
iterated to include arbitrary numbers of additional hard legs (the practical limit being around
3 or 4, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity matrix ele-
ments must be associated with Sudakov form factors (representing the virtual corrections that
would have been generated if a shower had produced the same phase-space configuration),
and their ↵s factors must be chosen so that, at least at the matching scale, they become identi-
cal to the choices made on the shower side [119]. The CKKW and MLM approaches do this by
constructing “fake parton-shower histories” for the higher-multiplicity matrix elements. By ap-
plying a sequential jet clustering algorithm, a tree-like branching structure can be created that
at least has the same dominant structure as that of a parton shower. Given the fake shower
tree, ↵s factors can be chosen for each vertex with argument ↵s(p?) and Sudakov factors can
be computed for each internal line in the tree. In the CKKW method, these Sudakov factors
are estimated analytically, while the MLM and CKKW-L methods compute them numerically,
from the actual shower evolution.

Thus, the matched result is identical to the matrix element (ME) in the region above the
matching scale, modulo higher-order (Sudakov and ↵s) corrections. We may sketch this as

Matched (above matching scale) =

MEz }| {
Exact ⇥

correctionsz }| {
(1 + O(↵s)) , (67)

where the “shower-corrections” include the approximate Sudakov factors and ↵s reweighting
factors applied to the matrix elements in order to obtain a smooth transition to the shower-
dominated region.

Below the matching scale, the small difference between the matrix elements and the
shower approximation can be dropped (since their leading singularities are identical and this
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Examples: MLM, CKKW, CKKW-L

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; 

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Sl ic ing: The Cost

32

0.1s

1s

10s

100s

1000s

2 3 4 5 6

Z→n : Number of Matched Emissions

1s

10s

100s

1000s

10000s

2 3 4 5 6

Z→n : Number of Matched Emissions

1. Initialization time
(to pre-compute cross sections 

and warm up phase-space grids)

SHERPA+COMIX

SHERPA (C
KKW-L)

2. Time to generate 1000 events
(Z → partons, fully showered & 
matched. No hadronization.)

1000 SHOWERS

(example of st
ate of th

e art)
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Classic Example

33

W + Jets

Number of jets in 
pp→W+X at the LHC

From 0 (W inclusive) to 
W+3 jets

PYTHIA includes 
matching up to W+1 jet 
+ shower

With ALPGEN, also the 
LO matrix elements for 
2 and 3 jets are included

But Normalization still 
only LO

mcplots.cern.ch

W
ith Matching

W
ithout Matching

RATIO

ETj > 20 GeV
|ηj| < 2.8

Number of Jets

W+Jets
LHC 7 TeV
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W + Jets

Number of jets in 
pp→W+X at the LHC

From 0 (W inclusive) to 
W+3 jets

PYTHIA includes 
matching up to W+1 jet 
+ shower

With ALPGEN, also the 
LO matrix elements for 
2 and 3 jets are included

But Normalization still 
only LO

mcplots.cern.ch

W
ith Matching

W
ithout Matching

RATIO

ETj > 20 GeV
|ηj| < 2.8

Number of Jets

W+Jets
LHC 7 TeV
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Slicing: Some Subtleties

Choice of slicing scale (=matching scale)

Fixed order must still be reliable when regulated with 
this scale 

→ matching scale should never be chosen more than ~ 
one order of magnitude below hard scale.

Precision still “only” Leading Order

Choice of Renormalization Scale

We already saw this can be very important (and tricky) 
in multi-scale problems. 

Caution advised (see also supplementary slides & lecture notes)

34
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Choice of Matching Scale

35

→  A scale of 20 GeV for a W boson 
becomes 40 GeV for something weighing 
2MW, etc … (+ adjust for CA/CF if g-initiated)

→ The matching scale should be written as 
a ratio (Bjorken scaling)
Using a too low matching scale → 
everything just becomes highest ME

Caveat emptor: showers generally do not 
include helicity correlations

0

25

50

75

100

Born (exc) + 1 + 2 (inc)

Reminder: in perturbative 
region, QCD is approximately 

scale invariant

Low Matching Scale
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Matching 2: Subtraction

LO × Shower NLO

36

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Examples: MC@NLO, aMC@NLO
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Matching 2: Subtraction

LO × Shower NLO - ShowerNLO

37

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation … Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Expand shower approximation to 
NLO analytically, then subtract:

Examples: MC@NLO, aMC@NLO
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LO × Shower (NLO - ShowerNLO) × 
Shower
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(1) X(1) …

X(1) X(1) X(1) X(1) …

Born X+1(0) X(1) X(1) …

… Subleading corrections generated by 
shower off subtracted ME 

Examples: MC@NLO, aMC@NLO
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Combine → MC@NLO
Consistent NLO + parton shower (though correction events can have w<0)

Recently, has been almost fully automated in aMC@NLO

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

NLO: for X inclusive
LO for X+1
LL: for everything else

Note 1: NOT NLO for X+1

Note 2: Multijet tree-level 
matching still superior for X+2

NB: w < 0 are a problem because they kill efficiency:  
Extreme example: 1000 positive-weight - 999 negative-weight events → statistical precision of 1 
event, for 2000 generated (for comparison, normal MC@NLO has ~ 10% neg-weights)

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

Frixione, Webber, JHEP 0206 (2002) 029

Examples: MC@NLO, aMC@NLO
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divergences, multiscale logs
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Standard Paradigm: 
Have ME for X, X+1,…, X+n;  
Want to combine and add showers   →    “The Soft Stuff” 

Works pretty well at low multiplicities
Still, only corrected for “hard” scales; Soft still pure LL.

At high multiplicities:
Efficiency problems: slowdown from need to compute 
and generate phase space from dσX+n, and from 
unweighting (efficiency also reduced by negative weights, 
if present) 
Scale hierarchies: smaller single-scale phase-space 
region
Powers of alphaS pile up

Better Starting Point: a QCD fractal?

Matching 3: ME Corrections

40

Double counting, IR 
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(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)
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Interpret all-orders shower structure as a trial distribution 
Quasi-scale-invariant: intrinsically multi-scale (resums logs)

Unitary: automatically unweighted (& IR divergences → 
multiplicities)

More precise expressions imprinted via veto algorithm: ME 
corrections at LO, NLO, …  → soft and hard corrections
No additional phase-space generator or σX+n calculations → 
fast 

Automated Theory Uncertainties
For each event: vector of output weights (central value = 1) 
+ Uncertainty variations. Faster than N separate samples; only 
one sample to analyse, pass through detector simulations, etc.
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41

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)
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Illustrations from: PS, TASI Lectures, arXiv:1207.2389
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PYTHIA: LO1 corrections to most SM and BSM decay 
processes, and for pp → Z/W/H (Sjöstrand 1987)
POWHEG (& POWHEG BOX): LO1 + NLO0 corrections for 
generic processes (Frixione, Nason, Oleari, 2007)

Multileg NLO:
VINCIA: LO1,2,3,4 + NLO0,1 (shower plugin to PYTHIA 8; 
formalism for pp soon to appear) (see previous slide)
MiNLO-merged POWHEG: LO1,2 + NLO0,1 for pp → Z/W/
H
UNLOPS: for generic processes (in PYTHIA 8, based on 
POWHEG input) (Lönnblad & Prestel, 2013)
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; 

gcc/gfortran v 4.6 -O2 ; single 3.06 GHz core (4GB RAM)
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Figure 7: Comparison of computation speeds between SHERPA version 1.4.0 [27] and VINCIA 1.029 +
PYTHIA 8.171, as a function of the number of legs that are matched to matrix elements, for hadronic Z
decays. Left: initialization time (to precompute cross sections, warm up phase-space grids, etc, before event
generation). Right: time to generate 1000 parton-level showered events (not including hadronization), with
VINCIA’s global and sector showers shown separately, with and without (“old”) helicity dependence. For
comparison, the average time it takes to hadronize such events with PYTHIA’s string hadronization model [28]
is shown as a dashed horizontal line. Further details on the setup used for these runs are given in the text.

complicated structures in phase space. This means that even fairly clever multi-channel strate-
gies have a hard time achieving high efficiency over all of it. In GKS, this problem is circum-
vented by generating the phase space by a (trial) shower algorithm, which is both algorithmi-
cally fast and is guaranteed to get at least the leading QCD singularity structures right1. Since
those structures give the largest contributions, the fact that the trials are less efficient for hard
radiation has relatively little impact on the overall efficiency2. Combining this with the clean
properties of the antenna phase-space factorization and with matching at the preceding orders,
the trial phase-space population at any given parton multiplicity is already very close to the
correct one, and identical to it in the leading singular limits, producing the equivalent of very
high matching-and-unweighting efficiencies.

• Finally, the addition of helicity dependence to the trial generation in this paper allows us to
match to only a single helicity amplitude at a time, at each multiplicity. This gives a further
speed gain relative to the older approach [9] in which one had to sum over all helicity con-
figurations at each order. In addition, the MHV-type helicity configurations tend to give the
dominant contribution to the spin-summed matrix element. MHV amplitudes are also those
best described by the shower because they contain the maximum number of soft and collinear
singularities.

The speed of the old (helicity-independent) VINCIA algorithm was examined in [7], for the pro-
cess of Z decay to quarks plus showers, and was there compared to SHERPA [27], as an example of a
slicing-based multileg matching implementation. In fig. 7, we repeat this comparison, including now

1A related type of phase-space generator is embodied by the SARGE algorithm [25], and there are also similarities with
the forward-branching scheme proposed in [26].

2As long as all of phase-space is covered and the trials remain overestimates over all of it, something which we have
paid particular attention to in VINCIA, see [9].

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 + MADGRAPH 4.4.26 ; 

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Speed
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Plot from mcplots.cern.ch

Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003PS, Phys. Rev. D82 (2010) 074018

a) Authors provide specific “tune variations”
Run once for each variation→ envelope

b) One shower run 
+ unitarity-based uncertainties → envelope

VINCIA + PYTHIA 8 example
Vincia:uncertaintyBands = onPYTHIA 6 example

Perugia Variations
µR, KMPI, CR, Ecm-scaling, PDFs

http://mcplots.cern.ch
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Plot from mcplots.cern.ch

Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003PS, Phys. Rev. D82 (2010) 074018

b) One shower run 
+ unitarity-based uncertainties → envelope

Matching reduces uncertainty

VINCIA + PYTHIA 8 example
Vincia:uncertaintyBands = onPYTHIA 6 example

Perugia Variations
µR, KMPI, CR, Ecm-scaling, PDFs

http://mcplots.cern.ch
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Summary

QCD phenomenology is witnessing a rapid evolution:
Driven by demand of high precision for LHC environment

Exploring physics: infinite-order structure of quantum field 
theory. Universalities vs process-dependence.

Emergent QCD phenomena: Jets, Strings, Hadrons

Non-perturbative QCD is still hard
Lund string model remains best bet, but ~ 30 years old

Lots of input from LHC 

“Solving the LHC” is both interesting and rewarding
New ideas evolving on both perturbative and non-perturbative 
sides → many opportunities for theory-experiment interplay

Key to high precision → max information about the Terascale
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MCnet Studentships
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MCnet

MCnet projects:
• PYTHIA (+ VINCIA)

• HERWIG

• SHERPA

• MadGraph

• Ariadne (+ DIPSY)

• Cedar (Rivet/Professor)

Activities include
• summer schools

(2014: Manchester?)

• short-term studentships

• graduate students

• postdocs

• meetings (open/closed)

training studentships

3-6 month fully funded studentships for current PhD 
students at one of the MCnet nodes. An excellent opportunity 
to really understand and improve the Monte Carlos you use!  

www.montecarlonet.org
for details go to:

Monte Carlo

Londo
n

CERN
Karlsru

he

LundDurha
m

Application rounds every 3 months. 

MARIE CURIE ACTIONS

funded by:

Manch
ester Louva

in

Göttin
gen

Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 1 slide 7/40



Oct 2014
→ Monash University
Melbourne, Australia

Come to
Australia

p p

Establishing a new group in Melbourne
 Working on PYTHIA & VINCIA
  NLO Event Generators
   Precision LHC phenomenology & soft physics
    Support LHC experiments, astro-particle  
     community, and future accelerators
      Outreach and Citizen Science
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Jets vs Parton Showers

Jet clustering algorithms
Map event from low E-resolution scale (i.e., with many 
partons/hadrons, most of which are soft) to a higher E-
resolution scale (with fewer, hard, IR-safe, jets)
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Jet Clustering
(Deterministic*)

(Winner-takes-all)

Parton Showering
(Probabilistic)

Q ~ Λ ~ mπ 
~ 150 MeV 

Q ~ Qhad 
~ 1 GeV

Q~ Ecm 
~ MX

Parton shower algorithms
Map a few hard partons to many softer ones

Probabilistic → closer to nature.                     
Not uniquely invertible by any jet algorithm*

Many soft particles A few hard jets

Born-level MEHadronization

(* See “Qjets” for a probabilistic jet algorithm, arXiv:1201.1914)
(* See “Sector Showers” for a deterministic shower, arXiv:1109.3608)

http://arxiv.org/abs/arXiv:1201.1914
http://arxiv.org/abs/arXiv:1201.1914
http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608

