

AM 546070
010 FM 88909294 〔

Tuning

means different things to different people

The Tyranny of Carlo

"Another change that I find disturbing is the rising tyranny of
Carlo. No, I don't mean that fellow who runs CERN, but the other one, with first name Monte.

The Tyranny of Carlo

J. D. Bjorken
"Another change that I find disturbing is the rising tyranny of Carlo. No, I don't mean that fellow who runs CERN, but the other one, with first name Monte.

The simultaneous increase in detector complexity and in computation power has made simulation techniques an essential feature of contemporary experimentation. The Monte Carlo simulation has become the major means of visualization of not only detector performance but also of physics phenomena. So far so good.

The Tyranny of Carlo

J. D. Bjorken
"Another change that I find disturbing is the rising tyranny of
Carlo. No, I don't mean that fellow who runs CERN, but the other one, with first name Monte.

The simultaneous increase in detector complexity and in computation power has made simulation techniques an essential feature of contemporary experimentation. The Monte Carlo simulation has become the major means of visualization of not only detector performance but also of physics phenomena. So far so good.

But it often happens that the physics simulations provided by the the MC generators carry the authority of data itself. They look like data and feel like data, and if one is not careful they are accepted as if they were data. All Monte Carlo codes come with a GIGO (garbage in, garbage out) warning label. But the GIGO warning label is just as easy for a physicist to ignore as that little message on a packet of cigarettes is for a chain smoker to ignore. I see nowadays experimental papers that claim agreement with QCD (translation: someone's simulation labeled QCD) and/or disagreement with an alternative piece of physics (translation: an unrealistic simulation), without much evidence of the inputs into those simulations."

The Tyranny of Carlo

"Another change that I find disturbing is the rising tyranny of
Carlo. No, I don't mean that fellow who runs CERN, but the other one, with first name Monte.

The simultaneous increase in detector complexity and in computation power has made simulation techniques an essential feature of contemporary experimentation. The Monte Carlo simulation has become the major means of visualization of not only detector performance but also of physics phenomena. So far so good.

But it often happens that the physics simulations provided by the the MC generators carry the authority of data itself. They look like data and feel like data, and if one is not careful they are accepted as if they were data. All Monte Carlo codes come with a GIGO (garbage in, garbage out) warning label. But the GIGO warning label is just as easy for a physicist to ignore as that little message on a packet of cigarettes is for a chain smoker to ignore. I see nowadays experimental papers that claim agreement with QCD (translation: someone's simulation labeled QCD) and/or disagreement with an alternative piece of physics (translation: an unrealistic simulation), without much evidence of the inputs into those simulations."

> Account for parameters + pertinent cross-checks and validations Do serious effort to estimate uncertainties, by salient MC variations

Resources

Data Preservation: HEPDATA

Online database of experimental results Please make sure published results make it there

Analysis Preservation: RIVET

Large library of encoded analyses + data comparisons Main analysis \& constraint package for event generators All your analysis are belong to RIVET

Updated validation plots: MCPLOTS.CERN.CH
Online plots made from Rivet analyses
Want to help? Connect to Test4Theory (LHC@home 2.0)
Reproducible tuning: PROFESSOR
Automated tuning (\& more)

(Test4Theory)

LHC@home 2.0 Test4Theory volunteers' machines seen during the past $\mathbf{2 4}$ hours (7011 machines overall)

The LHC@home 2.0 project Test4Theory allows users to participate in running simulations of high-energy particle physics using their home computers.

The results are submitted to a database which is used as a common resource by both experimental and theoretical scientists working on the Large Hadron Collider at CERN.

Menu

$\xrightarrow{\rightarrow \text { Front Page }}$
 \rightarrow Generator Versions
 \rightarrow Generator Validation
 \rightarrow Update History
 \rightarrow User Manual and Reference

Analysis filter:

\rightarrow ALL pp/ppbar
\rightarrow ALL ee
Specific analysis:
\rightarrow Latest analyses

Z (Drell-Yan)

\rightarrow Jet Multiplicities
$\rightarrow 1 / \sigma d \sigma(Z) / d \varphi_{n}^{*}$
$\rightarrow \mathrm{do}(\mathrm{Z}) \mathrm{dpTZ}$
$\rightarrow 1 / \sigma d \sigma(Z) / d p T Z$

W

\rightarrow Charge asymmetry vs η
\rightarrow Charge asymmetry vs $\mathrm{N}_{\mathrm{jet}}$
$\rightarrow \mathrm{do}(\mathrm{jet}) / \mathrm{dpT}$
\rightarrow Jet Multiplicities

Top (MC only)

$\rightarrow \Delta \varphi$ (ttbar)
$\rightarrow \Delta y$ (ttbar)
$\rightarrow|\Delta y|$ (ttbar)
$\rightarrow \mathrm{M}$ (ttbar)
\rightarrow PT (ttbar)
\rightarrow Cross sections
$\rightarrow \mathrm{y}$ (ttbar)
\rightarrow Asymmetry
\rightarrow Individual tops

Bottom

$\rightarrow \eta$ Distributions
\rightarrow pT Distributions
\rightarrow Cross sections

Underlying Event : TRNS : $\Sigma(\mathrm{pT})$ vs pT 1

| Generator Group: | General-Purpose MCs Soft-Inclusive MCs Alpgen Herwig++ Pythia 6 Pythia 8 Sherpa |
| :--- | :--- | :--- |
| Vincia Epos Phojet Custom | |
| Subgroup: | Defaults LHC Tunes C++ Generators Tevatron vs LHC tunes |

pp @ 7000 GeV

[pdf] [eps] [png] hide details \leftarrow
[ATLAS] reference
[Herwig++ (Def)] param [Pythia 6 (Def)] param [Pythia 8 (Def)] param [Sherpa (Def)] param [steer]

ATLAS $\mathrm{pT}>0.1$

[pdf] [eps] [png] show details \rightarrow

- Explicit tables of data \& MC points
- Run cards for each generator
- Link to experimental reference paper
- Steering file for plotting program
- (Will also add link to RIVET analysis)

What is Tuning?

FSR pQCD Parameters

The value of the strong coupling at the Z pole Governs overall amount of radiation

Renormalization Scheme and Scale for as 1- vs 2-loop running, MSbar / CMW scheme, $\mu_{R} \sim \mathrm{p}_{\mathrm{T}}{ }^{2}$

Additional Matrix Elements included?
At tree level / one-loop level? Using what matching scheme?
Ordering variable, coherence treatment, Subleading Logs effective $1 \rightarrow 3$ (or $2 \rightarrow 4$), recoil strategy, ... Branching Kinematics (z definitions, local vs global momentum conservation), hard parton starting scales / phase-space cutoffs, masses, non-singular terms, ...

String Tuning

Main String Parameters

Longitudinal $F F=f(z)$
Lund Symmetric Fragmentation Function The a and b parameters

pT in string breaks Scale of string breaking process
IR cutoff and < $\mathrm{p}_{\mathrm{T}}>$ in string breaks

Mesons
Strangeness suppression, Vector/Pseudoscalar, η, η^{\prime}, \ldots

Baryons
Diquarks, Decuplet vs Octet, popcorn, junctions, ... ?

Initial-State Radiaton

Main ISR Parameters

Value and running of the strong coupling Governs overall amount of radiation (cf FSR)

Size of Phase Space
Starting scale \& Initial-Final interference Relation between Qps and Q_{F} (vetoed showers? cf matching) I-F colour-flow interference effects (cf ttbar asym) \& interleaving
Matching

"Primordial $\mathrm{kT}^{\prime \prime}$

Initial-State Radiaton

Main ISR Parameters

Value and running of the strong coupling Governs overall amount of radiation (cf FSR)

Size of Phase Space
Starting scale \& Initial-Final interference Relation between Qps and Q_{F} (vetoed showers? cf matching) I-F colour-flow interference effects (cf ttbar asym) \& interleaving

Additional Matrix Elements included?
At tree level / one-loop level? What matching scheme?
"Primordial kT"

Initial-State Radiaton

Main ISR Parameters

Value and running of the strong coupling Governs overall amount of radiation (cf FSR)
Size of Phase Space
Starting scale \& Initial-Final interference Relation between Qps and $\mathrm{Q}_{\text {F (vetoed showers? cf matching) }}$ I-F colour-flow interference effects (cf ttbar asym) \& interleaving

Additional Matrix Elements included?
At tree level / one-loop level? What matching scheme?
"Primordial kT"
A small additional amount of "unresolved" kT Fermi motion + unresolved ISR emissions + low-x effects?

Min-Bias \& Underlying Event

Main IR Parameters

Number of MPI

Pedestal Rise

Strings per Interaction

Min-Bias \& Underlying Event

Main IR Parameters

Number of MPI
Infrared Regularization scale for the QCD $2 \rightarrow 2$
(Rutherford) scattering used for multiple parton interactions (often called $p_{\text {то }}$) \rightarrow size of overall activity

Pedestal Rise

Strings per
Interaction

Min-Bias \& Underlying Event

Main IR Parameters

Number of MPI
Infrared Regularization scale for the QCD $2 \rightarrow 2$
(Rutherford) scattering used for multiple parton interactions
(often called $\mathrm{p}_{\text {то }}$) \rightarrow size of overall activity
Pedestal Rise
Proton transverse mass distribution \rightarrow difference betwen central (active) vs peripheral (less active) collisions

Strings per
Interaction

Min-Bias \& Underlying Event

Main IR Parameters

Number of MPI
Infrared Regularization scale for the QCD $2 \rightarrow 2$
(Rutherford) scattering used for multiple parton interactions
(often called $p_{\text {то }}$) \rightarrow size of overall activity
Pedestal Rise
Proton transverse mass distribution \rightarrow difference betwen central (active) vs peripheral (less active) collisions

Strings per Interaction

Color correlations between multiple-parton-interaction systems \rightarrow shorter or longer strings \rightarrow less or more hadrons per interaction

Min-Bias \& Underlying Event

Main IR Parameters

Number of MPI
Infrared Regularization scale for the QCD $2 \rightarrow 2$
(Rutherford) scattering used for multiple parton interactions
(often called $p_{\text {то }}$) \rightarrow size of overall activity
Pedestal Rise
Proton transverse mass distribution \rightarrow difference betwen central (active) vs peripheral (less active) collisions

Strings per Interaction

Color correlations between multiple-parton-interaction systems \rightarrow shorter or longer strings \rightarrow less or more hadrons per interaction

Fragmentation Tuning

Note: use infrared-unsafe observables - sensitive to hadronization (example)

Fragmentation Tuning

Note: use infrared-unsafe observables - sensitive to hadronization (example)

Identified Particles

$S_{1} / S_{0}, B / M, B_{3 / 2} / B_{1 / 2}$, strange/unstrange, Heavy

Compare with what you see at LHC Correlate with what you see at LHC
Can variations within uncertainties explain differences? Or not?

Need IR Corrections?

PYTHIA 8 (hadronization off)

vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right)
$$

Significant Discrepancies (>10\%)
for T < 0.05, Major <0.15, Minor <0.2, and for all values of Oblateness

Need IR Corrections?

PYTHIA 8 (hadronization off)

vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right)
$$

Significant Discrepancies (>10\%)
for T < 0.05, Major < 0.15, Minor < 0.2, and for all values of Oblateness + cross checks: different eCM energies (HAD and FSR scale differently)

Need IR Corrections?

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right) \quad \overline{1-T \rightarrow 0} \quad 1-T=\frac{1}{2}
$$

Need IR Corrections?

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right) \quad-\quad=T-\frac{1}{2}
$$

Note: Value of Strong coupling is

$$
a_{s}\left(M_{z}\right)=0.14
$$

Value of Strong Coupling

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right) \quad-\quad-T-\frac{1}{2}
$$

Note: Value of Strong coupling is

$$
\mathrm{a}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{z}}\right)=0.12
$$

Value of Strong Coupling

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right) \quad-\quad-T=\frac{1}{2}
$$

Note: Value of Strong coupling is

$$
a_{s}\left(M_{z}\right)=0.12
$$

Wait ... is this Crazy?

Wait ... is this Crazy?

Best result

Obtained with $a_{s}\left(M_{z}\right) \approx 0.14$
\neq World Average $=0.1176 \pm 0.0020$

Wait ... is this Crazy?

Best result
Obtained with $a_{s}\left(M_{z}\right) \approx 0.14$

$$
\neq \text { World Average }=0.1176 \pm 0.0020
$$

Value of a_{s} depends on the order and scheme $M C \approx$ Leading Order + LL resummation Other leading-Order extractions of $\mathrm{a}_{\mathrm{s}} \approx 0.13-0.14$ Effective scheme interpreted as "CMW" $\rightarrow 0.13$; 2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?

Wait ... is this Crazy?

Best result
Obtained with $a_{s}\left(M_{z}\right) \approx 0.14$

$$
\neq \text { World Average }=0.1176 \pm 0.0020
$$

Value of a_{s} depends on the order and scheme $M C \approx$ Leading Order + LL resummation
Other leading-Order extractions of $\mathrm{a}_{\mathrm{s}} \approx 0.13-0.14$
Effective scheme interpreted as "CMW" $\rightarrow 0.13$;
2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?
Not so crazy
Tune/measure even pQCD parameters with the actual generator.
Sanity check $=$ consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to 'MC scheme')

Wait ... is this Crazy?

Best result
Obtained with $a_{s}\left(M_{z}\right) \approx 0.14$

$$
\neq \text { World Average }=0.1176 \pm 0.0020
$$

Value of a_{s} depends on the order and scheme $M C \approx$ Leading Order + LL resummation
Other leading-Order extractions of $\mathrm{a}_{\mathrm{s}} \approx 0.13-0.14$
Effective scheme interpreted as "CMW" $\rightarrow 0.13$;
2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?
Not so crazy
Tune/measure even pQCD parameters with the actual generator.
Sanity check $=$ consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to 'MC scheme')

$$
\text { Improve } \rightarrow \text { Matching at LO and NLO }
$$

Sneak Preview:

Multijet NLO Corrections with VINCIA

Hartgring, Laenen, Skands, arXiv:1303.4974

First LEP tune with NLO 3-jet corrections

LO tune: $\alpha_{s}\left(\mathrm{M}_{\mathrm{z}}\right)=0.139{ }_{(1-1 \text { Ioop running, Msbar) }}$
NLO tune: $\alpha_{s}\left(\mathrm{Mz}_{\mathrm{z}}\right)=0.122$ (2-10op ruming, cmw)

ISR + Primordial kT

Drell-Yan pT distribution

Note: Q.M. requires physical observable!

Beware Process Dependence!

Beware Process Dependence!

MPI and Beam Remnants

Determine
рто : IR regularization scale for MPI
Impact-parameter distribution (b-shape),
Colour-reconnection strength ($\sim N_{\text {hadrons }} /$ string)

We use:
$\mathrm{P}\left(\mathrm{N}_{\mathrm{ch}}\right)$
pT
$<\mathrm{pT}>\left(\mathrm{N}_{\mathrm{ch}}\right)$
$\mathrm{d} \mathrm{N}_{\mathrm{ch}} / \mathrm{d} \mathrm{\eta}$ (\sim constant in y , except in forward region)
UE (including $\mathrm{d} \mathrm{N}_{\mathrm{ch}} / \mathrm{d} \Delta \varphi$)

Why dN/dn is useless (by itself)

FIG. 3. Charged-multiplicity distribution at 540 GeV , UA5 results (Ref. 32) vs simple models: dashed low p_{T} only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

FIG. 12. Charged-multiplicity distribution at 540 GeV , UA5 results (Ref. 32) vs multiple-interaction model with variable impact parameter: solid line, double-Gaussian matter distribution; dashed line, with fix impact parameter [i.e., $\widetilde{O}_{0}(b)$].

[^0]Can get <N> right with completely wrong models. Need RMS at least.

Underlying Event

UE - LHC from 900 to 7000 GeV - ATLAS

As you trigger on progressively higher p_{T}, the entire event increases until you reach a plateau ("max-bias") Interpreted as impact-parameter effect Qualitatively reproduced by MPI models

Relative size of this plateau / min-bias depends on pTO and b-profile

Matching

Example: $\mathrm{H}^{0} \leftrightarrows$ b̄

Born + Shower

Example: $\mathrm{H}^{0} \rightarrow \mathbf{b} \overline{\mathrm{~b}}$

Born + Shower

...

Born + I @ LO

Example: $\mathrm{H}^{0} \rightarrow \mathrm{~b} \overline{\mathrm{~b}}$

Born + Shower

$\left(\left.\right|^{2}\left(\boldsymbol{+} g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right]+\ldots\right)\right.$

Born + I @ LO

$\left|\left.\right|^{2}\left(g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}+2\right)\right]\right)\right.$

Example: $\mathrm{H}^{0} \rightarrow \mathrm{~b} \overrightarrow{\mathrm{~b}}$

Born + Shower

Born + I @ LO

Total Overkill to add these two. All I really need is just that $\boldsymbol{+ 2}$...

Adding Calculations

Born \times Shower

(see lecture 3)

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element

X+I @ LO

(with PT cutoff, see lecture 2)

$$
\begin{array}{lll}
X+I^{(2)} & \cdots \\
X+I^{(1)} & X+2^{(1)} & X+3^{(1)} \\
X+I^{(0)} & X+2^{(0)} & X+3^{(0)}
\end{array}
$$

Fixed-Order ME above pt cut \& nothing below
... Shower Approximation

Adding Calculations

Born \times Shower

(see lecture 3)

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element

...
Shower Approximation

X+I @ LO × Shower

(with PT cutoff, see lecture 2)

$X+I^{(2)}$	\cdots		
$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\cdots
$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\cdots

Fixed-Order ME above PT cut \& nothing below

Shower approximation above PT cut \& nothing below

\rightarrow Double Counting

Born \times Shower + (X+I) \times shower

Interpretation

- A (Complete Idiot's) Solution - Combine

1. $[X]_{\text {ME }}+$ showering
2. $[\mathrm{X}+1 \text { jet }]_{\text {ME }}+$ showering
3. ...

- Doesn't work
- $[X]+$ shower is inclusive
- $[X+1]+$ shower is also inclusive

Tree-Level Matrix Elements
PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...) UNITARITY (a.k.a. multiplication, PYTHIA, VINCIA, ...)

Tree-Level Matrix Elements PHASE-SPACE SLICING (a...a. CKKW, MLM, ...) UNITARITY (a.k.a. multiplication, PYTHIA, VINCIA, ...)

NLO Matrix Elements
SUBTRACTION (a.k.a.MC@NLO)
UNITARITY + SUBTRACTION (a..... POWHEG,VINCIA)

Cures

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)

UNITARITY (a.k.a. multiplication, PYTHIA, VINCIA, ...)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO) UNITARITY + SUBTRACTION (a.k.a. POWHEG,VINCIA)

	- $\times 1$			
	-	+ $\times 1$	$\underset{ }{\text { ¢ }}$	
	20	[100	+ \times	

+ WORK IN PROGRESS ...

NLO + multileg tree-level matrix elements
NLO multileg matching
Matching at NNLO

Cures

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)

UNITARITY (a.k.a. multiplication, PYTHIA, VINCIA, ...)

+ WORK IN PROGRESS ...

NLO + multileg tree-level matrix elements
NLO multileg matching
Matching at NNLO

Matching 1: Slicing

Examples: MLM, CKKW, CKKW-L

Matching 1: Slicing

Examples: MLM, CKKW, CKKW-L

First emission: "the HERWIG correction"

Use the fact that the angular-ordered HERWIG parton shower has a "dead zone" for hard wide-angle radiation (Seymour, 1995)

F @ LO \times LL-Soft (Herwig Shower)

F+1@ LO \times LL (HERWIG Corrections)

F @ $\mathbf{L O}_{1} \times \mathbf{L L}$ (HERWIG Matched)

Many emissions: the MLM \& CKKW-L prescriptions

(CKKW \& Lönnblad, 2001)

F+1@ LO \times LL-Soft (excl)

Slicing: The Cost

1. Initialization time (to pre-compute cross sections and warm up phase-space grids)
2. Time to generate 1000 events ($Z \rightarrow$ partons, fully showered \& matched. No hadronization.)

1000 SHOWERS

$\mathrm{Z} \rightarrow \mathrm{n}$: Number of Matched Emissions

Classic Example

W + Jets

Number of jets in $\mathrm{pp} \rightarrow \mathrm{W}+X$ at the LHC From 0 (W inclusive) to W+3 jets

PYTHIA includes matching up to $\mathrm{W}+\mathrm{I}$ jet + shower

With ALPGEN, also the LO matrix elements for 2 and 3 jets are included But Normalization still only LO
mcplots.cern.ch

Classic Example

W + Jets

Number of jets in $\mathrm{pp} \rightarrow \mathrm{W}+X$ at the LHC From 0 (W inclusive) to W+3 jets

PYTHIA includes matching up to $\mathrm{W}+\mathrm{I}$ jet + shower

With ALPGEN, also the LO matrix elements for 2 and 3 jets are included But Normalization still only LO

Slicing: Some Subtleties

Choice of slicing scale (=matching scale)

Fixed order must still be reliable when regulated with this scale
\rightarrow matching scale should never be chosen more than \sim one order of magnitude below hard scale.

Precision still "only" Leading Order

Choice of Renormalization Scale

We already saw this can be very important (and tricky) in multi-scale problems.

Caution advised (see also supplementary slides \& lecture notes)

Choice of Matching Scale

\rightarrow A scale of 20 GeV for a W boson becomes 40 GeV for something weighing $2 M_{W}$, etc ... (+ adjust for C_{A} / C_{F} if g-initiated)
\rightarrow The matching scale should be written as
a ratio (Bjorken scaling)
Reminder: in perturbative region, QCD is approximately scale invariant

Using a too low matching scale \rightarrow everything just becomes highest ME

Caveat emptor: showers generally do not include helicity correlations

- Low Matching Scale

100

$$
75
$$

$$
50
$$

$$
25
$$

0
Born (exc) + $1+2$ (inc)

Matching 2: Subtraction

Examples: MC@NLO, aMC@NLO

LO \times Shower

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element

Shower Approximation

Matching 2: Subtraction

Examples: MC@NLO, aMC@NLO

LO \times Shower

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element

Shower Approximation

NLO - Showernlo

$X^{(2)}$	$X+I^{(2)}$	\ldots		
X				
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Expand shower approximation to NLO analytically, then subtract:

Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

Matching 2: Subtraction

LO \times Shower

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element

...
Shower Approximation
(NLO - Showernlo) \times Shower

$X^{(1)}$	$X^{(1)}$	\ldots		
$X^{(1)}$	$X^{(1)}$	$X^{(1)}$	$X^{(1)}$	\ldots
Born	$X^{+} I^{(0)}$	$X^{(1)}$	$X^{(1)}$	\ldots

Fixed-Order ME minus Shower Approximation (NOTE: can be <0!)

Subleading corrections generated by shower off subtracted ME

Matching 2: Subtraction

Examples: MC@NLO, aMC@NLO

Combine \rightarrow MC@ NLO Frixione, Webber, JHEP 0206 (2002) 029

Consistent NLO + parton shower (though correction events can have w<0) Recently, has been almost fully automated in aMC@NLO

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

NLO: for X inclusive
LO for $\mathbf{X + 1}$
LL: for everything else

NB: w < 0 are a problem because they kill efficiency:

Extreme example: 1000 positive-weight - 999 negative-weight events \rightarrow statistical precision of 1 event, for 2000 generated (for comparison, normal MC@NLO has ~ 10\% neg-weights)

Matching 3: ME Corrections

Double counting, IR divergences, multiscale logs

Matching 3: ME Corrections

Standard Paradigm:
Have ME for $\mathrm{X}, \mathrm{X}+1, \ldots, \mathrm{X}+\mathrm{n}$;
Double counting, IR divergences, multiscale logs Want to combine and add showers \rightarrow "The Soft Stuff"

Matching 3: ME Corrections

Standard Paradigm:
Have ME for $\mathrm{X}, \mathrm{X}+1, \ldots, \mathrm{X}+\mathrm{n}$; Double counting, IR divergences, multiscale logs Want to combine and add showers \rightarrow "The Soft Stuff"

Works pretty well at Iow multiplicities Still, only corrected for "hard" scales; Soft still pure LL.

Matching 3: ME Corrections

Standard Paradigm:
Have ME for $\mathrm{X}, \mathrm{X}+1, \ldots, \mathrm{X}+\mathrm{n}$;

Works pretty well at low multiplicities Still, only corrected for "hard" scales; Soft still pure LL.

At high multiplicities:
Efficiency problems: slowdown from need to compute and generate phase space from $\mathrm{d} \sigma_{\mathrm{x}+\mathrm{n}}$, and from unweighting (efficiency also reduced by negative weights, if present)
Scale hierarchies: smaller single-scale phase-space region
Powers of alphas pile up

Matching 3: ME Corrections

Standard Paradigm:
Have ME for $\mathrm{X}, \mathrm{X}+1, \ldots, \mathrm{X}+\mathrm{n}$;

Double counting, IR divergences, multiscale logs

Works pretty well at low multiplicities Still, only corrected for "hard" scales; Soft still pure LL.

At high multiplicities:
Efficiency problems: slowdown from need to compute and generate phase space from $\mathrm{d} \sigma_{\mathrm{x}+\mathrm{n}}$, and from unweighting (efficiency also reduced by negative weights, if present)
Scale hierarchies: smaller single-scale phase-space region
Powers of alphas pile up
Better Starting Point: a QCD fractal?

(shameless VINCIA promo)

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)

(shameless VINCIA promo)

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)

Interleaved Paradigm:

Have shower; want to improve it using ME for $\mathrm{X}, \mathrm{X}+1, \ldots, \mathrm{X}+\mathrm{n}$.

(shameless VINCIA promo)

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)

Interleaved Paradigm:

Have shower; want to improve it using ME for $\mathrm{X}, \mathrm{X}+1, \ldots, \mathrm{X}+\mathrm{n}$.
Interpret all-orders shower structure as a trial distribution
Quasi-scale-invariant: intrinsically multi-scale (resums logs)
Unitary: automatically unweighted (\& IR divergences \rightarrow
multiplicities)
More precise expressions imprinted via veto algorithm: ME corrections at LO, NLO, ... \rightarrow soft and hard corrections
No additional phase-space generator or σ_{X+n} calculations \rightarrow fast

(shameless VINCIA promo)

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)

Interleaved Paradigm:

Have shower; want to improve it using ME for $X, X+1, \ldots, X+n$.
Interpret all-orders shower structure as a trial distribution
Quasi-scale-invariant: intrinsically multi-scale (resums logs)
Unitary: automatically unweighted (\& IR divergences \rightarrow multiplicities)
More precise expressions imprinted via veto algorithm: ME corrections at LO, NLO, ... \rightarrow soft and hard corrections
No additional phase-space generator or σ_{X+n} calculations \rightarrow fast

Automated Theory Uncertainties

For each event: vector of output weights (central value = 1)

+ Uncertainty variations. Faster than N separate samples; only one sample to analyse, pass through detector simulations, etc.

LO: Giele, Kosower, Skands, PRD84(2011)054003
NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level
$\left|M_{F}\right|^{2}$

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element

$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element

$\rightarrow\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { an! }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\rightarrow\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int \operatorname{Real}$

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { and }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\rightarrow\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int \operatorname{Real}$

No negative-weight events Can be very fast

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { and }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\rightarrow \quad \text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element

$\rightarrow\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int \operatorname{Real}$

No negative-weight events Can be very fast

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\begin{aligned}
& \longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { any }} a_{i}\left|M_{F}\right|^{2} \\
& \text { Correct to Matrix Element }
\end{aligned}
$$

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\rightarrow \quad \text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\rightarrow\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

First Order

PYTHIA: LO_{1} corrections to most SM and BSM decay processes, and for pp \rightarrow Z/W/H (Sjöstrand 1987)
POWHEG (\& POWHEG BOX): $\mathrm{LO}_{1}+\mathrm{NLO}_{0}$ corrections for generic processes (Frixione, Nason, Oleari, 2007)

Multileg NLO:

VINCIA: $\mathrm{LO}_{1,2,3,4}+\mathrm{NLO}_{0,1}$ (shower plugin to PYTHIA 8; formalism for $p p$ soon to appear) (see previous slide)
MiNLO-merged POWHEG: $\mathrm{LO}_{1,2}+\mathrm{NLO}_{0,1}$ for pp \rightarrow Z/W/ H
UNLOPS: for generic processes (in PYTHIA 8, based on POWHEG input) (Lönnblad \& Prestel, 2013)

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\begin{aligned}
& \longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { any }} a_{i}\left|M_{F}\right|^{2} \\
& \text { Correct to Matrix Element }
\end{aligned}
$$

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\rightarrow \quad \text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\rightarrow\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

First Order

PYTHIA: LO_{1} corrections to most SM and BSM decay processes, and for pp \rightarrow Z/W/H (Sjöstrand 1987)
POWHEG (\& POWHEG BOX): $\mathrm{LO}_{1}+\mathrm{NLO}_{0}$ corrections for generic processes (Frixione, Nason, Oleari, 2007)

Multileg NLO:

VINCIA: $\mathrm{LO}_{1,2,3,4}+\mathrm{NLO}_{0,1}$ (shower plugin to PYTHIA 8; formalism for $p p$ soon to appear) (see previous slide)
MiNLO-merged POWHEG: $\mathrm{LO}_{1,2}+\mathrm{NLO}_{0,1}$ for pp \rightarrow Z/W/ H
UNLOPS: for generic processes (in PYTHIA 8, based on POWHEG input) (Lönnblad \& Prestel, 2013)

A8m

Uncertainty Estimates

a) Authors provide specific "tune variations" Run once for each variation \rightarrow envelope

PS, Phys. Rev. D82 (2010) 074018

b) One shower run

+ unitarity-based uncertainties \rightarrow envelope
Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003

Uncertainty Estimates

a) Authors provide specific "tune variations" Run once for each variation \rightarrow envelope

PS, Phys. Rev. D82 (2010) 074018

b) One shower run

+ unitarity-based uncertainties \rightarrow envelope
Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003

Summary

QCD phenomenology is witnessing a rapid evolution:
Driven by demand of high precision for LHC environment
Exploring physics: infinite-order structure of quantum field theory. Universalities vs process-dependence.
Emergent QCD phenomena: Jets, Strings, Hadrons

Non-perturbative QCD is still hard

Lund string model remains best bet, but ~ 30 years old Lots of input from LHC
"Solving the LHC" is both interesting and rewarding
New ideas evolving on both perturbative and non-perturbative sides \rightarrow many opportunities for theory-experiment interplay
Key to high precision \rightarrow max information about the Terascale

MCnet Studentships

MCnet projects:

- PYTHIA (+ VINCIA)
- HERWIG
- SHERPA
- MadGraph
- Ariadne (+ DIPSY)
- Cedar (Rivet/Professor)

Activities include

- summer schools (2014: Manchester?)
- short-term studentships
- graduate students
- postdocs
- meetings (open/closed)

Monte Carlo

 training studentships

3-6 month fully funded studentships for current PhD students at one of the MCnet nodes. An excellent opportunity to really understand and improve the Monte Carlos you use!
Application rounds every 3 months.

for details go to: www.montecarlonet.org

Come to Australia

Jets vs Parton Showers

Jet clustering algorithms

Map event from low E-resolution scale (i.e., with many partons/hadrons, most of which are soft) to a higher Eresolution scale (with fewer, hard, IR-safe, jets)

Parton shower algorithms

Map a few hard partons to many softer ones
Probabilistic \rightarrow closer to nature.
Not uniquely invertible by any jet algorithm*

```
(* See "Qjets" for a probabilistic jet algorithm, arXiv:I201.I914)
(* See "Sector Showers" for a deterministic shower, arXiv: I I 09.3608)
```


[^0]: Sjöstrand \& v. Zijl,
 Phys.Rev.D36(1987)2019

