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From Partons to Pions
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Here’s a fast parton

How about I just call it a hadron?
→ “Local Parton-Hadron Duality”
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Parton → Hadrons?

Early models: “Independent Fragmentation” 
Local Parton Hadron Duality (LPHD) can give useful results 
for inclusive quantities in collinear fragmentation
Motivates a simple model:

But … 
The point of confinement is that partons are coloured 
Hadronization = the process of colour neutralization

→ Unphysical to think about independent fragmentation 
of a single parton into hadrons
→ Too naive to see LPHD (inclusive) as a justification for 
Independent Fragmentation (exclusive)
→ More physics needed
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Colour Neutralization

A physical hadronization model 
Should involve at least TWO partons, with opposite color 
charges (e.g., R and anti-R) 
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Color Flow

Between which partons do confining potentials 
arise?

Set of simple rules for color flow, based on large-NC 
limit

6

Illustrations from: P.Nason & P.S., 
PDG Review on MC Event Generators, 2012(Never Twice Same Color: true up to O(1/NC2))
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q ! qg

Figure 1.1: Color development of a shower in e+e� annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay �� ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably a⇥ect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order �em ln Q/me, or even of order �em ln Q/me ln E�/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut o⇥ below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not a⇥ected by it.
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(Never Twice Same Color: true up to O(1/NC2))
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Color Flow

For an entire Cascade

7

Example: Z0 → qq

Figure 1.1: Color development of a shower in e+e� annihilation. Systems of color-connected
partons are indicated by the dashed lines.
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Singlet #1 Singlet #2 Singlet #3

Coherence of pQCD cascades → not much “overlap” between singlet subsystems 
→ Leading-colour approximation pretty good

LEP measurements in WW confirm this (at least to order 10% ~ 1/Nc2 )
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Note: (much) more color getting kicked around in hadron collisions → more later
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gluons) confined 
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~ Force required to lift a 16-ton truck
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From Partons to Strings

Motivates a model:
Let color field collapse into a (infinitely) narrow flux 
tube of uniform energy density κ ~ 1 GeV / fm
→ Relativistic 1+1 dimensional worldsheet – string 

9

Pedagogical Review: B. Andersson, The Lund model. 
Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 1997.
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String Breaks

In “unquenched” QCD
g→qq → The strings would break

11

Illustrations by T. Sjöstrand

(simplified colour representation)

String Breaks:
via Quantum Tunneling

P / exp

 
�m2

q � p2?
/⇡

!
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g→qq → The strings would break

11

Illustrations by T. Sjöstrand

(simplified colour representation)

String Breaks:
via Quantum Tunneling

P / exp

 
�m2

q � p2?
/⇡

!

→ Gaussian pT spectrum
→ Heavier quarks suppressed. Prob(q=d,u,s,c) ≈ 1 : 1 : 0.2 : 10-11 
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The (Lund) String Model

12

Map:

• Quarks → String 
Endpoints

• Gluons → Transverse 
Excitations (kinks)

• Physics then in terms of 
string worldsheet 
evolving in spacetime

• Probability of string 
break (by quantum 
tunneling) constant per 
unit area → AREA LAW

Simple space-time picture
Details of string breaks more complicated (e.g., baryons, spin multiplets)

See also Yuri’s 2nd lecture

→ STRING EFFECT
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Fragmentation Function

13

Spacetime Picture
Fragmentation starts in the middle and spreads outwards:

z

tqq m2
⊥

m2
⊥

1
2

but breakup vertices causally disconnected
⇒ can proceed in arbitrary order
⇒ left–right symmetry

P(1,2) = P(1) × P(1 → 2)

= P(2) × P(2 → 1)

⇒ Lund symmetric fragmentation function
f(z) ∝ (1 − z)a exp(−bm2
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2 = 4

time

spatial
separation

The meson M takes a fraction 
z of the quark momentum, 

How big that fraction is, 
z ∈ [0,1], 

is determined by the 
fragmentation function, 

f(z,Q02)

leftover string,
further string breaks

String Break

q

M



P.  S k a n d s

Fragmentation Function

13

Spacetime Picture
Fragmentation starts in the middle and spreads outwards:

z

tqq m2
⊥

m2
⊥

1
2

but breakup vertices causally disconnected
⇒ can proceed in arbitrary order
⇒ left–right symmetry

P(1,2) = P(1) × P(1 → 2)

= P(2) × P(2 → 1)

⇒ Lund symmetric fragmentation function
f(z) ∝ (1 − z)a exp(−bm2

⊥/z)/z  0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

f(z), a = 0.5, b= 0.7

mT
2 = 0.25
mT

2 = 1
mT

2 = 4

time

spatial
separation

The meson M takes a fraction 
z of the quark momentum, 

How big that fraction is, 
z ∈ [0,1], 

is determined by the 
fragmentation function, 

f(z,Q02)

leftover string,
further string breaks

String Break

q

M
Spacelike Separation



QCD

P. Skands

Lecture
V

Large System

14

Illustrations by T. Sjöstrand
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String breaks causally disconnected
→ can proceed in arbitrary order (left-right, right-left, in-out, …) 
→ constrains possible form of fragmentation function
→ Justifies iterative ansatz (useful for MC implementation)

Illustrations by T. Sjöstrand
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Left-Right Symmetry

Causality → Left-Right Symmetry
→ Constrains form of fragmentation function!
→ Lund Symmetric Fragmentation Function 

15
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a=0.9
a=0.1

b=0.5 b=2

b=1, mT=1 a=0.5, mT=1

Small a 
→ “high-z tail”

Small b 
→ “low-z enhancement”

cuto↵ Q
had

, may be larger than the purely non-perturbative /⇡ above, to account for e↵ects
of additional unresolved soft-gluon radiation below Q

had

. In principle, the magnitude of this
additional component should scale with the cuto↵, but in practice it is up to the user to
enforce this by retuning the relevant parameter when changing the hadronization scale.

Since quark masses are di�cult to define for light quarks, the value of the strangeness
suppression is determined from experimental observables, such as the K/⇡ and K⇤/⇢ ratios.
The parton-shower evolution generates a small amount of strangeness as well, through per-
turbative g ! ss̄ splittings. The optimal value for the non-perturbative 2s/(u + d) ratio
should therefore exhibit a mild anticorrelation with the amount of quarks produced in the
perturbative stage.

Baryon production can also be incorporated, by allowing string breaks to produce pairs
of diquarks, loosely bound states of two quarks in an overall 3̄ representation. Again, since
diquark masses are di�cult to define, the relative rate of diquark to quark production is
extracted, e.g. from the p/⇡ ratio, and since the perturbative shower splittings do not produce
diquarks, the e↵ective value for this parameter is mildly correlated with the amount of g ! qq̄
splittings occurring on the shower side. More advanced scenarios for baryon production have
also been proposed, see [48]. Within the PYTHIA framework, a fragmentation model including
baryon string junctions [49] is also available.

The next step of the algorithm is the assignment of the produced quarks within hadron
multiplets. Using a nonrelativistic classification of spin states, the fragmenting q may com-
bine with the q̄0 from a newly created breakup to produce a meson — or baryon, if diquarks
are involved — of a given valence quark spin S and angular momentum L. The lowest-lying
pseudoscalar and vector meson multiplets, and spin-1/2 and -3/2 baryons, are assumed to
dominate in a string framework1, but individual rates are not predicted by the model. This
is therefore the sector that contains the largest amount of free parameters.

From spin counting, the ratio V/P of vectors to pseudoscalars is expected to be 3, but in
practice this is only approximately true for B mesons. For lighter flavors, the di↵erence in
phase space caused by the V –P mass splittings implies a suppression of vector production.
When extracting the corresponding parameters from data, it is advisable to begin with
the heaviest states, since so-called feed-down from the decays of higher-lying hadron states
complicates the extraction for lighter particles, see section 1.2.3. For diquarks, separate
parameters control the relative rates of spin-1 diquarks vs. spin-0 ones and, likewise, have
to be extracted from data.

With p2

? and m2 now fixed, the final step is to select the fraction, z, of the fragmenting
endpoint quark’s longitudinal momentum that is carried by the created hadron, an aspect
for which the string model is highly predictive. The requirement that the fragmentation be
independent of the sequence in which breakups are considered (causality) imposes a “left-
right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1

z
(1� z)a exp

✓
�b (m2

h

+ p2

?h

)

z

◆
, (1.11)

1
The PYTHIA implementation includes the lightest pseudoscalar and vector mesons, with the four L = 1

multiplets (scalar, tensor, and 2 pseudovectors) available but disabled by default, largely because several

states are poorly known and thus may result in a worse overall description when included. For baryons, the

lightest spin-1/2 and -3/2 multiplets are included.

13

String Break

q

z

Note: In principle, a can be flavour-dependent. In practice, we only distinguish between baryons and mesons
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Fig. 21: Illustration of the iterative selection of flavours and momenta in the Lund string fragmentation model.

practice this is only approximately true for B

⇤
/B. For lighter flavours, the difference in phase space

caused by the V –S mass splittings implies a suppression of vector production. Thus, for D

⇤
/D, the

effective ratio is already reduced to about ⇠ 1.0 – 2.0, while for K

⇤
/K and ⇢/⇡, extracted values

range from 0.3 – 1.0. Recall, as always, that these are production ratios of primary hadrons, hence
feed-down complicates the extraction of these parameters from experimental data, in particular for
the lighter hadron species. The production of higher meson resonances is assumed to be low in a
string framework23. For diquarks, separate parameters control the relative rates of spin-1 diquarks vs.
spin-0 ones and, likewise, have to extracted from data, with resulting values of order (qq)1/(qq)0 ⇠
0.075 – 0.15.

With p

2
? and m

2 now fixed, the final step is to select the fraction, z, of the fragmenting end-
point quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string
picture is substantially more predictive than for the flavour selection. Firstly, the requirement that the
fragmentation be independent of the sequence in which breakups are considered (causality) imposes
a “left-right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1

z

(1� z)

a
exp

✓
�b (m

2
h + p

2
?h)

z

◆
, (68)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). As a
by-product, the probability distribution in invariant time ⌧ of q

0
q̄ breakup vertices, or equivalently

� = (⌧)

2, is also obtained, with dP/d� / �

a
exp(�b�) implying an area law for the colour flux,

and the average breakup time lying along a hyperbola of constant invariant time ⌧0 ⇠ 10

�23
s [68].

The a and b parameters are the only free parameters of the fragmentation function, though a may
in principle be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder
fragmentation function for heavier hadrons (in the rest frame of the string).

The iterative selection of flavours, p?, and z values is illustrated in figure 21. A parton produced
in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale
QIR, with 3-momentum ~p = (~p?0, p+), where the “+” on the third component denotes “light-cone”
momentum, p± = E ± pz . Next, an adjacent d

¯

d pair from the vacuum is created, with relative
transverse momenta ±p?1. The fragmenting quark combines with the ¯

d from the breakup to form a
23The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are

poorly known and thus may result in a worse overall description when included.
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The Length of Strings
In Space: 

String tension ≈ 1 GeV/fm → a 5-GeV quark can travel 5 fm before 
all its kinetic energy is transformed to potential energy in the string. 
Then it must start moving the other way. String breaks will have 
happened behind it → yo-yo model of mesons

In Rapidity :

17
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For a pion with z=1 along string direction 
(For beam remnants, use a proton mass):

Note: Constant average hadron 
multiplicity per unit y → logarithmic 

growth of total multiplicity
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Alternative: The Cluster Model

“Preconfinement”
+ Force g→qq splittings at Q0

→ high-mass q-qbar “clusters” 
Isotropic 2-body decays to hadrons
according to PS ≈ (2s1+1)(2s2+1)(p*/m)

18

The HERWIG Cluster Model

“Preconfinement”:
colour flow is local
in coherent shower evolution
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●

1) Introduce forced g → qq branchings
2) Form colour singlet clusters

3) Clusters decay isotropically to 2 hadrons according to
phase space weight ∼ (2s1 + 1)(2s2 + 1)(2p∗/m)

simple and clean, but . . .
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Strings and Clusters

Small strings → clusters. Large clusters → strings

19

String vs. Cluster
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parameters few many
flavour composition messy simple
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parameters many few

“There ain’t no such thing as a parameter-free good description”

(&SHERPA)
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without multiple interactions

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019

Distribution of
the number of 
Charged Tracks

Do not be scared of the failure of physical models
(typically points to more interesting physics)
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diffractive system. Each system is represented by a string
stretched between a diquark in the forward end and a
quark in the other one. Except for some tries with a dou-
ble string stretched from a diquark and a quark in the for-
ward direction to a central gluon, which gave only modest
changes in the results, no attempts have been made with
more detailed models for diHractive states.

V. MULTIPLICITY DISTRIBUTIONS

The charged-multiplicity distribution is interesting,
despite its deceptive simplicity, since most physical
mechanisms (of those playing a role in minimum bias
events) contribute to the multiplicity buildup. This was
illustrated in Sec. III. From now on we will use the
complete model, i.e., including multiple interactions and
varying impact parameters, to look more closely at the
data. Single- and double-difFractive events are now also
included; with the UA5 triggering conditions roughly —,

of the generated double-diffractive events are retained,
while the contribution from single diffraction is negligi-
ble.

A. Total multiplicities

A final comparison with the UA5 data at 540 GeV is
presented in Fig. 12, for the double Gaussian matter dis-
tribution. The agreement is now generally good, although
the value at the peak is still a bit high. In this distribu-
tion, the varying impact parameters do not play a major
role; for comparison, Fig. 12 also includes the other ex-

treme of a ftx overlap Oo(b) (with the use of the formal-
ism in Sec. IV, i.e., requiring at least one semihard in-
teraction per event, so as to minimize other differences).
The three other matter distributions, solid sphere, Gauss-
ian and exponential, are in between, and are all compati-
ble with the data.
Within the model, the total multiplicity distribution

can be separated into the contribution from (double-)
diffractive events, events with one interaction, events
with two interactions, and so on, Fig. 13. While 45% of
all events contain one interaction, the low-multiplicity
tail is dominated by double-diffractive events and the
high-multiplicity one by events with several interactions.
The average charged multiplicity increases with the
number of interactions, Fig. 14, but not proportionally:
each additional interaction gives a smaller contribution
than the preceding one. This is partly because of
energy-momentum-conservation effects, and partly be-
cause the additional messing up" when new string
pieces are added has less effect when many strings al-
ready are present. The same phenomenon is displayed in
Fig. 15, here as a function of the "enhancement factor"f (b), i.e., for increasingly central collisions.
The multiplicity distributions for the 200- and 900-GeV

UA5 data have not been published, but the moments
have, ' and a comparison with these is presented in Table
I. The (n, t, ) value was brought in reasonable agreement
with the data, at each energy separately, by a variation of
the pro scale. The moments thus obtained are in reason-
able agreement with the data.

B. Energy dependence

10
I I I I I I I i.

UA5 1982 DATA

UA5 1981 DATA

Extrapolating to higher energies, the evolution of aver-
age charged multiplicity with energy is shown in Fig. 16.
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FIG. 12. Charged-multiplicity distribution at 540 GeV, UA5
results (Ref. 32) vs multiple-interaction model with variable im-
pact parameter: solid line, double-Gaussian matter distribution;
dashed line, with fix impact parameter [i.e., 00(b)]

FIG. 13. Separation of multiplicity distribution at 540 GeV
by number of interactions in event for double-Gaussian matter
distribution. Long dashes, double diffractive; dashed-dotted
one interaction; thick solid line, two interactions; dashed line,
three interactions; dotted line, four or more interactions; thin
solid line, sum of everything.

H a d ro n  C o l l i s i o n s

without multiple interactions

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019
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What is Pileup / Min-Bias?
We use Minimum-Bias (MB) data to test soft-QCD models

Pileup = “Zero-bias” 
“Minimum-Bias” typically suppresses diffraction by requiring 
two-armed coincidence, and/or ≥ n particle(s) in central region

23
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What is Pileup / Min-Bias?
We use Minimum-Bias (MB) data to test soft-QCD models

Pileup = “Zero-bias” 
“Minimum-Bias” typically suppresses diffraction by requiring 
two-armed coincidence, and/or ≥ n particle(s) in central region

→ Pileup contains more diffraction than Min-Bias 
Total diffractive cross section ~ 1/3 σinel

Most diffraction is low-mass → no contribution in central regions
High-mass tails could be relevant in FWD region 
→ direct constraints on diffractive components (→ later)

23
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What is diffraction?
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Double Diffraction: both protons explode; gap inbetween
Central Diffraction: two protons + a central (exclusive) system
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What is minimum bias?
≈ “all events, with no bias from restricted trigger conditions”
σtot = σelastic+σsingle−diffractive+σdouble−diffractive+. . .+σnon−diffractive

y

dn/dy

reality: σmin−bias ≈ σnon−diffractive+σdouble−diffractive ≈ 2/3 × σtot

What is underlying event?

y

dn/dy

underlying event

jet

pedestal height

“Pedestal Effect” 

Illustrations by T. Sjöstrand

What is Underlying Event ?

y =
1

2
ln

✓
E + pz
E � pz

◆

Useful variable in hadron collisions: Rapidity (now along beam axis)

Designed to be additive 
under Lorentz Boosts along 

beam (z) direction

y ! 1 for pz ! Ey ! �1 for pz ! �E y ! 0 for pz ! 0

(rapidity)
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Questions
Pileup

How much? In central & fwd acceptance?

Structure: averages + fluctuations, particle composition, lumpiness, …

Scaling to 13 TeV and beyond

Underlying Event ~ “A handful of pileup” ?
Hadronizes with Main Event → “Color reconnections”
Additional “minijets” from multiple parton interactions

Hadronization
Models from the 80ies, mainly constrained in 90ies
Meanwhile, perturbative models have evolved

Dipole/Antenna showers, ME matching, NLO corrections, … 
Precision → re-examine non-perturbative models and constraints
New clean constraints from LHC (& future colliders)?

Hadronization models ⥂ analytical NP corrections?

Uses and Limits of “Tuning”

26
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extracted and applied as a function of the T2 track multi-
plicity and affects only the 1h category. The systematic
uncertainty is estimated to be 0.45% which corresponds
to the maximal variation of the background that gives a
compatible fraction of 1h events (trigger and pileup cor-
rected) in the two samples.

Trigger efficiency: This correction is estimated from the
zero-bias triggered events. It is extracted and applied as a
function of the T2 track multiplicity, being significant
for events with only one track and rapidly decreasing to
zero for five or more tracks. The systematic uncertainty is
evaluated comparing the trigger performances with and
without the requirement of having a track pointing to the
vertex and comparing the overall rate correction in the two
samples.

Pileup: This correction factor is determined from the
zero-bias triggered events: the probability to have a bunch
crossing with tracks in T2 is 0.05–0.06 from which the
probability of having n ! 2 inelastic collisions with tracks
in T2 in the same bunch crossing is derived. The systematic
uncertainty is assessed from the variation, within the same
data set, of the probability to have a bunch crossing with
tracks in T2 and from the uncertainty due to the T2 event
reconstruction efficiency.

Reconstruction efficiency: This correction is estimated
using Monte Carlo generators (PYTHIA8 [13], QGSJET-
II-03 [14]) tuned with data to reproduce the measured
fraction of 1h events which is equal to 0:216" 0:007.
The systematic uncertainty is assumed to be half of the
correction: as it mainly depends on the fraction of events
with only neutral particles in T2, it accounts for variations
between the different Monte Carlo generators.

T1 only: This correction takes into account the amount
of events with no final state particles in T2 but one or
more tracks in T1. The uncertainty is the precision with
which this correction can be calculated from the zero-bias
sample plus the uncertainty of the T1 reconstruction
efficiency.

Internal gap covering T2: This correction takes into
account the events which could have a rapidity gap fully
covering the T2 ! range and no tracks in T1. It is estimated
from data, measuring the probability of having a gap in T1

and transferring it to the T2 region. The uncertainty takes
into account the different conditions (average charged
multiplicity, pT threshold, gap size, and surrounding
material) between the two detectors.
Central diffraction: This correction takes into account

events with all final state particles outside the T1 and T2
pseudorapidity acceptance and it is determined from simu-
lations based on the PHOJET and MBR event generators
[15,16]. Since the cross section is unknown and the uncer-
tainties are large, no correction is applied to the inelastic
rate but an upper limit of 0.25 mb is taken as an additional
source of systematic uncertainty.
Low mass diffraction: The T2 acceptance edge at j!j ¼

6:5 corresponds approximately to diffractive masses of
3.6 GeV (at 50% efficiency). The contribution of events
with all final state particles at j!j> 6:5 is estimated with
QGSJET-II-03 after tuning the Monte Carlo prediction with

TABLE IV. Summary of the measured cross sections with detailed uncertainty composition.
The " uncertainty follows from the COMPETE preferred-model " extrapolation error of
"0:007. The right-most column gives the full systematic uncertainty, combined in quadrature
and considering the correlations between the contributions.

Systematic uncertainty

Quantity Value el. t-dep el. norm inel " ) full

#tot (mb) 101.7 "1:8 "1:4 "1:9 "0:2 ) "2:9
#inel (mb) 74.7 "1:2 "0:6 "0:9 "0:1 ) "1:7
#el (mb) 27.1 "0:5 "0:7 "1:0 "0:1 ) "1:4
#el=#inel (%) 36.2 "0:2 "0:7 "0:9 ) "1:1
#el=#tot (%) 26.6 "0:1 "0:4 "0:5 ) "0:6

FIG. 1 (color). Compilation [8,20–24] of the total (#tot), in-
elastic (#inel) and elastic (#el) cross-section measurements: the
TOTEM measurements described in this Letter are highlighted.
The continuous black lines (lower for pp, upper for !pp) repre-
sent the best fits of the total cross-section data by the COMPETE
collaboration [19]. The dashed line results from a fit of the
elastic scattering data. The dash-dotted lines refer to the inelastic
cross section and are obtained as the difference between the
continuous and dashed fits.
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extracted and applied as a function of the T2 track multi-
plicity and affects only the 1h category. The systematic
uncertainty is estimated to be 0.45% which corresponds
to the maximal variation of the background that gives a
compatible fraction of 1h events (trigger and pileup cor-
rected) in the two samples.

Trigger efficiency: This correction is estimated from the
zero-bias triggered events. It is extracted and applied as a
function of the T2 track multiplicity, being significant
for events with only one track and rapidly decreasing to
zero for five or more tracks. The systematic uncertainty is
evaluated comparing the trigger performances with and
without the requirement of having a track pointing to the
vertex and comparing the overall rate correction in the two
samples.

Pileup: This correction factor is determined from the
zero-bias triggered events: the probability to have a bunch
crossing with tracks in T2 is 0.05–0.06 from which the
probability of having n ! 2 inelastic collisions with tracks
in T2 in the same bunch crossing is derived. The systematic
uncertainty is assessed from the variation, within the same
data set, of the probability to have a bunch crossing with
tracks in T2 and from the uncertainty due to the T2 event
reconstruction efficiency.

Reconstruction efficiency: This correction is estimated
using Monte Carlo generators (PYTHIA8 [13], QGSJET-
II-03 [14]) tuned with data to reproduce the measured
fraction of 1h events which is equal to 0:216" 0:007.
The systematic uncertainty is assumed to be half of the
correction: as it mainly depends on the fraction of events
with only neutral particles in T2, it accounts for variations
between the different Monte Carlo generators.

T1 only: This correction takes into account the amount
of events with no final state particles in T2 but one or
more tracks in T1. The uncertainty is the precision with
which this correction can be calculated from the zero-bias
sample plus the uncertainty of the T1 reconstruction
efficiency.

Internal gap covering T2: This correction takes into
account the events which could have a rapidity gap fully
covering the T2 ! range and no tracks in T1. It is estimated
from data, measuring the probability of having a gap in T1

and transferring it to the T2 region. The uncertainty takes
into account the different conditions (average charged
multiplicity, pT threshold, gap size, and surrounding
material) between the two detectors.
Central diffraction: This correction takes into account

events with all final state particles outside the T1 and T2
pseudorapidity acceptance and it is determined from simu-
lations based on the PHOJET and MBR event generators
[15,16]. Since the cross section is unknown and the uncer-
tainties are large, no correction is applied to the inelastic
rate but an upper limit of 0.25 mb is taken as an additional
source of systematic uncertainty.
Low mass diffraction: The T2 acceptance edge at j!j ¼

6:5 corresponds approximately to diffractive masses of
3.6 GeV (at 50% efficiency). The contribution of events
with all final state particles at j!j> 6:5 is estimated with
QGSJET-II-03 after tuning the Monte Carlo prediction with

TABLE IV. Summary of the measured cross sections with detailed uncertainty composition.
The " uncertainty follows from the COMPETE preferred-model " extrapolation error of
"0:007. The right-most column gives the full systematic uncertainty, combined in quadrature
and considering the correlations between the contributions.
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FIG. 1 (color). Compilation [8,20–24] of the total (#tot), in-
elastic (#inel) and elastic (#el) cross-section measurements: the
TOTEM measurements described in this Letter are highlighted.
The continuous black lines (lower for pp, upper for !pp) repre-
sent the best fits of the total cross-section data by the COMPETE
collaboration [19]. The dashed line results from a fit of the
elastic scattering data. The dash-dotted lines refer to the inelastic
cross section and are obtained as the difference between the
continuous and dashed fits.
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extracted and applied as a function of the T2 track multi-
plicity and affects only the 1h category. The systematic
uncertainty is estimated to be 0.45% which corresponds
to the maximal variation of the background that gives a
compatible fraction of 1h events (trigger and pileup cor-
rected) in the two samples.

Trigger efficiency: This correction is estimated from the
zero-bias triggered events. It is extracted and applied as a
function of the T2 track multiplicity, being significant
for events with only one track and rapidly decreasing to
zero for five or more tracks. The systematic uncertainty is
evaluated comparing the trigger performances with and
without the requirement of having a track pointing to the
vertex and comparing the overall rate correction in the two
samples.

Pileup: This correction factor is determined from the
zero-bias triggered events: the probability to have a bunch
crossing with tracks in T2 is 0.05–0.06 from which the
probability of having n ! 2 inelastic collisions with tracks
in T2 in the same bunch crossing is derived. The systematic
uncertainty is assessed from the variation, within the same
data set, of the probability to have a bunch crossing with
tracks in T2 and from the uncertainty due to the T2 event
reconstruction efficiency.

Reconstruction efficiency: This correction is estimated
using Monte Carlo generators (PYTHIA8 [13], QGSJET-
II-03 [14]) tuned with data to reproduce the measured
fraction of 1h events which is equal to 0:216" 0:007.
The systematic uncertainty is assumed to be half of the
correction: as it mainly depends on the fraction of events
with only neutral particles in T2, it accounts for variations
between the different Monte Carlo generators.

T1 only: This correction takes into account the amount
of events with no final state particles in T2 but one or
more tracks in T1. The uncertainty is the precision with
which this correction can be calculated from the zero-bias
sample plus the uncertainty of the T1 reconstruction
efficiency.

Internal gap covering T2: This correction takes into
account the events which could have a rapidity gap fully
covering the T2 ! range and no tracks in T1. It is estimated
from data, measuring the probability of having a gap in T1

and transferring it to the T2 region. The uncertainty takes
into account the different conditions (average charged
multiplicity, pT threshold, gap size, and surrounding
material) between the two detectors.
Central diffraction: This correction takes into account

events with all final state particles outside the T1 and T2
pseudorapidity acceptance and it is determined from simu-
lations based on the PHOJET and MBR event generators
[15,16]. Since the cross section is unknown and the uncer-
tainties are large, no correction is applied to the inelastic
rate but an upper limit of 0.25 mb is taken as an additional
source of systematic uncertainty.
Low mass diffraction: The T2 acceptance edge at j!j ¼

6:5 corresponds approximately to diffractive masses of
3.6 GeV (at 50% efficiency). The contribution of events
with all final state particles at j!j> 6:5 is estimated with
QGSJET-II-03 after tuning the Monte Carlo prediction with

TABLE IV. Summary of the measured cross sections with detailed uncertainty composition.
The " uncertainty follows from the COMPETE preferred-model " extrapolation error of
"0:007. The right-most column gives the full systematic uncertainty, combined in quadrature
and considering the correlations between the contributions.

Systematic uncertainty

Quantity Value el. t-dep el. norm inel " ) full

#tot (mb) 101.7 "1:8 "1:4 "1:9 "0:2 ) "2:9
#inel (mb) 74.7 "1:2 "0:6 "0:9 "0:1 ) "1:7
#el (mb) 27.1 "0:5 "0:7 "1:0 "0:1 ) "1:4
#el=#inel (%) 36.2 "0:2 "0:7 "0:9 ) "1:1
#el=#tot (%) 26.6 "0:1 "0:4 "0:5 ) "0:6

FIG. 1 (color). Compilation [8,20–24] of the total (#tot), in-
elastic (#inel) and elastic (#el) cross-section measurements: the
TOTEM measurements described in this Letter are highlighted.
The continuous black lines (lower for pp, upper for !pp) repre-
sent the best fits of the total cross-section data by the COMPETE
collaboration [19]. The dashed line results from a fit of the
elastic scattering data. The dash-dotted lines refer to the inelastic
cross section and are obtained as the difference between the
continuous and dashed fits.
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uncertainty is estimated to be 0.45% which corresponds
to the maximal variation of the background that gives a
compatible fraction of 1h events (trigger and pileup cor-
rected) in the two samples.
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zero-bias triggered events. It is extracted and applied as a
function of the T2 track multiplicity, being significant
for events with only one track and rapidly decreasing to
zero for five or more tracks. The systematic uncertainty is
evaluated comparing the trigger performances with and
without the requirement of having a track pointing to the
vertex and comparing the overall rate correction in the two
samples.

Pileup: This correction factor is determined from the
zero-bias triggered events: the probability to have a bunch
crossing with tracks in T2 is 0.05–0.06 from which the
probability of having n ! 2 inelastic collisions with tracks
in T2 in the same bunch crossing is derived. The systematic
uncertainty is assessed from the variation, within the same
data set, of the probability to have a bunch crossing with
tracks in T2 and from the uncertainty due to the T2 event
reconstruction efficiency.

Reconstruction efficiency: This correction is estimated
using Monte Carlo generators (PYTHIA8 [13], QGSJET-
II-03 [14]) tuned with data to reproduce the measured
fraction of 1h events which is equal to 0:216" 0:007.
The systematic uncertainty is assumed to be half of the
correction: as it mainly depends on the fraction of events
with only neutral particles in T2, it accounts for variations
between the different Monte Carlo generators.

T1 only: This correction takes into account the amount
of events with no final state particles in T2 but one or
more tracks in T1. The uncertainty is the precision with
which this correction can be calculated from the zero-bias
sample plus the uncertainty of the T1 reconstruction
efficiency.

Internal gap covering T2: This correction takes into
account the events which could have a rapidity gap fully
covering the T2 ! range and no tracks in T1. It is estimated
from data, measuring the probability of having a gap in T1

and transferring it to the T2 region. The uncertainty takes
into account the different conditions (average charged
multiplicity, pT threshold, gap size, and surrounding
material) between the two detectors.
Central diffraction: This correction takes into account

events with all final state particles outside the T1 and T2
pseudorapidity acceptance and it is determined from simu-
lations based on the PHOJET and MBR event generators
[15,16]. Since the cross section is unknown and the uncer-
tainties are large, no correction is applied to the inelastic
rate but an upper limit of 0.25 mb is taken as an additional
source of systematic uncertainty.
Low mass diffraction: The T2 acceptance edge at j!j ¼

6:5 corresponds approximately to diffractive masses of
3.6 GeV (at 50% efficiency). The contribution of events
with all final state particles at j!j> 6:5 is estimated with
QGSJET-II-03 after tuning the Monte Carlo prediction with

TABLE IV. Summary of the measured cross sections with detailed uncertainty composition.
The " uncertainty follows from the COMPETE preferred-model " extrapolation error of
"0:007. The right-most column gives the full systematic uncertainty, combined in quadrature
and considering the correlations between the contributions.

Systematic uncertainty

Quantity Value el. t-dep el. norm inel " ) full

#tot (mb) 101.7 "1:8 "1:4 "1:9 "0:2 ) "2:9
#inel (mb) 74.7 "1:2 "0:6 "0:9 "0:1 ) "1:7
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FIG. 1 (color). Compilation [8,20–24] of the total (#tot), in-
elastic (#inel) and elastic (#el) cross-section measurements: the
TOTEM measurements described in this Letter are highlighted.
The continuous black lines (lower for pp, upper for !pp) repre-
sent the best fits of the total cross-section data by the COMPETE
collaboration [19]. The dashed line results from a fit of the
elastic scattering data. The dash-dotted lines refer to the inelastic
cross section and are obtained as the difference between the
continuous and dashed fits.
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The Inelastic Cross Section

First try: decompose
+ Parametrizations of diffractive components: dM2/M2

28

�inel = �sd + �dd + �cd + �nd

and ⌅el = ⌅2
tot/16⇤Bel. The elastic slope parameter is parameterized by

Bel = BAB
el (s) = 2bA + 2bB + 4s� � 4.2 , (115)

with s given in units of GeV and Bel in GeV�2. The constants bA,B are bp = 2.3, b⇥,⇤,⌃,⌅ =
1.4, bJ/⇧ = 0.23. The increase of the slope parameter with c.m. energy is faster than
the logarithmically one conventionally assumed; that way the ratio ⌅el/⌅tot remains well-
behaved at large energies.

The di�ractive cross sections are given by

d⌅sd(XB)(s)

dt dM2
=

g3IP

16⇤
⇥AIP ⇥2

BIP

1

M2
exp(Bsd(XB)t) Fsd ,

d⌅sd(AX)(s)

dt dM2
=

g3IP

16⇤
⇥2

AIP ⇥BIP
1

M2
exp(Bsd(AX)t) Fsd ,

d⌅dd(s)

dt dM2
1 dM2

2

=
g2
3IP

16⇤
⇥AIP ⇥BIP

1

M2
1

1

M2
2

exp(Bddt) Fdd . (116)

The couplings ⇥AIP are related to the pomeron term XABs� of the total cross section
parameterization, eq. (112). Picking a reference scale

⇤
sref = 20 GeV, the couplings are

given by ⇥AIP⇥BIP = XAB s�
ref . The triple-pomeron coupling is determined from single-

di�ractive data to be g3IP ⇥ 0.318 mb1/2; within the context of the formulae in this
section.

The spectrum of di�ractive masses M is taken to begin 0.28 GeV ⇥ 2m⇥ above the
mass of the respective incoming particle and extend to the kinematical limit. The simple
dM2/M2 form is modified by the mass-dependence in the di�ractive slopes and in the Fsd

and Fdd factors (see below).
The slope parameters are assumed to be

Bsd(XB)(s) = 2bB + 2�⇥ ln
�

s

M2

⇥
,

Bsd(AX)(s) = 2bA + 2�⇥ ln
�

s

M2

⇥
,

Bdd(s) = 2�⇥ ln

⇤

e4 +
ss0

M2
1 M2

2

⌅

. (117)

Here �⇥ = 0.25 GeV�2 and conventionally s0 is picked as s0 = 1/�⇥. The term e4 in Bdd is
added by hand to avoid a breakdown of the standard expression for large values of M2

1 M2
2 .

The bA,B terms protect Bsd from breaking down; however a minimum value of 2 GeV�2

is still explicitly required for Bsd, which comes into play e.g. for a J/⇧ state (as part of a
VMD photon beam).

The kinematical range in t depends on all the masses of the problem. In terms of
the scaled variables µ1 = m2

A/s, µ2 = m2
B/s, µ3 = M2

(1)/s (= m2
A/s when A scatters

elastically), µ4 = M2
(2)/s (= m2

B/s when B scatters elastically), and the combinations

C1 = 1� (µ1 + µ2 + µ3 + µ4) + (µ1 � µ2)(µ3 � µ4) ,

C2 =
⇧

(1� µ1 � µ2)2 � 4µ1µ2

⇧
(1� µ3 � µ4)2 � 4µ3µ4 ,

C3 = (µ3 � µ1)(µ4 � µ2) + (µ1 + µ4 � µ2 � µ3)(µ1µ4 � µ2µ3) , (118)

one has tmin < t < tmax with

tmin = �s

2
(C1 + C2) ,

tmax = �s

2
(C1 � C2) = �s

2

4C3

C1 + C2
=

s2C3

tmin
. (119)

113

+ Integrate and 
solve for σnd
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The “Rick Field” UE Plots
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Main tools for high-pT calculations
Factorization and IR safety
Corrections suppressed by powers of ΛQCD/QHard 
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~ ∞ statistics for min-bias
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Compare total (inelastic) hadron-hadron cross section to 
calculated parton-parton (LO QCD 2→2) cross section
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to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a↵ects the final-state activity in a
more global way, increasing multiplicity and summed E

T

distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ! 2 scattering almost go on shell at low p?,
causing the di↵erential cross sections to become very large, behaving roughly as

d�
2!2

/ dt

t2
⇠ dp2

?
p4

?
. (1.13)

This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �

2!2

but only once in �
tot

, and so
on. In the limit that all the interactions are independent and equivalent, one would have

�
2!2

(p?min

) = hni(p?min

) �
tot

, (1.14)

with hni(p?min

) giving the average of a Poisson distribution in the number of parton-parton
interactions above p?min

per hadron-hadron collision,

P
n

(p?min

) = (hni(p?min

))n

exp (�hni(p?min

))

n!
. (1.15)

This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p?min

! 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ! 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p?
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p?, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of hni above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p? and
x, is color screening; if the wavelength ⇠ 1/p? of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p? ! 0, hence leading to suppressed interactions. This
provides an infrared cuto↵ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto↵ would be the proton size,
p?min

⇡ ~/r
p

⇡ 0.3 GeV ⇡ ⇤
QCD

, but empirically this appears to be far too low. In current
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Lesson from bremsstrahlung in pQCD: 
divergences → fixed-order breaks down

Perturbation theory still ok, with 
resummation (unitarity)

→ Resum dijets?
Yes → MPI!

hni < 1 (2)

hni > 1 (2)
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Leading-Order pQCD

to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a↵ects the final-state activity in a
more global way, increasing multiplicity and summed E

T

distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ! 2 scattering almost go on shell at low p?,
causing the di↵erential cross sections to become very large, behaving roughly as
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This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �
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but only once in �
tot

, and so
on. In the limit that all the interactions are independent and equivalent, one would have
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per hadron-hadron collision,
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This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p?min

! 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ! 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p?
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p?, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of hni above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p? and
x, is color screening; if the wavelength ⇠ 1/p? of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p? ! 0, hence leading to suppressed interactions. This
provides an infrared cuto↵ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto↵ would be the proton size,
p?min

⇡ ~/r
p

⇡ 0.3 GeV ⇡ ⇤
QCD

, but empirically this appears to be far too low. In current
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= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a⇥ects the final-state activity in a
more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ⌅ 2 scattering almost go on shell at low p⇥,
causing the di⇥erential cross sections to become very large, behaving roughly as

d�2�2 ⇧
dt

t2
⇥ dp2

⇥
p4
⇥

. (1.13)

This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �2�2 but only once in �tot, and so
on. In the limit that all the interactions are independent and equivalent, one would have

�2�2(p⇥min) = ⌥n�(p⇥min) �tot , (1.14)

with ⌥n�(p⇥min) giving the average of a Poisson distribution in the number of parton-parton
interactions above p⇥min per hadron-hadron collision,

Pn(p⇥min) = (⌥n�(p⇥min))
n exp (�⌥n�(p⇥min))

n!
. (1.15)

This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p⇥min ⌅ 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ⌅ 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p⇥
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p⇥, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of ⌥n� above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⇥ and
x, is color screening; if the wavelength ⇥ 1/p⇥ of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⇥ ⌅ 0, hence leading to suppressed interactions. This
provides an infrared cuto⇥ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto⇥ would be the proton size,
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Earliest MC model (“old” PYTHIA 6 model)
Sjöstrand, van Zijl PRD36 (1987) 2019
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divergences → fixed-order breaks down

Perturbation theory still ok, with 
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Naively
Interactions independent (naive factorization) → Poisson

How many?
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Impact Parameter
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Simplest idea: smear PDFs across a uniform disk of size πrp2

→ simple geometric overlap factor ≤ 1 in dijet cross section
Some collisions have the full overlap, others only partial
→ Poisson distribution with different mean <n> at each b

1. Simple Geometry (in impact-parameter plane)
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Impact Parameter

37

Simplest idea: smear PDFs across a uniform disk of size πrp2

→ simple geometric overlap factor ≤ 1 in dijet cross section
Some collisions have the full overlap, others only partial
→ Poisson distribution with different mean <n> at each b

1. Simple Geometry (in impact-parameter plane)

2. More realistic Proton b-shape 

Smear PDFs across a non-uniform disk
MC models use Gaussians or more/less peaked

Overlap factor = convolution of two such distributions

→ Poisson distribution with different mean <n> at each b
“Lumpy Peaks” → large matter overlap enhancements, higher <n>

Note: this is an effective description. Not the actual proton mass density.
E.g., peak in overlap function (≫1) can represent unlikely configurations 
with huge overlap enhancement. Typically use total σinel as normalization.
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Figure 14: Number of MPI in inelastic events, in pp collisions at 7 TeV.

physical observable related to the diffractive mass to define NSD.) For the comparisons to CMS NSD
data shown here, the single-diffractive contributions were switched off in the generator.

In the bottom two panes of fig. 16, we focus on the forward region (with physical event selections).
In particular, we see that the NNPDF set [43] generates a broader rapidity spectrum, so that while the
activity in the central region (top pane) is reduced slightly, the activity in the very forward region
actually increases, and comes into agreement with the TOTEM measurement [60], covering the range
5.3 < |⌘| < 6.4. The bottom right-hand pane shows the forward energy flow measured by CMS [59],
in the intermediate region 3.23 < |⌘| < 4.65. The dependence on ⌘ is a bit steeper in the Monash
tune than in the previous one, and more similar to that seen in the data.

A complementary observable, which is highly sensitive to interconnection effects between the
MPI (and hence, e.g., to the effects of “colour reconnections” [61]), is the average charged-particle
p? as a function of the number of charged particles. In a strict leading-colour picture, each MPI would
cause one or two new strings to be stretched between the remnants, but these would not be connected
to each other; therefore (modulo jets) the p? spectrum of the hadrons produced by each of these strings
would be independent of the number of strings. The result would be a flat hp?i (nCh

) spectrum. Jets
and colour reconnections both produce a rising spectrum. The spectra observed by ATLAS [57] are
compared to the Monash, 2C, and 4C tunes in fig. 17, for standard (left) and soft (right) fiducial cuts.
Both of the Monash and 4C tunes reproduce the data quite well, with �

2

5%

< 1, while the older tune
2C had a higher CR strength optimized to describe Tevatron data [62]. We certainly consider the
energy scaling of the effective CR strength among the most uncertain parameters of the current min-
bias/underlying-event modelling (a similar conclusion was reached for the CR modelling in PYTHIA 6
in [63]), and intend to study the physics aspects of this issue more closely in a forthcoming dedicated
paper.

For the UE at LHC, what matters most is that we describe the PTSUM density for charged particles
above 500 MeV (all others go helix), but also the neutral component summed over all pT. Therefore,
both the 500 MeV and 100 MeV ones are relevant. The track densities less so, but perhaps still have
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Minimum-Bias pp collisions at 7 TeV

*

*note: can be 
arbitrarily soft

Averaged over all 
pp impact 

parameters

(Really: 
averaged over all 
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to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a↵ects the final-state activity in a
more global way, increasing multiplicity and summed E

T

distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ! 2 scattering almost go on shell at low p?,
causing the di↵erential cross sections to become very large, behaving roughly as
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This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �

2!2

but only once in �
tot

, and so
on. In the limit that all the interactions are independent and equivalent, one would have
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) giving the average of a Poisson distribution in the number of parton-parton
interactions above p?min

per hadron-hadron collision,
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This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p?min

! 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ! 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p?
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p?, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of hni above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p? and
x, is color screening; if the wavelength ⇠ 1/p? of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p? ! 0, hence leading to suppressed interactions. This
provides an infrared cuto↵ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto↵ would be the proton size,
p?min

⇡ ~/r
p

⇡ 0.3 GeV ⇡ ⇤
QCD

, but empirically this appears to be far too low. In current
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generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p? and
x, is color screening; if the wavelength ⇠ 1/p? of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p? ! 0, hence leading to suppressed interactions. This
provides an infrared cuto↵ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto↵ would be the proton size,
p?min

⇡ ~/r
p

⇡ 0.3 GeV ⇡ ⇤
QCD

, but empirically this appears to be far too low. In current

18

to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a↵ects the final-state activity in a
more global way, increasing multiplicity and summed E

T

distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ! 2 scattering almost go on shell at low p?,
causing the di↵erential cross sections to become very large, behaving roughly as

d�
2!2

/ dt

t2
⇠ dp2

?
p4

?
. (1.13)

This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �

2!2

but only once in �
tot

, and so
on. In the limit that all the interactions are independent and equivalent, one would have

�
2!2

(p?min

) = hni(p?min

) �
tot

, (1.14)

with hni(p?min

) giving the average of a Poisson distribution in the number of parton-parton
interactions above p?min

per hadron-hadron collision,

P
n

(p?min

) = (hni(p?min

))n

exp (�hni(p?min

))

n!
. (1.15)

This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p?min

! 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ! 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p?
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p?, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of hni above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p? and
x, is color screening; if the wavelength ⇠ 1/p? of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p? ! 0, hence leading to suppressed interactions. This
provides an infrared cuto↵ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto↵ would be the proton size,
p?min

⇡ ~/r
p

⇡ 0.3 GeV ⇡ ⇤
QCD

, but empirically this appears to be far too low. In current

18

⊗ PDFs

Main applications: Central Jets/EWK/top/
Higgs/New Physics 

High Q2 
and 

finite x

Extrapolation to soft scales delicate.
Impressive successes with MPI-based 
models but still far from a solved problem

Form of PDFs at small x and Q2

Form and Ecm dependence of pT0 regulator
Modeling of the diffractive component
Proton transverse mass distribution
Colour Reconnections, Collective Effects

Saturation

See also Connecting hard to soft: KMR, EPJ C71 (2011) 1617   +   PYTHIA “Perugia Tunes”: PS, PRD82 (2010) 074018 + arXiv:1308.2813

See talk on UE
by W. Waalewijn

http://arxiv.org/abs/arXiv:1102.2844
http://arxiv.org/abs/arXiv:1102.2844
http://arxiv.org/abs/arXiv:1005.3457
http://arxiv.org/abs/arXiv:1005.3457
http://arxiv.org/abs/arXiv:1308.2813
http://arxiv.org/abs/arXiv:1308.2813


P.  S k a n d s

Caveats of MPI-Based Models

39

to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a↵ects the final-state activity in a
more global way, increasing multiplicity and summed E

T

distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ! 2 scattering almost go on shell at low p?,
causing the di↵erential cross sections to become very large, behaving roughly as

d�
2!2

/ dt

t2
⇠ dp2

?
p4

?
. (1.13)

This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �

2!2

but only once in �
tot

, and so
on. In the limit that all the interactions are independent and equivalent, one would have

�
2!2

(p?min

) = hni(p?min

) �
tot

, (1.14)

with hni(p?min

) giving the average of a Poisson distribution in the number of parton-parton
interactions above p?min

per hadron-hadron collision,

P
n

(p?min

) = (hni(p?min

))n

exp (�hni(p?min

))

n!
. (1.15)

This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p?min

! 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ! 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p?
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p?, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
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to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a⇥ects the final-state activity in a
more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ⌅ 2 scattering almost go on shell at low p⇥,
causing the di⇥erential cross sections to become very large, behaving roughly as
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This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �2�2 but only once in �tot, and so
on. In the limit that all the interactions are independent and equivalent, one would have

�2�2(p⇥min) = ⌥n�(p⇥min) �tot , (1.14)

with ⌥n�(p⇥min) giving the average of a Poisson distribution in the number of parton-parton
interactions above p⇥min per hadron-hadron collision,
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This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p⇥min ⌅ 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ⌅ 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p⇥
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p⇥, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of ⌥n� above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⇥ and
x, is color screening; if the wavelength ⇥ 1/p⇥ of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⇥ ⌅ 0, hence leading to suppressed interactions. This
provides an infrared cuto⇥ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto⇥ would be the proton size,
p⇥min ⇤ �/rp ⇤ 0.3 GeV ⇤ �QCD, but empirically this appears to be far too low. In current
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► The colour flow determines the hadronizing string topology 
•  Each MPI, even when soft, is a color spark 

•  Final distributions crucially depend on color space 
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► The colour flow determines the hadronizing string topology 
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Rapidity

NC → ∞

Multiplicity ∝ NMPI

Better theory models needed
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Rapidity

Do the systems really form
and hadronize independently?

Multiplicity ∝ NMPI
<

E.g.,
Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364)
Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133)
… 

Better theory models needed
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