Hadronization & Underlying Event Peter Skands (CERN Theoretical Physics Dept)

Terascale Monte Carlo School DESY, Hamburg - March 2014

Lectures 4+5

From Partons to Pions

Here's a fast parton

From Partons to Pions

Here's a fast parton

How about I just call it a hadron?

From Partons to Pions

Here's a fast parton

How about I just call it a hadron?

→ "Local Parton-Hadron Duality"

Parton → Hadrons?

Early models: "Independent Fragmentation"

Local Parton Hadron Duality (LPHD) can give useful results for **inclusive** quantities in collinear fragmentation

Motivates a simple model:

But ...

The point of confinement is that partons are coloured Hadronization = the process of colour neutralization

→ Unphysical to think about independent fragmentation of a single parton into hadrons

→ Too naive to see LPHD (inclusive) as a justification for Independent Fragmentation (exclusive)

→ More physics needed

Colour Neutralization

A physical hadronization model

Should involve at least TWO partons, with opposite color charges (e.g., **R** and **anti-R**)

Strong "confining" field emerges between the two charges when their separation > $\sim 1 \text{fm}$

Between which partons do confining potentials arise?

Set of simple rules for color flow, based on large- N_{C} limit

(Never Twice Same Color: true up to $O(1/N_c^2)$)

Between which partons do confining potentials arise?

Set of simple rules for color flow, based on large- N_{C} limit

(Never Twice Same Color: true up to $O(1/N_c^2)$)

Between which partons do confining potentials arise?

Set of simple rules for color flow, based on large- N_{C} limit

(Never Twice Same Color: true up to $O(1/N_c^2)$)

Between which partons do confining potentials arise?

Set of simple rules for color flow, based on large- N_{C} limit

(Never Twice Same Color: true up to $O(1/N_c^2)$)

For an entire Cascade

Coherence of pQCD cascades → not much "overlap" between singlet subsystems → Leading-colour approximation pretty good

LEP measurements in WW confirm this (at least to order $10\% \sim 1/N_c^2$)

Note: (much) more color getting kicked around in hadron collisions \rightarrow more later

Potential between a quark and an antiquark as function of distance, R

Potential between a quark and an antiquark as function of distance, R

Potential between a quark and an antiquark as function of distance, R

Potential between a quark and an antiquark as function of distance, R

Long Distances ~ Linear Potential

Quarks (and gluons) confined inside hadrons

Potential between a quark and an antiquark as function of distance, R

Long Distances ~ Linear Potential

Quarks (and

gluons) confined

inside hadrons

 $F(r) \approx \text{const} = \kappa \approx 1 \text{ GeV/fm} \iff V(r) \approx \kappa r$

~ Force required to lift a 16-ton truck

Potential between a quark and an antiquark as function of distance, R

0.9

0.8

0.7

K(R)

Short Distances ~

Long Distances ~ Linear Potential

Quarks (and gluons) confined inside hadrons

What physical system has a linear potential?

Lattice QCD ("quenched")

linear par

- to - Ou

total

~ Force required to lift a 16-ton truck

From Partons to Strings

Motivates a model:

- Let color field collapse into a (infinitely) narrow flux tube of uniform energy density $\kappa \, \sim \, 1$ GeV / fm
- → Relativistic 1+1 dimensional worldsheet string

<u>Pedagogical Review:</u> B. Andersson, *The Lund model.* Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 1997.

String Breaks

String Breaks

String Breaks

The (Lund) String Model

Map:

- **Quarks** → String Endpoints
- Gluons → Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break (by quantum tunneling) constant per unit area → AREA LAW

→ STRING EFFECT

See also Yuri's 2nd lecture

Simple space-time picture

Details of string breaks more complicated (e.g., baryons, spin multiplets)

Fragmentation Function

Fragmentation Function

Large System

Illustrations by T. Sjöstrand

QCD

Large System

Illustrations by T. Sjöstrand

String breaks causally disconnected

- → can proceed in arbitrary order (left-right, right-left, in-out, ...)
 - → constrains possible form of fragmentation function
 - → Justifies iterative ansatz (useful for MC implementation)

QCD

Lecture

Left-Right Symmetry

Causality → Left-Right Symmetry
→ Constrains form of fragmentation function!

→ Lund Symmetric Fragmentation Function

$$f(z) \propto \frac{1}{z} (1-z)^a \exp\left(-\frac{b\left(m_h^2 + p_{\perp h}^2\right)}{z}\right)$$

Note: In principle, *a* can be flavour-dependent. In practice, we only distinguish between baryons and mesons

Iterative String Breaks

Causality → May iterate from outside-in

The Length of Strings

In Space:

String tension \approx 1 GeV/fm \rightarrow a 5-GeV quark can travel 5 fm before all its kinetic energy is transformed to potential energy in the string. Then it must start moving the other way. String breaks will have happened behind it \rightarrow yo-yo model of mesons

In Rapidity :

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) = \frac{1}{2} \ln \left(\frac{(E + p_z)^2}{E^2 - p_z^2} \right)$$

For a pion with z=1 along string direction (For beam remnants, use a proton mass):

$$y_{\rm max} \sim \ln\left(\frac{2E_q}{m_\pi}\right)$$

Note: Constant average hadron multiplicity per unit y → logarithmic growth of total multiplicity Scaling in lightcone $p_{\pm} = E \pm p_z$ (for $q\overline{q}$ system along z axis) implies flat central rapidity plateau + some endpoint effects:

 $\langle n_{\rm Ch} \rangle \approx c_0 + c_1 \ln E_{\rm Cm}$, \sim Poissonian multiplicity distribution

Alternative: The Cluster Model

"Preconfinement"

+ Force $g \rightarrow qq$ splittings at Q_0

→ high-mass q-qbar "clusters" Isotropic 2-body decays to hadrons according to PS $\approx (2s_1+1)(2s_2+1)(p^*/m)$

Alternative: The Cluster Model

Alternative: The Cluster Model

Strings and Clusters

Small strings \rightarrow clusters. Large clusters \rightarrow strings

Hadron Collisions

Image credits: E. Arenhaus & J. Walker

Hadron Collisions

FIG. 3. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs simple models: dashed low p_T only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019

Hadron Collisions

Do not be scared of the failure of physical models (typically points to more interesting physics)

FIG. 3. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs simple models: dashed low p_T only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019
Hadron Collisions

FIG. 12. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs multiple-interaction model with variable impact parameter: solid line, double-Gaussian matter distribution; dashed line, with fix impact parameter [i.e., $\tilde{O}_0(b)$].

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019

What is Pileup / Min-Bias?

We use Minimum-Bias (MB) data to test soft-QCD models

Pileup = "Zero-bias"

"Minimum-Bias" typically suppresses diffraction by requiring two-armed coincidence, and/or \geq n particle(s) in central region

What is Pileup / Min-Bias?

We use Minimum-Bias (MB) data to test soft-QCD models

Pileup = "Zero-bias"

"Minimum-Bias" typically suppresses diffraction by requiring two-armed coincidence, and/or \geq n particle(s) in central region

→ Pileup contains more diffraction than Min-Bias

Total diffractive cross section ~ 1/3 σ_{inel} Most diffraction is low-mass \rightarrow no contribution in central regions **High-mass tails** could be relevant in FWD region

→ direct constraints on diffractive components (→ later)

What is diffraction?

What is diffraction?

Double Diffraction: both protons explode; gap inbetween Central Diffraction: two protons + a central (exclusive) system

What is Underlying Event ?

Useful variable in hadron collisions: Rapidity (now along beam axis)

Designed to be additive under Lorentz Boosts along
$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$
 beam (z) direction

 $y \to -\infty$ for $p_z \to -E$ $y \to 0$ for $p_z \to 0$ $y \to \infty$ for $p_z \to E$

Illustrations by T. Sjöstrand

Questions

Pileup

- How much? In central & fwd acceptance?
- Structure: averages + fluctuations, particle composition, lumpiness, ... Scaling to 13 TeV and beyond

Underlying Event ~ "A handful of pileup" ?

Hadronizes with Main Event \rightarrow "Color reconnections" Additional "minijets" from multiple parton interactions

Hadronization

Models from the 80ies, mainly constrained in 90ies Meanwhile, perturbative models have evolved

Dipole/Antenna showers, ME matching, NLO corrections, ... Precision \rightarrow re-examine non-perturbative models and constraints New clean constraints from LHC (& future colliders)?

Hadronization models \rightleftharpoons analytical NP corrections?

Uses and Limits of "Tuning"

The Inelastic Cross Section

First try: decompose $\sigma_{\text{inel}} = \sigma_{\text{sd}} + \sigma_{\text{dd}} + \sigma_{\text{cd}} + \sigma_{\text{rd}} + \sigma_{\text{$

The Inelastic Cross Section

First try: decompose $\sigma_{inel} = \sigma_{sd} + \sigma_{dd} + \sigma_{cd} + \sigma_{nd}$ + Parametrizations of diffractive components: dM²/M² $\frac{\mathrm{d}\sigma_{\mathrm{sd}(AX)}(s)}{\mathrm{d}t\,\mathrm{d}M^2} = \frac{g_{3\mathbb{IP}}}{16\pi}\,\beta_{A\mathbb{IP}}^2\,\beta_{B\mathbb{IP}}\,\frac{1}{M^2}\,\exp(B_{\mathrm{sd}(AX)}t)\,F_{\mathrm{sd}},\\ \frac{\mathrm{d}\sigma_{\mathrm{dd}}(s)}{\mathrm{d}t\,\mathrm{d}M_1^2\,\mathrm{d}M_2^2} = \frac{g_{3\mathbb{IP}}^2}{16\pi}\,\beta_{A\mathbb{IP}}\,\beta_{B\mathbb{IP}}\,\frac{1}{M_1^2}\,\frac{1}{M_2^2}\,\exp(B_{\mathrm{dd}}t)\,F_{\mathrm{dd}}.$ PYTHIA: + Integrate and solve for σ_{nd} What Cross Section? σ_{INEL} (a) 100 TeV: 150 mb σ_{INEL} (a) 30 TeV: **Total Inelastic** INEL ~ 108 mb INEL>0 Fraction with one charged particle in $|\eta| < 1$ ~ 90 mb NSD Ambiguous Theory Definition SD Ambiguous Theory Definition 100 mb DD Ambiguous Theory Definition $\circ \sigma_{\text{inel}}(13 \text{ TeV}) \sim 80 \pm 3.5 \text{ mb}$ ALICE INEL Observed fraction corrected to total ALICE SD ALICE def : SD has MX<200 50 mb σ_{SD} : a few mb larger than at 7 TeV $\sigma_{DD} \sim just \text{ over } 10 \text{ mb}$ 0 mb $\log_{10}(\sqrt{s}/\text{GeV})$ 3.00 4.00 5.00

The Inelastic Cross Section

First try: decompose $\sigma_{inel} = \sigma_{sd} + \sigma_{dd} + \sigma_{cd} + \sigma_{nd}$ + Parametrizations of diffractive components: dM^2/M^2 $\frac{\mathrm{d}\sigma_{\mathrm{sd}(AX)}(s)}{\mathrm{d}t\,\mathrm{d}M^2} = \frac{g_{3\mathbb{P}}}{16\pi}\,\beta_{A\mathbb{P}}^2\,\beta_{B\mathbb{P}}\,\frac{1}{M^2}\,\exp(B_{\mathrm{sd}(AX)}t)\,F_{\mathrm{sd}},\\ \frac{\mathrm{d}\sigma_{\mathrm{dd}}(s)}{\mathrm{d}t\,\mathrm{d}M_1^2\,\mathrm{d}M_2^2} = \frac{g_{3\mathbb{P}}^2}{16\pi}\,\beta_{A\mathbb{P}}\,\beta_{B\mathbb{P}}\,\frac{1}{M_1^2}\,\frac{1}{M_2^2}\,\exp(B_{\mathrm{dd}}t)\,F_{\mathrm{dd}}.$ + Integrate and PYTHIA: solve for σ_{nd} What Cross Section? σ_{INEL} @ 100 TeV: 150 mb σ_{INEL} (a) 30 TeV: Total Inelastic INEL ~ 108 mb INEL>0 Fraction with one charged particle in $|\eta| < 1$ ~ 90 mb NSD Ambiguous Theory Definition SD Ambiguous Theory Definition 100 mb DD Ambiguous Theory Definition $\circ \sigma_{\text{inel}}(13 \text{ TeV}) \sim 80 \pm 3.5 \text{ mb}$ ALICE INEL Observed fraction corrected to total ALICE SD ALICE def : SD has MX<200 Note problem of 50 mb σ_{SD} : a few mb larger than at 7 TeV principle: Q.M. $\sigma_{DD} \sim just \text{ over } 10 \text{ mb}$ requires distinguishable 0 mb final states $\log_{10}(\sqrt{s}/\text{GeV})$ 3.00 4.00 5.00

The "Rick Field" UE Plots

(the same Field as in Field-Feynman)

There are many UE variables. The most important is $\langle \Sigma p_T \rangle$ in the "Transverse Region"

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Sum(pT) Density (TRANS)

"Toward"

ransver s

Transvers

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

"Toward"

Transvers

ransver s

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

(more) Infrared Safe Large Non-factorizable Corrections Prediction off by < 10%

"Toward"

Transvers

ran sver s

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

(more) Infrared Safe Large Non-factorizable Corrections Prediction off by < 10%

R. Field: "See, I told you!"

"Toward"

Fransvers

ran sver s

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

(more) Infrared Safe Large Non-factorizable Corrections Prediction off by < 10%

R. Field: "See, I told you!" Y. Gehrstein: "they have to fudge it again"

"Toward"

transver s

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Truth is in the eye of the beholder:

Sum(pT) Density (TRANS)

(more) Infrared Safe Large Non-factorizable Corrections Prediction off by < 10%

R. Field: "See, I told you!" Y. Gehrstein: "they have to fudge it again"

"Toward"

tansiers

From Hard to Soft

Main tools for high-p_T calculations Factorization and IR safety Corrections suppressed by powers of Λ_{QCD}/Q_{Hard}

Soft QCD / Min-Bias / Pileup

NO HARD SCALE

Typical Q scales ~ Λ_{QCD} Extremely sensitive to IR effects → Excellent LAB for studying IR effects

~ ∞ statistics for min-bias
→ Access tails, limits
Universality: Recycling PU ↔ MB ↔ UE

Is there no hard scale?

Compare total (inelastic) hadron-hadron cross section to calculated parton-parton (LO QCD 2→2) cross section

$\rightarrow 8 \text{ TeV} \rightarrow 100 \text{ Tev}$

→ Trivial calculation indicates hard scales in min-bias

Physics of the Pedestal

Factorization: Subdivide Calculation

Multiple Parton Interactions go beyond existing theorems

- → perturbative short-distance physics in Underlying Event
- \rightarrow Need to generalize factorization to MPI

Physics of the Pedestal

Factorization: Subdivide Calculation

Multiple Parton Interactions go beyond existing theorems

- → perturbative short-distance physics in Underlying Event
- \rightarrow Need to generalize factorization to MPI

Multiple Parton Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Earliest MC model ("old" PYTHIA 6 model) Sjöstrand, van Zijl PRD36 (1987) 2019

Lesson from bremsstrahlung in pQCD: divergences → fixed-order breaks down Perturbation theory still ok, with resummation <u>(unitarity)</u>

> → Resum dijets? Yes → MPI!

Multiple Parton Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Earliest MC model ("old" PYTHIA 6 model) Sjöstrand, van Zijl PRD36 (1987) 2019

Lesson from bremsstrahlung in pQCD: divergences → fixed-order breaks down Perturbation theory still ok, with resummation <u>(unitarity)</u>

> → Resum dijets? Yes → MPI!

How many?

Naively $\langle n_{2\to 2}(p_{\perp \min}) \rangle = \frac{\sigma_{2\to 2}(p_{\perp \min})}{\sigma_{tot}}$ Interactions independent (naive factorization) \rightarrow Poisson

$$\mathcal{P}_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$

Real Life

Color screening: $\sigma_{2\rightarrow 2}\rightarrow 0$ for $p_{\perp}\rightarrow 0$

Momentum conservation suppresses high-n tail Impact-parameter dependence

- + physical correlations
- \rightarrow not simple product

Impact Parameter

1. Simple Geometry (in impact-parameter plane)

Simplest idea: smear PDFs across a uniform disk of size πr_p^2 \rightarrow simple geometric overlap factor ≤ 1 in dijet cross section Some collisions have the full overlap, others only partial \rightarrow Poisson distribution with different mean <n> at each b

Impact Parameter

1. **Simple Geometry** (in impact-parameter plane)

Simplest idea: smear PDFs across a uniform disk of size πrp²
→ simple geometric overlap factor ≤ 1 in dijet cross section
Some collisions have the full overlap, others only partial
→ Poisson distribution with different mean <n> at each b

2. More realistic Proton b-shape

Smear PDFs across a non-uniform disk MC models use Gaussians or **more**/less peaked Overlap factor = convolution of two such distributions

 \rightarrow Poisson distribution with different mean $\langle n \rangle$ at each b "Lumpy Peaks" \rightarrow large matter overlap enhancements, higher $\langle n \rangle$

Note: this is an *effective* description. Not the actual proton mass density. E.g., peak in overlap function (\gg 1) can represent unlikely configurations with huge overlap enhancement. Typically use total σ_{inel} as normalization.

Number of MPI*

Minimum-Bias pp collisions at 7 TeV

*note: can be arbitrarily soft

Caveats of MPI-Based Models

See also Connecting hard to soft: KMR, EPJ C71 (2011) 1617 + PYTHIA "Perugia Tunes": PS, PRD82 (2010) 074018 + arXiv:1308.2813

Caveats of MPI-Based Models

Extrapolation to soft scales delicate. Impressive successes with MPI-based models but still far from a solved problem

Form of PDFs at small x and Q^2 Saturat Form and E_{cm} dependence of p_{T0} regulator Modeling of the diffractive component Proton transverse mass distribution Colour Reconnections, Collective Effects

> See talk on UE by W. Waalewijn

See also Connecting hard to soft: KMR, EPJ C71 (2011) 1617 + PYTHIA "Perugia Tunes": PS, <u>PRD82 (2010) 074018 + arXiv:1308.2813</u>

Caveats of MPI-Based Models

See also Connecting hard to soft: KMR, EPJ C71 (2011) 1617 + PYTHIA "Perugia Tunes": PS, PRD82 (2010) 074018 + arXiv:1308.2813

1: A Simple Model

The minimal model incorporating single-parton factorization, perturbative unitarity, and energy-and-momentum conservation

$$\sigma_{2\to 2}(p_{\perp \min}) = \langle n \rangle(p_{\perp \min}) \sigma_{\text{tot}}$$

Parton-Parton Cross Section

Hadron-Hadron Cross Section

I. Choose $p_{T\min}$ cutoff

= main tuning parameter

- 2. Interpret $< n > (p_{Tmin})$ as mean of Poisson distribution Equivalent to assuming all parton-parton interactions equivalent and independent ~ each take an instantaneous "snapshot" of the proton
- 3. Generate *n* parton-parton interactions (pQCD 2 \rightarrow 2) Veto if total beam momentum exceeded \rightarrow overall (E,p) cons
- 4. Add impact-parameter dependence $\rightarrow \langle n \rangle = \langle n \rangle(b)$ Assume factorization of transverse and longitudinal d.o.f., \rightarrow PDFs : f(x,b) = f(x)g(b) b distribution \propto EM form factor \rightarrow JIMMY model Butterworth, Forshaw, Seymour Z.Phys. C72 (1996) 637 Constant of proportionality = second main tuning parameter
- 5. Add separate class of "soft" (zero-pt) interactions representing interactions with $p_T < p_{T\min}$ and require $\sigma_{soft} + \sigma_{hard} = \sigma_{tot}$ \rightarrow Herwig++ model Bähr et al, arXiv:0905.4671
2: Interleaved Evolution

Sjöstrand, P.S., JHEP 0403 (2004) 053; EPJ C39 (2005) 129

Add exclusivity progressively by evolving everything downwards. p_\perp $\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} =$ $p_{\perp \max}$ p_{\perp}^2 $\left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{JI}}}{\mathrm{d}p}\right) \times$ Fixed order (B)SM evolution $2 \rightarrow 2$ $p_{\perp 1}$ matrix elements Parton Showers $\exp\left(-\int_{p_{\perp}}^{p_{\perp}i-1}\left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p'_{\perp}}+\sum\frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p'_{\perp}}+\sum\frac{\mathrm{d}\mathcal{P}_{\mathrm{JI}}}{\mathrm{d}p'_{\perp}}\right)\mathrm{d}p'_{\perp}\right)$ ISR (matched to 00000 $p_{\perp 1}$ further Matrix interleaved Elements) mult. int. → Underlying Event multiparton ISR (note: interactions correllated in colour: PDFs derived 00000 from sum rules hadronization not independent) interleaved 00000 mult. int. \sim "Finegraining" **ISR** 00000 00000 00000 perturbative "intertwining"? interleaved \rightarrow correlations between - - - - - - -Intertwined? mult int. $p_{\perp 4}$ all perturbative activity ISR 00000 Beam remnants at successively smaller scales Fermi motion / $p_{\perp \min}$ primordial k_T int. number 2 3

pt> vs Nch

Independent Particle Production:

 \rightarrow averages stay the same

Correlations / Collective effects:

 \rightarrow average rises

Extrapolation to high multiplicity ~ UE

Average particles slightly too hard

 \rightarrow Too much energy, or energy distributed on too few particles

~ OK?

Average particles slightly too soft

 \rightarrow Too little energy, or energy distributed on too many particles

Evolution of other distributions with N_{ch} also interesting: e.g., $< p_T > (N_{ch})$ for identified particles, strangeness & baryon ratios, 2P correlations, ...

Color Space in hadron collisions

Color Correlations

Each MPI (or cut Pomeron) exchanges color between the beams

The colour flow determines the hadronizing string topology

- Each MPI, even when soft, is a color spark
- Final distributions <u>crucially</u> depend on color space

Different models

Color Correlations

Each MPI (or cut Pomeron) exchanges color between the beams

The colour flow determines the hadronizing string topology

- Each MPI, even when soft, is a color spark
- Final distributions <u>crucially</u> depend on color space

Different models

Color Connections

Color Reconnections?

E.g.,

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133)

Better theory models needed

QCD

Lecture V

QCD

QCD

Lecture

V

QCD

Lecture

V

QCD

Lecture

V

Tuning means different things to different people

