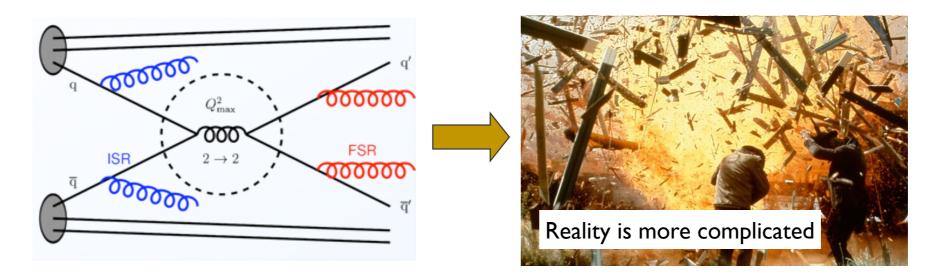
General-Purpose Event Generators



Calculate Everything \approx solve QCD \rightarrow requires compromise!

Improve lowest-order perturbation theory,
 by including the `most significant' corrections
 → complete events (can evaluate any observable you want)

The Workhorses

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String. HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering. SHERPA : Begun in 2000. Originated in "matching" of matrix elements to showers: CKKW-L. + MORE SPECIALIZED: ALPGEN, MADGRAPH, HELAC, ARIADNE, VINCIA, WHIZARD, (a)MC@NLO, POWHEG, HEJ, PHOJET, EPOS, QGSJET, SIBYLL, DPMJET, LDCMC, DIPSY, HIJING, CASCADE, GOSAM, BLACKHAT, ...

(PYTHIA)

PYTHIA anno 1978 (then called JETSET)

LU TP 78-18 November, 1978

A Monte Carlo Program for Quark Jet Generation

T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is presented, that simulates the fragmentation of a fast parton into a jet of mesons. It uses an iterative scaling scheme and is compatible with the jet model of Field and Feynman.

Note:

Field-Feynman was an early fragmentation model Now superseded by the String (in PYTHIA) and Cluster (in HERWIG & SHERPA) models.

(PYTHIA)

PYTHIA anno 1978 (then called JETSET)

LU TP 78-18 November, 1978

A Monte Carlo Program for Quark Jet Generation

T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is presented, that simulates the fragmentation of a fast parton into a jet of mesons. It uses an iterative scaling scheme and is compatible with the jet model of Field and Feynman.

Note:

Field-Feynman was an early fragmentation model Now superseded by the String (in PYTHIA) and Cluster (in HERWIG & SHERPA) models.

SUBROUTINE JETGEN(N) COMMON /JET/ K(100,2), P(100,5) COMMON /PAR/ PUD, PS1, SIGMA, CX2, EBEG, WFIN, IFLBEG COMMON /DATA1/ MESO(9,2), CMIX(6,2), PMAS(19) IFLSGN=(10-IFLBEG)/5 W=2.*E8EG 1=0 IPD=0 C 1 FLAVOUR AND PT FOR FIRST QUARK IFL1=IABS(IFLBEG) PT1=SIGMA*SQRT(-ALOG(RANF(D))) PH11=6.2832*RANF(0) PX1=PT1*COS(PHI1) PY1=PT1*SIN(PHI1) 100 I=I+1 C 2 FLAVOUR AND PT FOR NEXT ANTIQUARK IFL2=1+INT(RANF(0)/PUD) PT2=SIGMA*SQRT(-ALOG(RANF(0))) PH12=6.2832*RANF(0) PX2=PT2*COS(PHI2) PY2=PT2*SIN(PHI2) C 3 MESON FORMED, SPIN ADDED AND FLAVOUR MIXED K(I,1)=MESO(3*(IFL1-1)+IFL2,IFLSGN) ISPIN=INT(PS1+RANF(0)) K(I:2)=1+9*ISPIN+K(I:1) IF(K(I,1).LE.6) GOTO 110 TMIX=RANF(0) KM=K(I,1)-6+3*ISPIN K(I,2)=8+9*ISPIN+INT(TMIX+CMIX(KM,1))+INT(TMIX+CMIX(KM,2)) C 4 MESON MASS FROM TABLE, PT FROM CONSTITUENTS 110 P(1,5)=PMAS(K(1,2)) P(I,1) = PX1 + PX2P(1,2) = PY1 + PY2PMTS=P(I,1)**2+P(I,2)**2+P(I,5)**2 C 5 RANDOM CHOICE OF X=(E+PZ)MESON/(E+PZ)AVAILABLE GIVES E AND PZ x = RANF(0)IF(RANF(D).LT.CX2) X=1.-X**(1./3.) P(1,3)=(X*W-PMTS/(X*W))/2. P(I,4)=(X*W+PMTS/(X*W))/2. C & IF UNSTABLE, DECAY CHAIN INTO STABLE PARTICLES 120 IPD=IPD+1 IF(K(IPD,2).GE.8) CALL DECAY(IPD,I) IF(IPD.LT.I.AND.I.LE.96) GOTO 120 C 7 FLAVOUR AND PT OF QUARK FORMED IN PAIR WITH ANTIQUARK ABOVE IFL1=IFL2 PX1 = -PX2PY1=-PY2 C 8 IF ENOUGH E+PZ LEFT, GO TO 2 W = (1 - X) * WIF(W.GT.WFIN.AND.I.LE.95) GOTO 100 N = IRETURN END

(PYTHIA)

PYTHIA anno 2013 (now called PYTHIA 8)

LU TP 07-28 (CPC 178 (2008) 852) October, 2007

A Brief Introduction to PYTHIA 8.1

T. Sjöstrand, S. Mrenna, P. Skands

The Pythia program is a standard tool for the generation of high-energy collisions, comprising a coherent set of physics models for the evolution from a few-body hard process to a complex multihadronic final state. It contains a library of hard processes and models for initial- and final-state parton showers, multiple parton-parton interactions, beam remnants, string fragmentation and particle decays. It also has a set of utilities and interfaces to external programs. [...] ~ 100,000 lines of C++

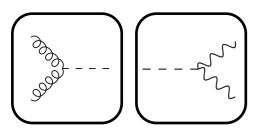
What a modern MC generator has inside:

- Hard Processes (internal, interfaced, or via Les Houches events)
- BSM (internal or via interfaces)
- PDFs (internal or via interfaces)
- Showers (internal or inherited)
- Multiple parton interactions
- Beam Remnants
- String Fragmentation
- Decays (internal or via interfaces)
- Examples and Tutorial
- Online HTML / PHP Manual
- Utilities and interfaces to external programs

Divide and Conquer

Factorization → Split the problem into many (nested) pieces + Quantum mechanics → Probabilities → Random Numbers

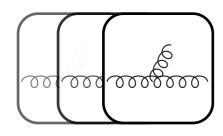
 $\mathcal{P}_{\mathrm{event}} \;=\; \mathcal{P}_{\mathrm{hard}} \,\otimes\, \mathcal{P}_{\mathrm{dec}} \,\otimes\, \mathcal{P}_{\mathrm{ISR}} \,\otimes\, \mathcal{P}_{\mathrm{FSR}} \,\otimes\, \mathcal{P}_{\mathrm{MPI}} \,\otimes\, \mathcal{P}_{\mathrm{Had}} \,\otimes\, \dots$



Hard Process & Decays:

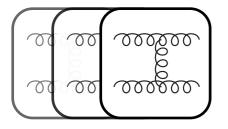
Use (N)LO matrix elements

→ Sets "hard" resolution scale for process: Q_{MAX}



Initial- & Final-State Radiation (ISR & FSR):

Altarelli-Parisi equations \rightarrow differential evolution, dP/dQ², as function of resolution scale; run from Q_{MAX} to ~ 1 GeV (This Lecture)



MPI (Multi-Parton Interactions)

Additional (soft) parton-parton interactions: LO matrix elements

→ Additional (soft) "Underlying-Event" activity

Hadronization

Non-perturbative model of color-singlet parton systems \rightarrow hadrons

Recall: Jets \approx Fractals

- Most bremsstrahlung is driven by divergent propagators → simple structure
- Amplitudes factorize in singular limits (→ universal "conformal" or "fractal" structure)

$$\propto \frac{1}{2(p_a \cdot p_b)} = 00^{a}$$

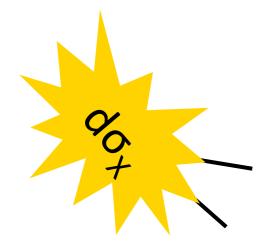
Partons ab \rightarrow P(z) = DGLAP splitting kernels, with z = energy fraction = E_a/(E_a+E_b) "collinear": $|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)|^2 \xrightarrow{a||b} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots, a+b, \ldots)|^2$

Gluon j \rightarrow "soft": Coherence \rightarrow Parton j really emitted by (i,k) "colour antenna" $|\mathcal{M}_{F+1}(\ldots,i,j,k\ldots)|^2 \stackrel{j_g \to 0}{\rightarrow} g_s^2 \mathcal{C} \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots,i,k,\ldots)|^2$

+ scaling violation: $g_s^2 \rightarrow 4\pi \alpha_s(Q^2)$

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times → nested factorizations



For any basic process $d\sigma_X = \checkmark$ (calculated process by process)

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X$

90 T×z K For any basic process $d\sigma_X = \checkmark$ (calculated process by process)

$$d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \quad \checkmark$$

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \quad \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1}$

For any basic process $d\sigma_X = \checkmark$ (calculated process by process)

$$d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \quad \checkmark$$

$$d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \quad \checkmark$$

For any basic process $d\sigma_X = \checkmark$ (calculated process by process)

$$d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \qquad \checkmark$$

$$d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \quad \checkmark$$

$$d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \dots$$

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \ldots$

Factorization in Soft and Collinear Limits

P(z): "DGLAP Splitting Functions"

$$|M(\ldots, p_i, p_j \ldots)|^2 \stackrel{i||j}{\to} g_s^2 \mathcal{C} \frac{P(z)}{s_{ij}} |M(\ldots, p_i + p_j, \ldots)|^2$$

$$M(\ldots, p_i, p_j, p_k \ldots) |^2 \stackrel{j_g \to 0}{\to} g_s^2 \mathcal{C} \frac{2s_{ik}}{s_{ij}s_{jk}} |M(\ldots, p_i, p_k, \ldots)|^2$$

"Soft Eikonal" : generalizes to Dipole/Antenna Functions (more later)

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \ldots$

Singularities: mandated by gauge theory Non-singular terms: process-dependent

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3i}} d\sigma_{X+2} \ldots$

Singularities: mandated by gauge theory Non-singular terms: process-dependent

$$\begin{split} \frac{|\mathcal{M}(Z^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(Z^0 \to q_I \bar{q}_K)|^2} &= g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} \right) \right] \\ \frac{\mathcal{M}(H^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(H^0 \to q_I \bar{q}_K)|^2} &= g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \\ \mathbf{SOFT} & \mathbf{COLLINEAR} + \mathbf{F} \end{split}$$

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \ldots$

Iterated factorization

Gives us a universal approximation to ∞ -order tree-level cross sections. Exact in singular (strongly ordered) limit.

Finite terms (non-universal) \rightarrow Uncertainties for non-singular (hard) radiation

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \quad \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \quad \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \quad \dots$

Iterated factorization

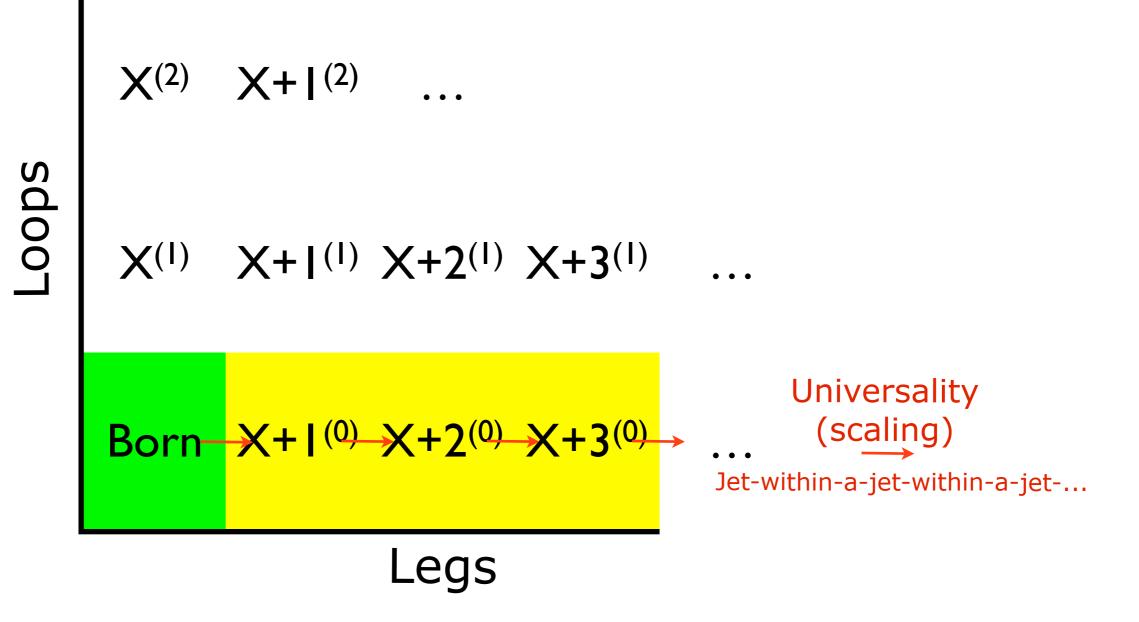
Gives us a universal approximation to ∞ -order tree-level cross sections. Exact in singular (strongly ordered) limit.

Finite terms (non-universal) \rightarrow Uncertainties for non-singular (hard) radiation

But something is not right ... Total σ would be infinite ...

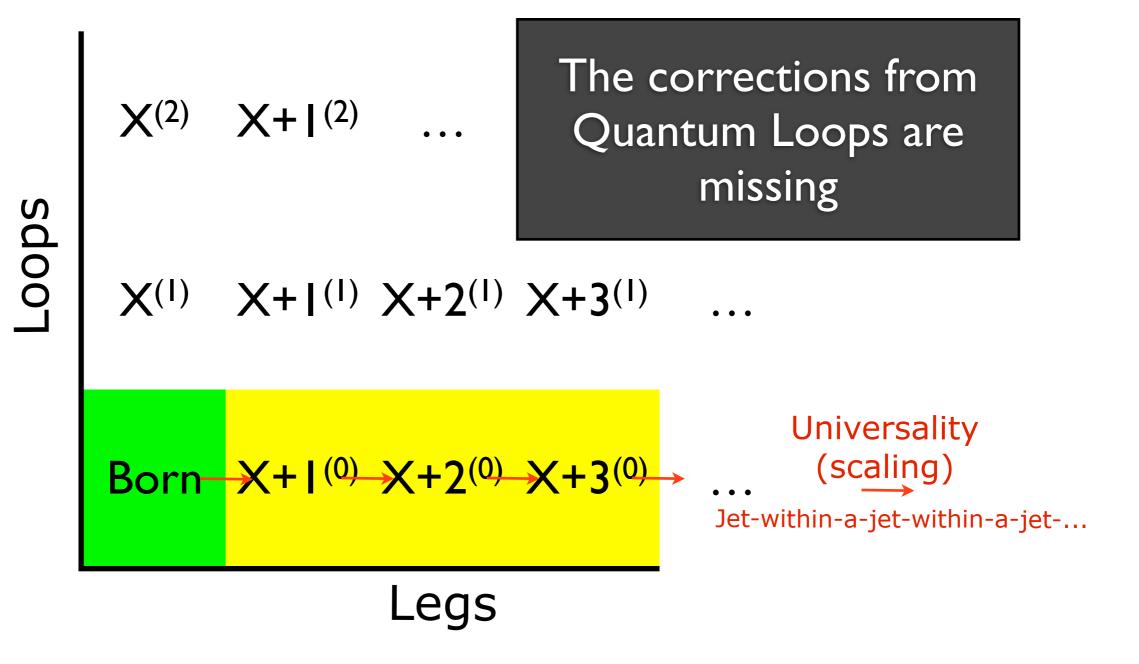
Loops and Legs

Coefficients of the Perturbative Series

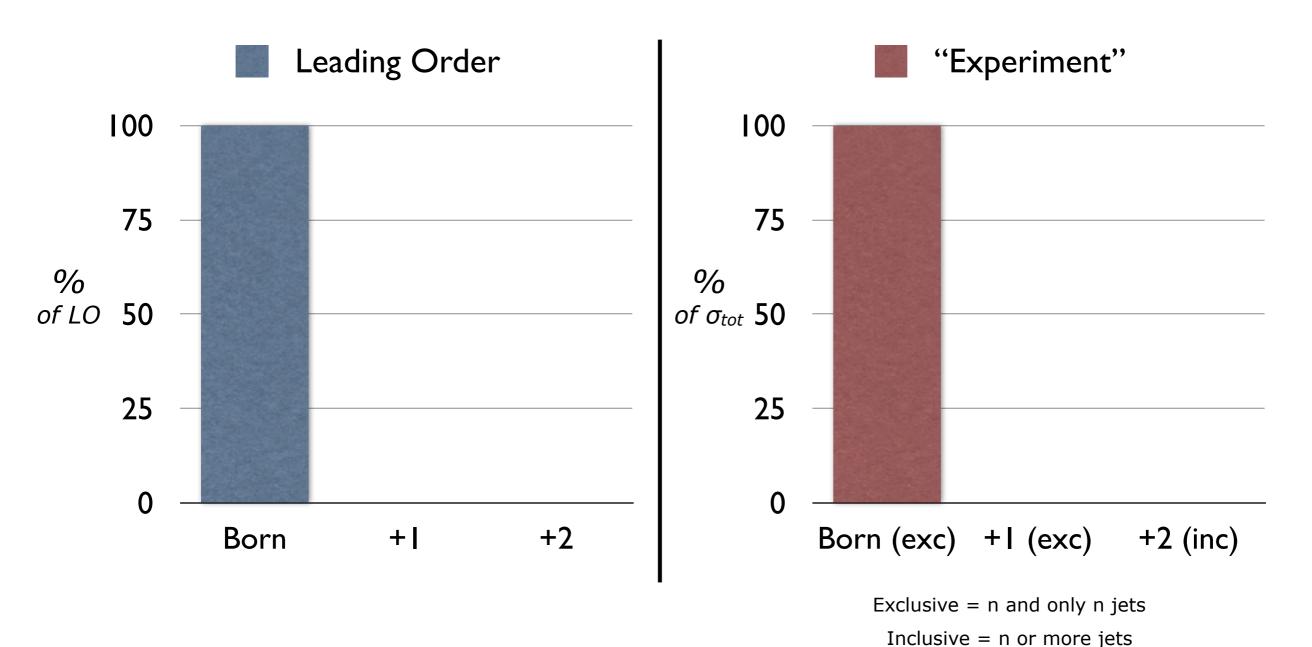


Loops and Legs

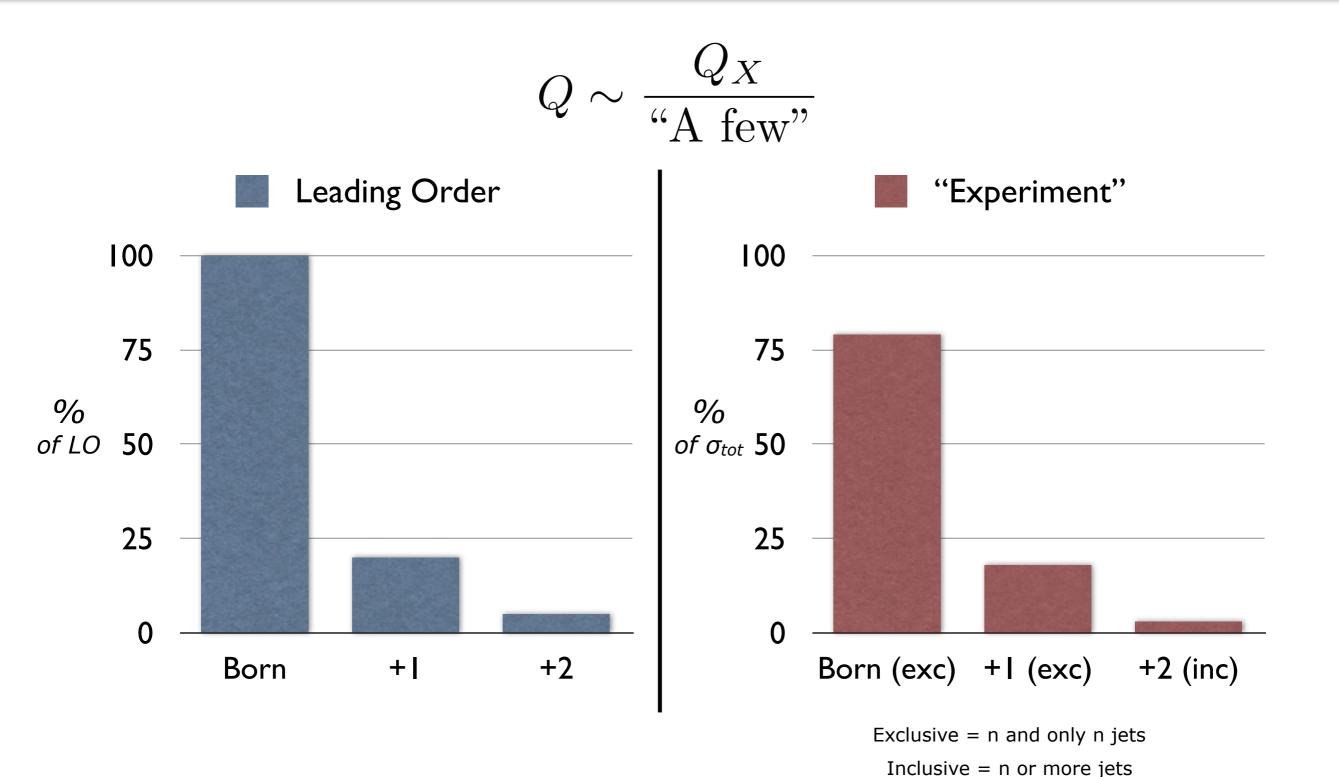
Coefficients of the Perturbative Series



 $Q \sim Q_X$

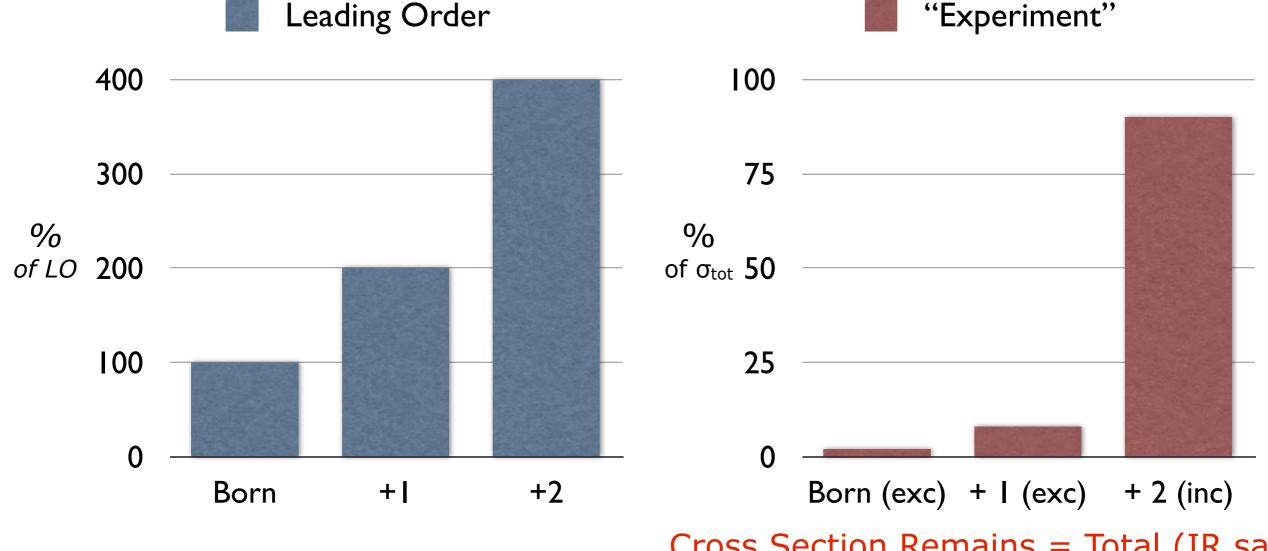


P. Skands



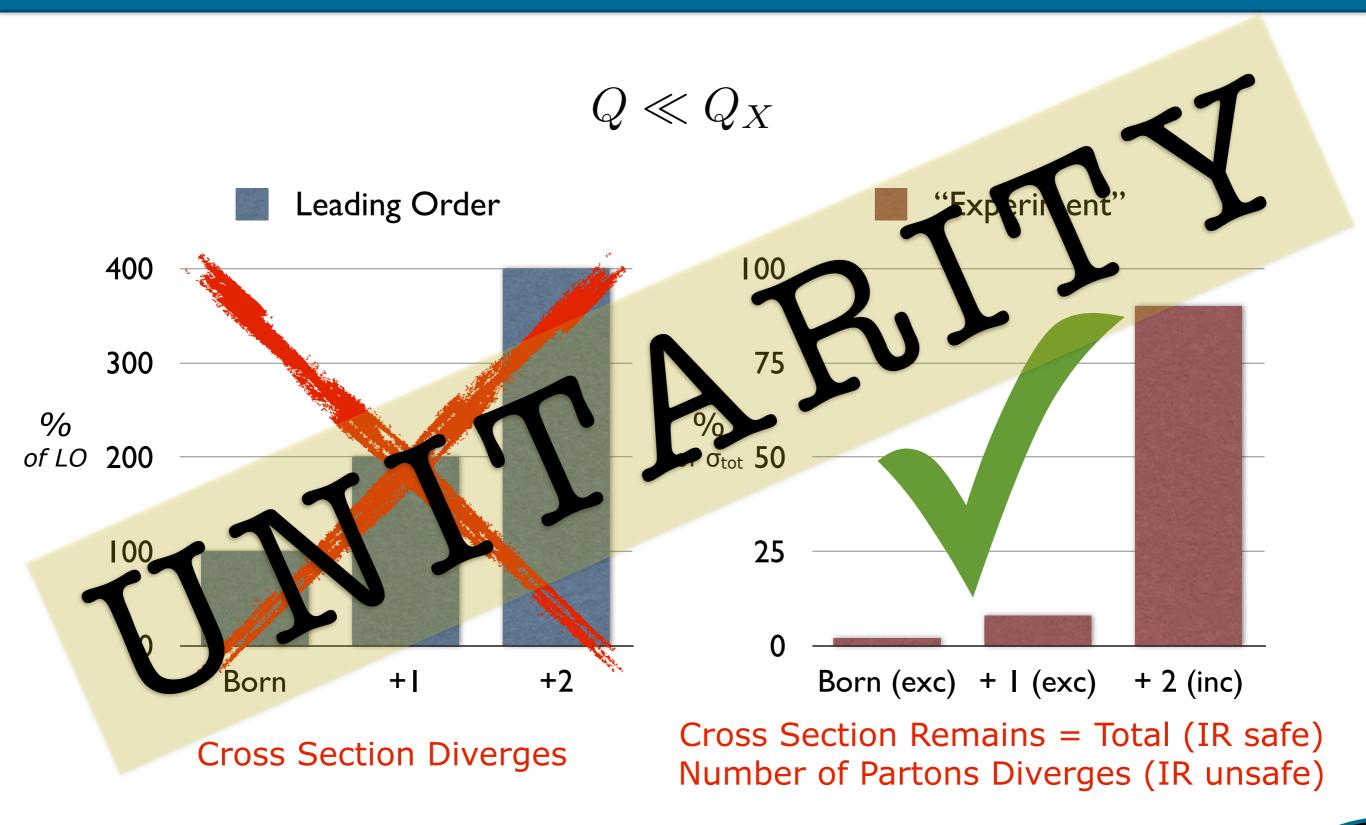
P. Skands

 $Q \ll Q_X$



Cross Section Diverges

Cross Section Remains = Total (IR safe) Number of Partons Diverges (IR unsafe)



Unitarity

Kinoshita-Lee-Nauenberg: (sum over degenerate quantum states = finite)

Loop = -Int(Tree) + F

Parton Showers neglect F

→ Leading-Logarithmic (LL) Approximation

Imposed by Event evolution:

When (X) branches to (X+1): Gain one (X+1). Loose one (X).

 \rightarrow evolution equation with kernel $\displaystyle rac{d\sigma_{X+1}}{d\sigma_X}$

Evolve in some measure of *resolution* ~ hardness, 1/time ... ~ fractal scale

→ includes both real (tree) and virtual (loop) corrections

- Take a jet algorithm, with resolution measure "Q", apply it to your events
- At a very crude resolution, you find that everything is 2-jets

Unitarity

Kinoshita-Lee-Nauenberg: (sum over degenerate quantum states = finite)

Loop = -Int(Tree) + F

Parton Showers neglect F

→ Leading-Logarithmic (LL) Approximation

Imposed by Event evolution:

When (X) branches to (X+1): Gain one (X+1). Loose one (X).

→ evolution equation with kernel $\frac{d\sigma_{X+1}}{d\sigma_X}$

Evolve in some measure of *resolution* ~ hardness, 1/time ... ~ fractal scale

→ includes both real (tree) and virtual (loop) corrections

- Take a jet algorithm, with resolution measure "Q", apply it to your events
- At a very crude resolution, you find that everything is 2-jets
- At finer resolutions \rightarrow some 2-jets migrate \rightarrow 3-jets = $\sigma_{X+1}(Q) = \sigma_{X;incl} \sigma_{X;excl}(Q)$

Unitarity

Kinoshita-Lee-Nauenberg: (sum over degenerate quantum states = finite)

Loop = -Int(Tree) + F

Parton Showers neglect F

→ Leading-Logarithmic (LL) Approximation

Imposed by Event evolution:

When (X) branches to (X+1): Gain one (X+1). Loose one (X).

→ evolution equation with kernel $\frac{d\sigma_{X+1}}{d\sigma_X}$

Evolve in some measure of *resolution* ~ hardness, 1/time ... ~ fractal scale

→ includes both real (tree) and virtual (loop) corrections

- Take a jet algorithm, with resolution measure "Q", apply it to your events
- At a very crude resolution, you find that everything is 2-jets
- At finer resolutions \rightarrow some 2-jets migrate \rightarrow 3-jets = $\sigma_{X+1}(Q) = \sigma_{X;incl} \sigma_{X;excl}(Q)$
- Later, some 3-jets migrate further, etc $\rightarrow \sigma_{X+n}(Q) = \sigma_{X;incl} \sum \sigma_{X+m < n;excl}(Q)$

Unitarity

Kinoshita-Lee-Nauenberg: (sum over degenerate quantum states = finite)

Loop = -Int(Tree) + F

Parton Showers neglect F

→ Leading-Logarithmic (LL) Approximation

Imposed by Event evolution:

When (X) branches to (X+1): Gain one (X+1). Loose one (X).

→ evolution equation with kernel $\frac{d\sigma_{X+1}}{d\sigma_X}$

Evolve in some measure of *resolution* ~ hardness, 1/time ... ~ fractal scale

→ includes both real (tree) and virtual (loop) corrections

- Take a jet algorithm, with resolution measure "Q", apply it to your events
- At a very crude resolution, you find that everything is 2-jets
- At finer resolutions \rightarrow some 2-jets migrate \rightarrow 3-jets = $\sigma_{X+1}(Q) = \sigma_{X;incl} \sigma_{X;excl}(Q)$
- Later, some 3-jets migrate further, etc $\rightarrow \sigma_{X+n}(Q) = \sigma_{X;incl} \sum \sigma_{X+m < n;excl}(Q)$
- This evolution takes place between two scales, $Q_{in} \sim s$ and $Q_{end} \sim Q_{had}$

Unitarity

Kinoshita-Lee-Nauenberg: (sum over degenerate quantum states = finite)

Loop = -Int(Tree) + F

Parton Showers neglect F

→ Leading-Logarithmic (LL) Approximation

Imposed by Event *evolution*:

When (X) branches to (X+1): Gain one (X+1). Loose one (X).

→ evolution equation with kernel $\frac{d\sigma_{X+1}}{d\sigma_X}$

Evolve in some measure of *resolution* ~ hardness, 1/time ... ~ fractal scale

→ includes both real (tree) and virtual (loop) corrections

- Take a jet algorithm, with resolution measure "Q", apply it to your events
- At a very crude resolution, you find that everything is 2-jets
- At finer resolutions \rightarrow some 2-jets migrate \rightarrow 3-jets = $\sigma_{X+1}(Q) = \sigma_{X;incl} \sigma_{X;excl}(Q)$
- Later, some 3-jets migrate further, etc $\rightarrow \sigma_{X+n}(Q) = \sigma_{X;incl} \sum \sigma_{X+m < n;excl}(Q)$
- This evolution takes place between two scales, Q_{in} ~ s and Q_{end} ~ Q_{had}

•
$$\sigma_{X;tot} = \text{Sum}(\sigma_{X+0,1,2,3,\ldots;excl}) = \text{int}(d\sigma_X)$$

Evolution Equations

Evolution Equations

What we need is a differential equation

Boundary condition: a few partons defined at a high scale (Q_F) Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff ~ 1 GeV) \rightarrow It's an evolution equation in Q_F

Evolution Equations

What we need is a differential equation

Boundary condition: a few partons defined at a high scale (Q_F) Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff ~ 1 GeV) \rightarrow It's an evolution equation in Q_F

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.

Decay constant $\frac{\mathrm{d}P(t)}{\mathrm{d}t} = c_N$ Probability to remain undecayed in the time interval $[t_1, t_2]$ $\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} c_N \,\mathrm{d}t\right) = \exp\left(-c_N \,\Delta t\right)$

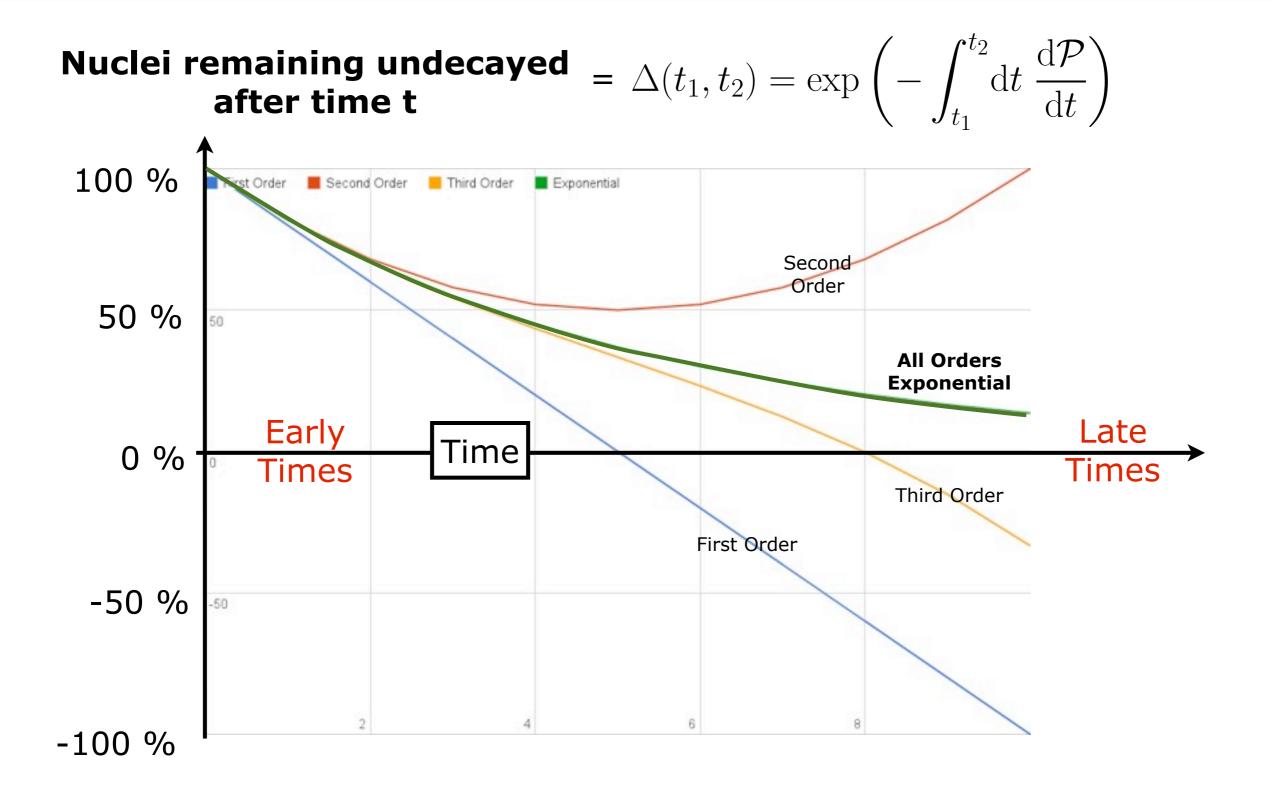
Decay probability per unit time

$$\frac{\mathrm{d}P_{\mathrm{res}}(t)}{\mathrm{d}t} = \frac{-\mathrm{d}\Delta}{\mathrm{d}t} = c_N \,\Delta(t_1, t)$$

(requires that the nucleus did not already decay)

 $= 1 - c_N \Delta t + \mathcal{O}(c_N^2)$

Nuclear Decay



The Sudakov Factor

In nuclear decay, the Sudakov factor counts: How many nuclei remain undecayed after a time t Probability to remain undecayed in the time interval $[t_1, t_2]$

$$\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} c_N \,\mathrm{d}t\right) = \exp\left(-c_N \,\Delta t\right)$$

The Sudakov Factor

In nuclear decay, the Sudakov factor counts: How many nuclei remain undecayed after a time t

Probability to remain undecayed in the time interval $[t_1, t_2]$

$$\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} c_N \,\mathrm{d}t\right) = \exp\left(-c_N \,\Delta t\right)$$

The Sudakov factor for a parton system counts:

The probability that the parton system doesn't evolve (branch) when we run the factorization scale (~1/time) from a high to a low scale

Evolution probability per unit "time"

$$\frac{\mathrm{d}P_{\mathrm{res}}(t)}{\mathrm{d}t} = \frac{-\mathrm{d}\Delta}{\mathrm{d}t} = c_N \,\Delta(t_1, t)$$

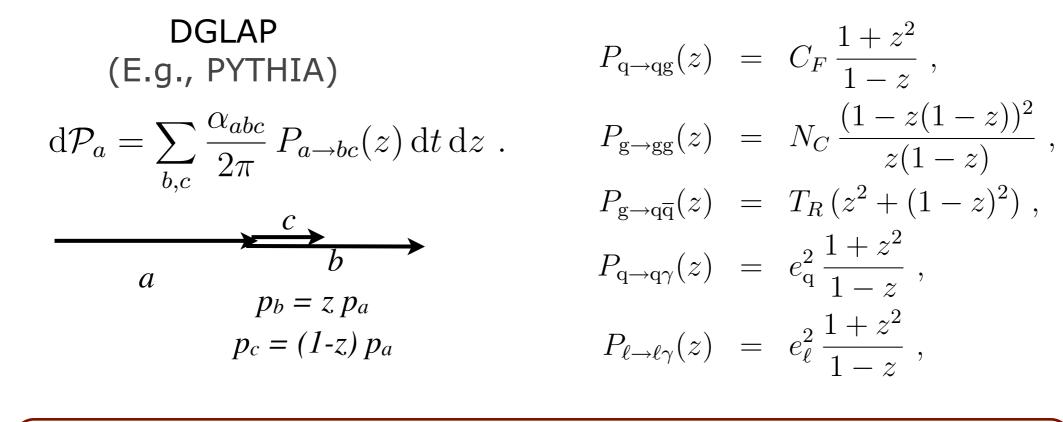
(replace t by shower evolution scale)

(replace *c_N* by proper shower evolution kernels)

What's the evolution kernel?

DGLAP splitting functions

Can be derived from *collinear limit* of MEs $(p_b+p_c)^2 \rightarrow 0$ + evolution equation from invariance with respect to $Q_F \rightarrow RGE$



Note: there exist now also alternatives to AP kernels (with same collinear limits!): dipoles, antennae, ...

Coherence

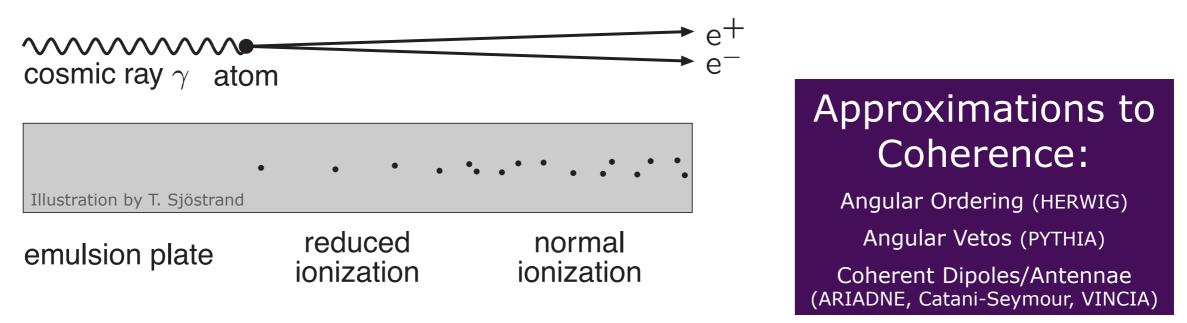
QED: Chudakov effect (mid-fifties) e⁻ cosmic ray γ atom Illustration by T. Sjöstrand reduced normal emulsion plate ionization ionization QCD: colour coherence for **soft** gluon emission = \bigcirc 000000

 \rightarrow an example of an interference effect that can be treated probabilistically

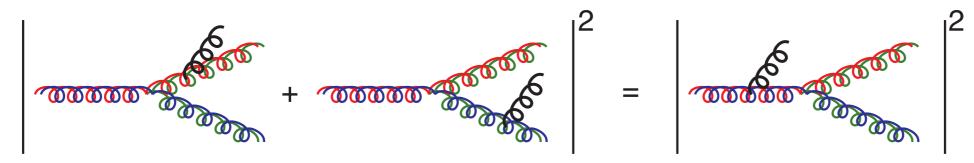
More interference effects can be included by matching to full matrix elements

Coherence

QED: Chudakov effect (mid-fifties)



QCD: colour coherence for soft gluon emission



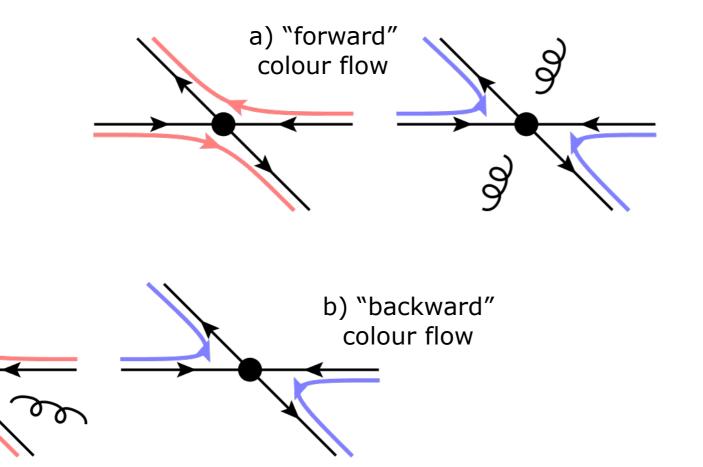
 \rightarrow an example of an interference effect that can be treated probabilistically

More interference effects can be included by matching to full matrix elements

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Example: quark-quark scattering in hadron collisions

Consider one specific phase-space point (eg scattering at 45°) 2 possible colour flows: a and b

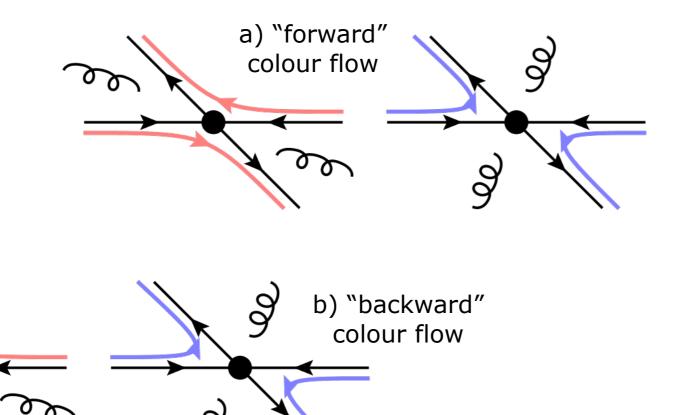


Another good recent example is the SM contribution to the Tevatron top-quark forwardbackward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

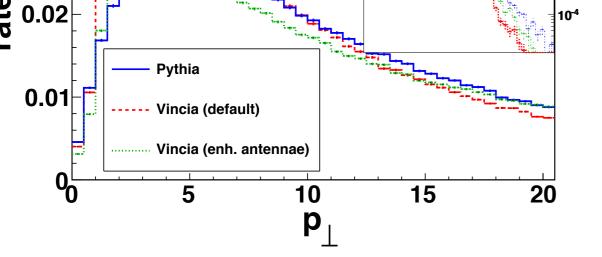
Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Example: quark-quark scattering in hadron collisions

Consider one specific phase-space point (eg scattering at 45°) 2 possible colour flows: a and b



Another good recent example is the SM contribution to the Tevatron top-quark forwardbackward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151



Work

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

hadron collisions eg scattering at 45°)

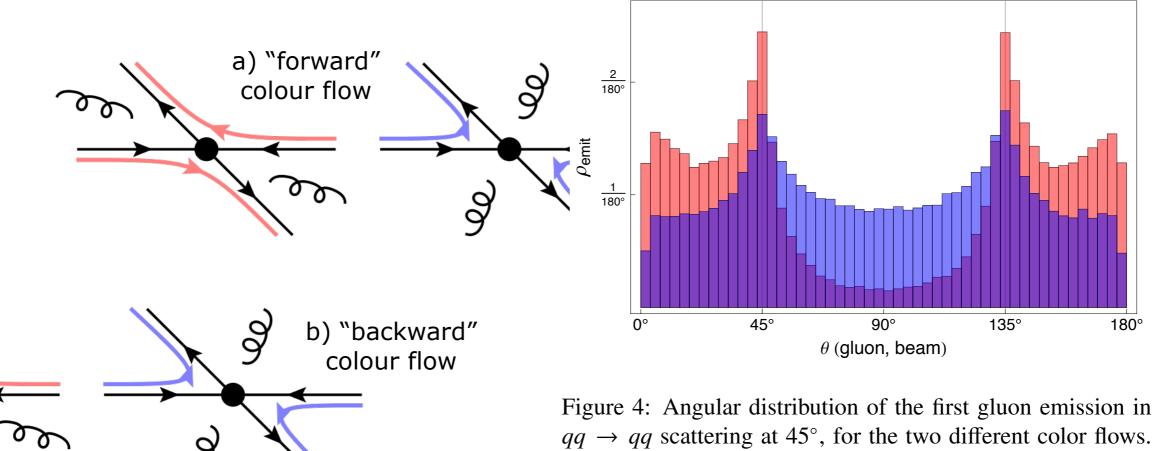
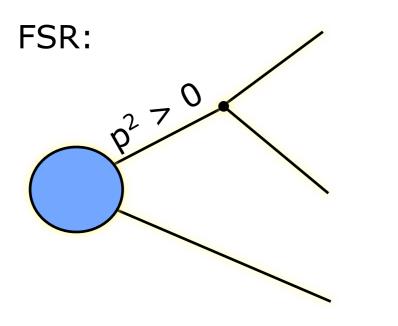


Figure 4: Angular distribution of the first gluon emission in $qq \rightarrow qq$ scattering at 45°, for the two different color flows. The light (red) histogram shows the emission density for the forward flow, and the dark (blue) histogram shows the emission density for the backward flow.

Another good recent example is the SM contribution to the Tevatron top-quark forwardbackward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

Initial-State vs Final-State Evolution



ISR: $p^{2} = t < 0$

Virtualities are Timelike: p²>0

Start at $Q^2 = Q_F^2$ "Forwards evolution" Virtualities are Spacelike: p²<0

Start at $Q^2 = Q_{F^2}$ Constrained backwards evolution towards boundary condition = proton

Separation meaningful for collinear radiation, but not for soft ...

(Initial-State Evolution)

DGLAP for Parton Density

$$\frac{\mathrm{d}f_b(x,t)}{\mathrm{d}t} = \sum_{a,c} \int \frac{\mathrm{d}x'}{x'} f_a(x',t) \frac{\alpha_{abc}}{2\pi} P_{a\to bc} \left(\frac{x}{x'}\right)$$

→ Sudakov for ISR

$$\Delta(x, t_{\max}, t) = \exp\left\{-\int_{t}^{t_{\max}} \mathrm{d}t' \sum_{a,c} \int \frac{\mathrm{d}x'}{x'} \frac{f_a(x', t')}{f_b(x, t')} \frac{\alpha_{abc}(t')}{2\pi} P_{a \to bc}\left(\frac{x}{x'}\right)\right\}$$
$$= \exp\left\{-\int_{t}^{t_{\max}} \mathrm{d}t' \sum_{a,c} \int \mathrm{d}z \frac{\alpha_{abc}(t')}{2\pi} P_{a \to bc}(z) \frac{x'f_a(x', t')}{xf_b(x, t')}\right\},$$

(Initial-State Evolution)

DGLAP for Parton Density

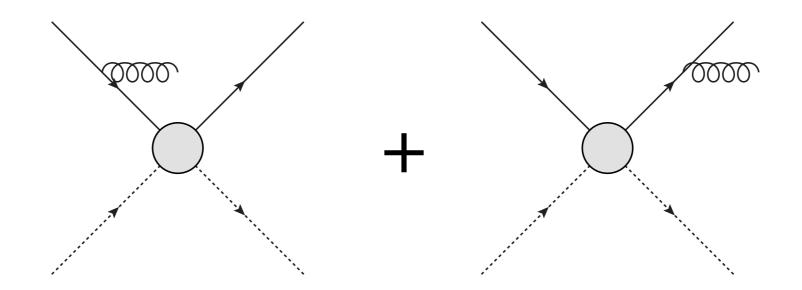
$$\frac{\mathrm{d}f_b(x,t)}{\mathrm{d}t} = \sum_{a,c} \int \frac{\mathrm{d}x'}{x'} f_a(x',t) \frac{\alpha_{abc}}{2\pi} P_{a\to bc} \left(\frac{x}{x'}\right)$$

→ Sudakov for ISR

$$\Delta(x, t_{\max}, t) = \exp\left\{-\int_{t}^{t_{\max}} \mathrm{d}t' \sum_{a,c} \int \frac{\mathrm{d}x'}{x'} \frac{f_a(x', t')}{f_b(x, t')} \frac{\alpha_{abc}(t')}{2\pi} P_{a \to bc}\left(\frac{x}{x'}\right)\right\}$$
$$= \exp\left\{-\int_{t}^{t_{\max}} \mathrm{d}t' \sum_{a,c} \int \mathrm{d}z \frac{\alpha_{abc}(t')}{2\pi} P_{a \to bc}(z) \frac{x'f_a(x', t')}{xf_b(x, t')}\right\},$$

Initial-Final Interference

Who emitted that gluon?



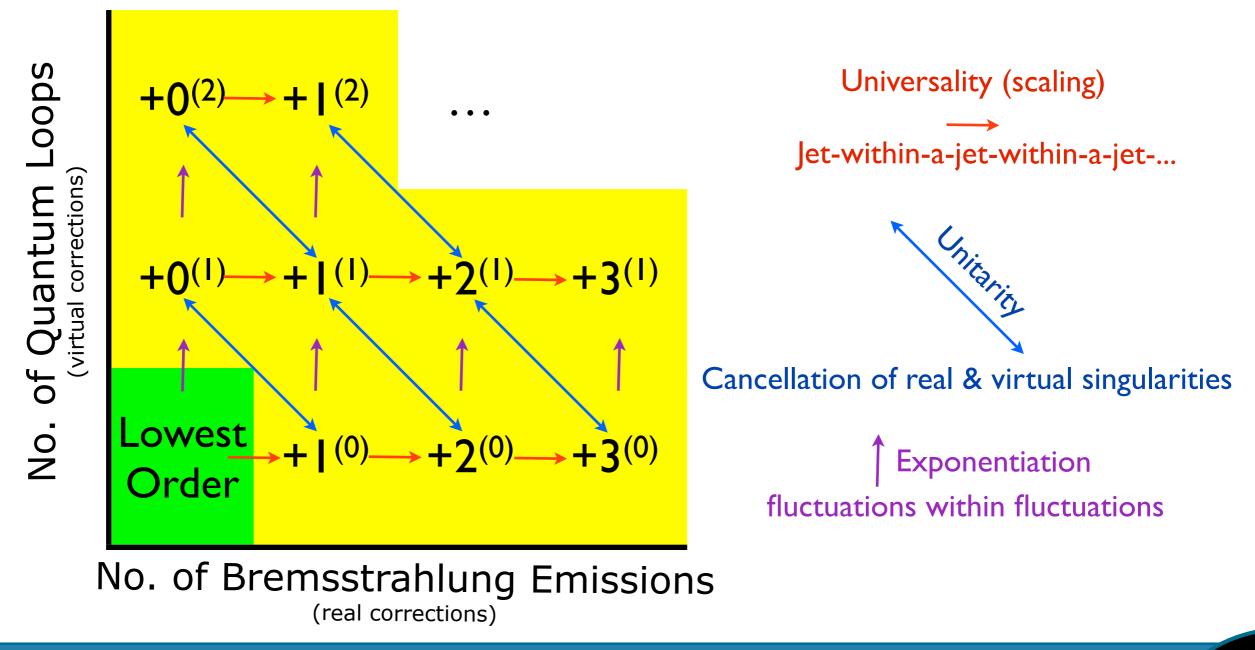
Real QFT = sum over amplitudes, then square \rightarrow interference (IF coherence) Respected by dipole/antenna languages (and by angular ordering), but not by conventional DGLAP (\rightarrow all PDFs are "wrong")

Separation meaningful for collinear radiation, but not for soft ...

Bootstrapped Perturbation Theory

Start from an **arbitrary lowest-order** process (green = QFT amplitude squared)

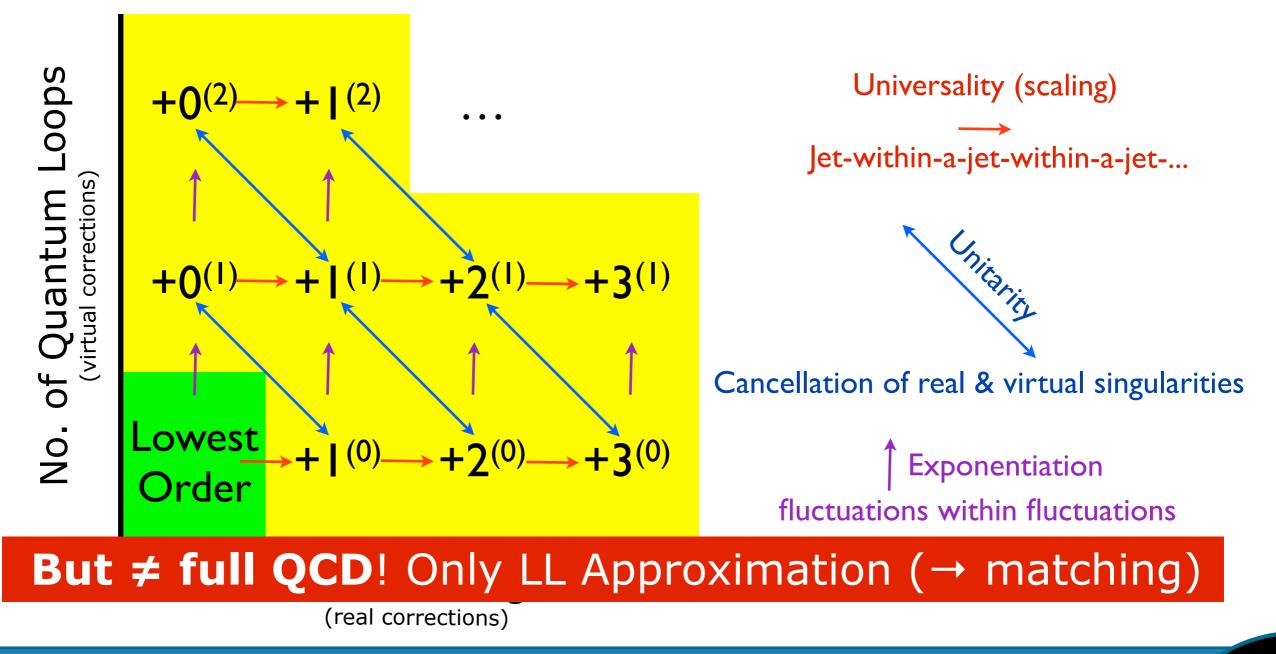
Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (approximate infinite-order resummation)



Bootstrapped Perturbation Theory

Start from an **arbitrary lowest-order** process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (approximate infinite-order resummation)



But instead of evaluating O directly on the Born final state, first insert a showering operator

But instead of evaluating O directly on the Born final state, first insert a showering operator

Born + shower $\frac{\mathrm{d}\sigma_H}{\mathrm{d}\mathcal{O}}\Big|_{\mathcal{S}} = \int \mathrm{d}\Phi_H |M_H^{(0)}|^2 \mathcal{S}(\{p\}_H, \mathcal{O})$ {p}: partons S: showering operator

But instead of evaluating O directly on the Born final state, first insert a showering operator

Born
+ shower
$$\frac{d\sigma_H}{d\mathcal{O}}\Big|_{\mathcal{S}} = \int d\Phi_H |M_H^{(0)}|^2 \mathcal{S}(\{p\}_H, \mathcal{O})$$
 {p}: partons
S: showering operator

Unitarity: to first order, S does nothing

 $\mathcal{S}(\{p\}_H, \mathcal{O}) = \delta \left(\mathcal{O} - \mathcal{O}(\{p\}_H) \right) + \mathcal{O}(\alpha_s)$

To ALL Orders

$$S(\{p\}_X, \mathcal{O}) = \Delta(t_{\text{start}}, t_{\text{had}})\delta(\mathcal{O} - \mathcal{O}(\{p\}_X))$$

"Nothing Happens" → "Evaluate Observable"

$$-\int_{t_{\text{start}}}^{t_{\text{had}}} \mathrm{d}t \frac{\mathrm{d}\Delta(t_{\text{start}},t)}{\mathrm{d}t} S(\{p\}_{X+1},\mathcal{O})$$

"Something Happens" \rightarrow "Continue Shower"

All-orders Probability that nothing happens

$$\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} \mathrm{d}t \; \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}t}\right) \quad \begin{array}{l} \text{(Exponentiation)}\\ \text{Analogous to nuclear decay}\\ \text{N(t) \approx N(0) exp(-ct)} \end{array}$$

P. Skands

To ALL Orders (Markov Chain) $S(\{p\}_X, \mathcal{O}) = \Delta(t_{\text{start}}, t_{\text{had}})\delta(\mathcal{O} - \mathcal{O}(\{p\}_X))$ "Nothing Happens" \rightarrow "Evaluate Observable" $-\int_{t_{\text{start}}}^{t_{\text{had}}} dt \frac{d\Delta(t_{\text{start}}, t)}{dt} S(\{p\}_{X+1}, \mathcal{O})$ "Something Happens" \rightarrow "Continue Shower"

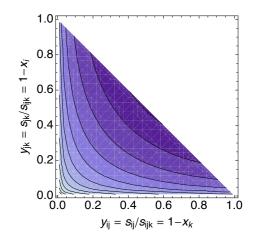
All-orders Probability that nothing happens

$$\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} \mathrm{d}t \; \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}t}\right) \quad \text{(E)}_{\text{Normalized}}$$

(Exponentiation) Analogous to nuclear decay $N(t) \approx N(0) \exp(-ct)$

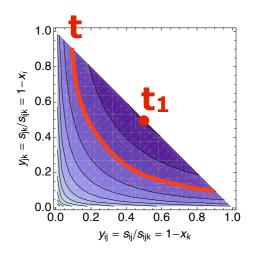
Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details

1. Generate Random Number, $R \in [0,1]$ Solve equation $R = \Delta(t_1, t)$ for t (with starting scale t_l) Analytically for simple splitting kernels, else numerically (or by trial+veto) \rightarrow t scale for next branching



Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details

1. Generate Random Number, $R \in [0,1]$ Solve equation $R = \Delta(t_1, t)$ for t (with starting scale t_l) Analytically for simple splitting kernels, else numerically (or by trial+veto) \rightarrow t scale for next branching



Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details

1. Generate Random Number, $R \in [0,1]$ Solve equation $R = \Delta(t_1, t)$ for t (with starting scale t_l) Analytically for simple splitting kernels, else numerically (or by trial+veto) \rightarrow t scale for next branching

2. Generate another Random Number, $R_z \in [0,1]$

To find second (linearly independent) phase-space invariant

Solve equation
$$R_z = \frac{I_z(z,t)}{I_z(z_{\max}(t),t)}$$
 for z (at scale t)
With the "primitive function" $I_z(z,t) = \int_{z_{\min}(t)}^{z} dz \left. \frac{d\Delta(t')}{dt'} \right|_{t'=t}$

1.0

0.8

0.6 = 0.6 S^{jk}/S^{jjk} = 0.4

0.0

0.0

0.2

0.4

 $y_{ij} = s_{ij}/s_{ijk} = 1-x_k$

0.6 0.8

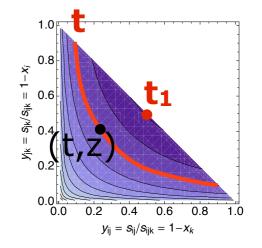
1.0

 $= 1 - x_i$

خ ۵2

Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details

1. Generate Random Number, $R \in [0,1]$ Solve equation $R = \Delta(t_1, t)$ for t (with starting scale t_l) Analytically for simple splitting kernels, else numerically (or by trial+veto) \rightarrow t scale for next branching



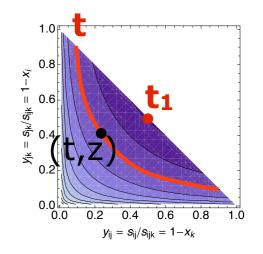
2. Generate another Random Number, $R_z \in [0,1]$

To find second (linearly independent) phase-space invariant

Solve equation
$$R_z = \frac{I_z(z,t)}{I_z(z_{\max}(t),t)}$$
 for z (at scale t)
With the "primitive function" $I_z(z,t) = \int_{z_{\min}(t)}^{z} dz \left. \frac{d\Delta(t')}{dt'} \right|_{t'=t}$

Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details

1. Generate Random Number, $R \in [0,1]$ Solve equation $R = \Delta(t_1, t)$ for t (with starting scale t_l) Analytically for simple splitting kernels, else numerically (or by trial+veto) \rightarrow t scale for next branching



2. Generate another Random Number, $R_z \in [0,1]$

To find second (linearly independent) phase-space invariant

Solve equation
$$R_z = \frac{I_z(z,t)}{I_z(z_{\max}(t),t)}$$
 for z (at scale t)
With the "primitive function" $I_z(z,t) = \int_{z_{\min}(t)}^{z} dz \left. \frac{d\Delta(t')}{dt'} \right|_{t'=t}$

3. Generate a third Random Number, $R_{\phi} \in [0,1]$ Solve equation $R_{\varphi} = \varphi/2\pi$ for $\phi \rightarrow$ Can now do 3D branching

Perturbative Ambiguities

The final states generated by a shower algorithm will depend on

- 1. The choice of perturbative evolution variable(s) $t^{[i]}$. \leftarrow Ordering & Evolution-scale choices
- 2. The choice of phase-space mapping $d\Phi_{n+1}^{[i]}/d\Phi_n$. Recoils, kinematics
- 3. The choice of radiation functions a_i , as a function of the phase-space variables.
- 4. The choice of renormalization scale function μ_R .
- 5. Choices of starting and ending scales.

Phase-space limits / suppressions for hard radiation and choice of hadronization scale

Perturbative Ambiguities

The final states generated by a shower algorithm will depend on

- 1. The choice of perturbative evolution variable(s) $t^{[i]}$. \leftarrow Ordering & Evolution-scale choices
- 2. The choice of phase-space mapping $d\Phi_{n+1}^{[i]}/d\Phi_n$. Recoils, kinematics
- 3. The choice of radiation functions a_i , as a function of the phase-space variables.
- 4. The choice of renormalization scale function μ_R .
- 5. Choices of starting and ending scales.

Non-singular terms,
 Reparametrizations,
 Subleading Colour

Phase-space limits / suppressions for hard radiation and choice of hadronization scale

→ gives us additional handles for uncertainty estimates, beyond just μ_R (+ ambiguities can be reduced by including more pQCD → matching!)

Nice to have all-orders solution

But it is only exact in the singular (soft & collinear) limits → gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: visible, extra jets

... which is exactly where fixed-order calculations work!

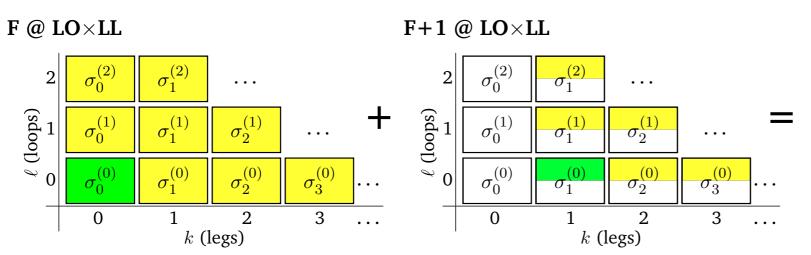
So combine them!

See also: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Nice to have all-orders solution

But it is only exact in the singular (soft & collinear) limits → gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: visible, extra jets

... which is exactly where fixed-order calculations work!



So combine them!

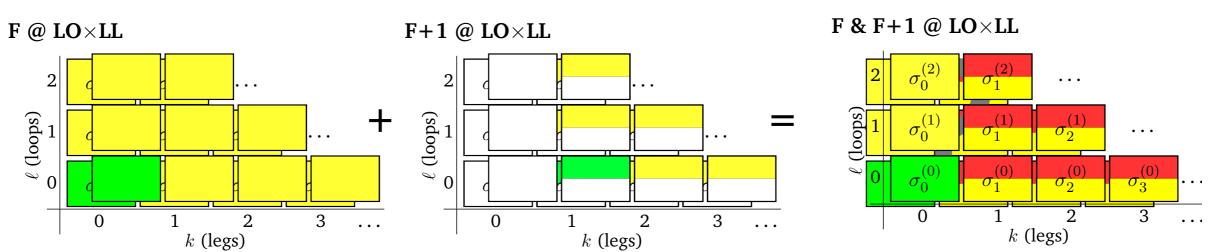


See also: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Nice to have all-orders solution

But it is only exact in the singular (soft & collinear) limits → gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: visible, extra jets

... which is exactly where fixed-order calculations work!



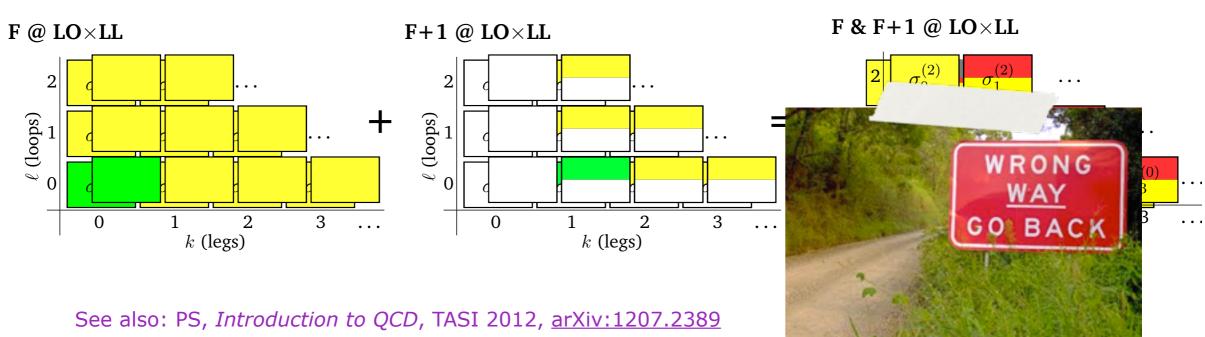
So combine them!

See also: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Nice to have all-orders solution

But it is only exact in the singular (soft & collinear) limits → gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: visible, extra jets

... which is exactly where fixed-order calculations work!

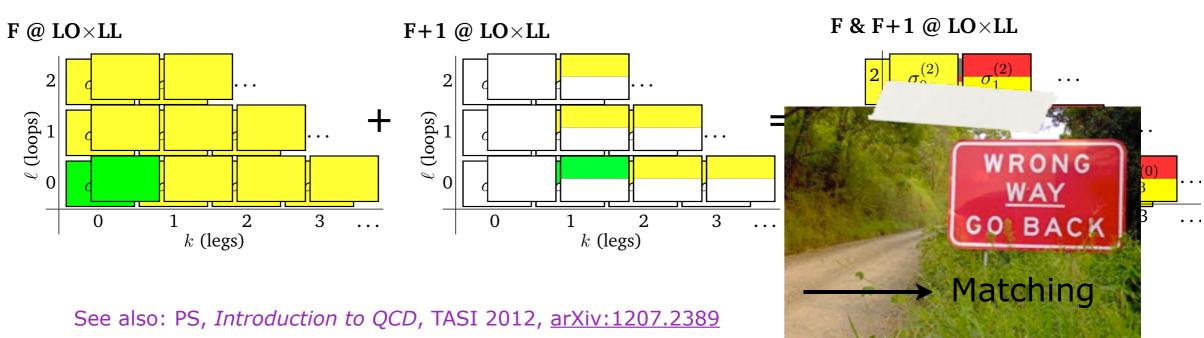


So combine them!

Nice to have all-orders solution

But it is only exact in the singular (soft & collinear) limits → gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: visible, extra jets

... which is exactly where fixed-order calculations work!



So combine them!

Standard Paradigm: consider a single physical system; a single physical process

Explicit solutions (to given perturbative order)

Standard-Model: typically NLO or NNLO Beyond-SM: typically LO or NLO

LO: Leading Order (Born) NLO = Next-to-LO, ...

Event generators: consider all possible physical processes (within perturbative QFT)

Approximate solutions

Limited generality

Process-dependence = subleading correction (→ matching)

Maximum generality

Emphasis is on universalities; physics

Common property of all processes is, for instance, limits in which they factorize!

Summary: Parton Showers

Aim: generate events in as much detail as mother nature

→ Make stochastic choices ~ as in Nature (Q.M.) → Random numbers

Factor complete event probability into separate universal pieces, treated independently and/or sequentially (Markov-Chain MC)

Improve lowest-order perturbation theory by including `most significant' corrections

- Resonance decays (e.g., $t \rightarrow bW^+$, $W \rightarrow qq'$, $H^0 \rightarrow \gamma^0 \gamma^0$, $Z^0 \rightarrow \mu^+ \mu^-$, ...)
- Bremsstrahlung (FSR and ISR, exact in collinear and soft* limits)
- Hard radiation (matching, discussed tomorrow)
- Hadronization (strings/clusters, discussed tomorrow)
- Additional Soft Physics: multiple parton-parton interactions, Bose-Einstein correlations, colour reconnections, hadron decays, ...

Coherence*

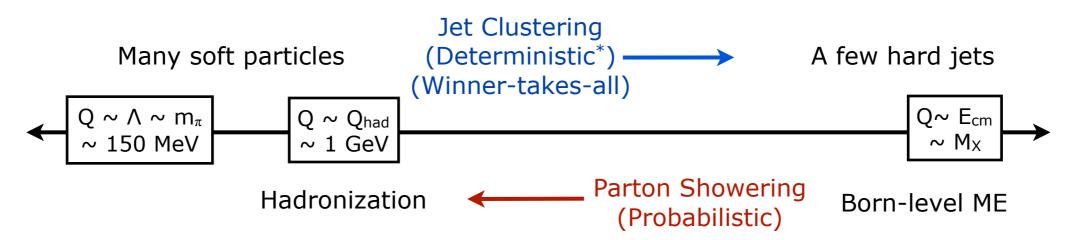
Soft radiation → Angular ordering or Coherent Dipoles/Antennae

See also: **1)** MCnet Review (long): <u>Phys.Rept. 504 (2011) 145-233</u> and/or **2)** PDG Review on Monte Carlo Event Generators, and/or **3)** PS, TASI Lectures (short): <u>arXiv:1207.2389</u>

Jets vs Parton Showers

Jet clustering algorithms

Map event from low E-resolution scale (i.e., with many partons/hadrons, most of which are soft) to a higher E-resolution scale (with fewer, hard, IR-safe, jets)



Parton shower algorithms

Map a few hard partons to many softer ones

Probabilistic \rightarrow closer to nature.

Not uniquely invertible by any jet algorithm^{*}

(* See "Qjets" for a probabilistic jet algorithm, <u>arXiv:1201.1914</u>) (* See "Sector Showers" for a deterministic shower, <u>arXiv:1109.3608</u>)