Modelling of the interplay between hard and soft processes in pp Peter Skands (CERN)

Main tools for high-p_T calculations Factorization and IR safety

Corrections suppressed by powers of Λ_{QCD}/Q_{Hard}

Soft QCD / Min-Bias / Pileup

NO HARD SCALE

Typical Q scales ~ Λ_{QCD} Extremely sensitive to IR effects \rightarrow Excellent LAB for studying IR effects

 $\sim \infty$ statistics for min-bias \rightarrow Access tails, limits

Universality: Recycling PU + MB + UE

Workshop on Centrality in pA collisions CERN, February 2014

Is there no hard scale?

Compare total (inelastic) hadron-hadron cross section to calculated parton-parton (LO QCD 2→2) cross section

 $\rightarrow 8 \text{ TeV} \rightarrow 100 \text{ Tev}$

→ Trivial calculation indicates hard scales in min-bias

MPI

Multiple perturbative parton-parton interactions

Simple consequence of having lots of partons (in each hadron) and large interaction cross section

Naively
$$\langle n_{2\to 2}(p_{\perp \min}) \rangle = \frac{\sigma_{2\to 2}(p_{\perp \min})}{\sigma_{tot}}$$

Interactions independent (naive factorization) \rightarrow Poisson

$$\mathcal{P}_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$

Real Life

Color screening: $\sigma_{2\rightarrow2}\rightarrow 0$ for $p_{\perp}\rightarrow 0$ Momentum conservation suppresses high-n tail Impact-parameter dependence + physical correlations \rightarrow not simple product

Impact Parameter

1. **Simple Geometry** (in impact-parameter plane)

Simplest idea: smear PDFs across a uniform disk of size πrp²
→ simple geometric overlap factor ≤ 1 in dijet cross section
Some collisions have the full overlap, others only partial
→ Poisson distribution with different mean <n> at each b

2. More realistic Proton b-shape

Smear PDFs across a non-uniform disk MC models use Gaussians or **more**/less peaked Overlap factor = convolution of two such distributions

 \rightarrow Poisson distribution with different mean $\langle n \rangle$ at each b "Lumpy Peaks" \rightarrow large matter overlap enhancements, higher $\langle n \rangle$

Note: this is an *effective* description. Not the actual proton mass density. E.g., peak in overlap function (\gg 1) can represent unlikely configurations with huge overlap enhancement. Typically use total σ_{inel} as normalization.

→ see next talk by M. Strikman

Charged Multiplicity

FIG. 3. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs simple models: dashed low p_T only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

FIG. 12. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs multiple-interaction model with variable impact parameter: solid line, double-Gaussian matter distribution; dashed line, with fix impact parameter [i.e., $\tilde{O}_0(b)$].

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019

The Pedestal Effect (now called the Underlying Event)

As you trigger on progressively higher p_T , the entire event increases ...

A note on Energy Scaling

Discovery at LHC Min-Bias & UE are 10-20% larger than we thought Scale a bit faster with energy → Be sure to use up-to-date (LHC) tunes

A SENSITIVE E-SCALING PROBE:

Relative increase in the central charged-track multiplicity from 0.9 to 2.36 and 7 TeV

See also energy-scaling tuning study, Schulz & PS, EPJ C71 (2011) 1644

Number of MPI*

Minimum-Bias pp collisions at 7 TeV

*note: can be arbitrarily soft

Color Connections: n_{MPI} ↔ n_{Ch} ?

Leading N_C: each parton-parton interaction scatters `new' colors

→ incoherent addition of colors

1 or 2 strings per MPI

Quite clean, factorized picture

WRONG!

Rapidity

Multiplicity $\propto N_{MPI}$

Color Reconnections?

Hydro?

E.g.,

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133)

Nc=3: Colors add coherently + collective effects?

Coherence

Better theory models needed

Multiplicity 🚧 N_{MPI}

Coherence

MPI Models: Caveats

See also Connecting hard to soft: KMR, EPJ C71 (2011) 1617 + PYTHIA "Perugia Tunes": PS, PRD82 (2010) 074018 + arXiv:1308.2813

Summary

Impact parameter plays important role in description of pp collisions

- Models incorporate variable b, with non-trivial overlap profiles
- Pedestal effect interpreted as min \rightarrow max bias

Large PDFs + Divergent partonic QCD $\sigma_{2\rightarrow 2}$

- Average collisions at LHC and beyond may involve perturbatively hard scales
- "Central (or lumpy)" collisions → enhancements

Connections between b, <n_{MPI}>, and <n_{Ch}>

Complicated by colour structure \rightarrow hadronization Significant fluctuations (and uncertainties)

Strangeness: Kaons

Strangeness: A hyperons

1.5

0.5

0

10

Dynamical Models of Soft QCD

P. Skands

Choice between 5 Pomeron PDFs.Free parameter $\sigma_{\mathbb{P}p}$ needed to fix $\langle n_{\text{interactions}} \rangle = \sigma_{\text{jet}} / \sigma_{\mathbb{P}p}$.+ Recently Central Diffraction!Framework needs testing and tuning, e.g. of $\sigma_{\mathbb{P}p}$.

Menu

→ Front Page → LHC@home 2.0 >>

- → Generator Versions
- → Generator Validation
- → Update History
- → User Manual and Reference

٥

Analysis filter:

Latest analyses

Z (Drell-Yan)

- → Jet Multiplicities
- → 1/σdσ(Z)/dφ^{*}n
- $\rightarrow d\sigma(Z)/dpTZ$
- $\rightarrow 1/\sigma d\sigma(Z)/dpTZ$

W

- Charge asymmetry vs η
- → Charge asymmetry vs N_{iet}
- → dσ(jet)/dpT
- → Jet Multiplicities

Top (MC only)

- → Δφ (ttbar)
- → ∆y (ttbar)
- → |∆y| (ttbar)
- → M (ttbar)
- pT (ttbar)
- Cross sections
- → y (ttbar)
- → Asymmetry
- → Individual tops

Bottom

Jets

- → ŋ Distributions
- → pT Distributions
- → Cross sections

Underlying Event : TRNS : Σ(pT) vs pT1

Generator Group: General-Purpose MCs Soft-Inclusive MCs Alpgen Herwig++ Pythia 6 Pythia 8 Sherpa Vincia Epos Phojet Custom

Subgroup:

Defaults LHC Tunes C++ Generators Tevatron vs LHC tunes

pp @ 7000 GeV

·0·

Herwig++ (Def)

- Explicit tables of data & MC points
- Run cards for each generator
- Link to experimental reference paper
- Steering file for plotting program
- (Will also add link to RIVET analysis)

1: A Simple Model

The minimal model incorporating single-parton factorization, perturbative unitarity, and energy-and-momentum conservation

$$\sigma_{2\to 2}(p_{\perp \min}) = \langle n \rangle(p_{\perp \min}) \sigma_{\text{tot}}$$

Parton-Parton Cross Section

Hadron-Hadron Cross Section

I. Choose *p*_{*T*min} cutoff

= main tuning parameter

- 2. Interpret $< n > (p_{Tmin})$ as mean of Poisson distribution Equivalent to assuming all parton-parton interactions equivalent and independent ~ each take an instantaneous "snapshot" of the proton
- 3. Generate *n* parton-parton interactions (pQCD 2 \rightarrow 2) Veto if total beam momentum exceeded \rightarrow overall (E,p) cons
- 4. Add impact-parameter dependence $\rightarrow \langle n \rangle = \langle n \rangle(b)$ Assume factorization of transverse and longitudinal d.o.f., \rightarrow PDFs : f(x,b) = f(x)g(b) b distribution \propto EM form factor \rightarrow JIMMY model Butterworth, Forshaw, Seymour Z.Phys. C72 (1996) 637 Constant of proportionality = second main tuning parameter
- 5. Add separate class of "soft" (zero-pt) interactions representing interactions with $p_T < p_{T\min}$ and require $\sigma_{soft} + \sigma_{hard} = \sigma_{tot}$ \rightarrow Herwig++ model Bähr et al, arXiv:0905.4671

2: Interleaved Evolution

Sjöstrand & Skands, JHEP 0403 (2004) 053; EPJ C39 (2005) 129

Also available for Pomeron-Proton collisions since Pythia 8.165

Cross sections

Scaling of Multiplicities

From soft models based on Regge Theory, expect:

D. d'Enterria et al. [arXiv:1101.5596],

$$\frac{dN_{\rm ch}(s,\eta)}{d\eta}\Big|_{\eta=0} \propto \frac{{\rm Im} f^{\mathbb{P}}(s,0)}{s\,\sigma_{pp}^{\rm inel}(s)} \sim \frac{s^{\Delta_{\mathbb{P}}}}{\log^2 s}\,,$$

