Modelling of the interplay between hard and soft processes in pp
 Peter Skands (CERN)

Main tools for high-pt calculations
Factorization and IR safety
Corrections suppressed by powers of $\Lambda_{\mathrm{QcD}} / \mathrm{Q}_{\text {Hard }}$ Soft QCD / Min-Bias / Pileup

NO HARD SCALE

Typical Q scales \sim ^ecd
Extremely sensitive to IR effects
\rightarrow Excellent LAB for studying IR effects
$\sim \infty$ statistics for min-bias
\rightarrow Access tails, limits
Universality: Recycling PU $\rightarrow \mathrm{MB} \leftrightarrows \mathrm{UE}$

Is there no hard scale?

Compare total (inelastic) hadron-hadron cross section to calculated parton-parton (LO QCD $2 \rightarrow 2$) cross section

$\rightarrow 8 \mathrm{TeV} \rightarrow 100 \mathrm{Tev}$

\rightarrow Trivial calculation indicates hard scales in min-bias

Multiple perturbative parton-parton interactions

Simple consequence of having lots of partons (in each hadron) and large interaction cross section
Naively $\left\langle n_{2 \rightarrow 2}\left(p_{\perp \text { min }}\right)\right\rangle=\frac{\sigma_{2 \rightarrow 2}\left(p_{\perp \text { min }}\right)}{\sigma_{\text {tot }}}$
Interactions independent (naive factorization) \rightarrow Poisson

$$
\mathcal{P}_{n}=\frac{\langle n\rangle^{n}}{n!} e^{-\langle n\rangle}
$$

Real Life
Color screening: $\sigma_{2 \rightarrow 2} \rightarrow 0$ for $\mathrm{p}_{\perp} \rightarrow 0$
Momentum conservation suppresses high-n tail Impact-parameter dependence + physical correlations
\rightarrow not simple product

Impact Parameter

1. Simple Geometry (in impact-parameter plane)

Simplest idea: smear PDFs across a uniform disk of size $\pi r_{p}{ }^{2}$ \rightarrow simple geometric overlap factor ≤ 1 in dijet cross section Some collisions have the full overlap, others only partial \rightarrow Poisson distribution with different mean $<n>$ at each b
2. More realistic Proton b-shape

Smear PDFs across a non-uniform disk
MC models use Gaussians or more/less peaked Overlap factor = convolution of two such distributions
\rightarrow Poisson distribution with different mean $<n>$ at each b
"Lumpy Peaks" \rightarrow large matter overlap enhancements, higher <n>
Note: this is an effective description. Not the actual proton mass density. E.g., peak in overlap function (>1) can represent unlikely configurations with huge overlap enhancement. Typically use total $\sigma_{i n e l}$ as normalization.

[^0]
Charged Multiplicity

FIG. 3. Charged-multiplicity distribution at 540 GeV , UA5 results (Ref. 32) vs simple models: dashed low p_{T} only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

FIG. 12. Charged-multiplicity distribution at 540 GeV , UA5 results (Ref. 32) vs multiple-interaction model with variable impact parameter: solid line, double-Gaussian matter distribution; dashed line, with fix impact parameter [i.e., $\left.\widetilde{O}_{0}(b)\right]$.

The Pedestal Effect (now called the Underlying Event)

As you trigger on progressively higher p_{T}, the entire event increases ..

Leading Track or Jet

\sim Recoil Jet
... until you reach a plateau ("max-bias") Interpreted as impact-parameter effect Qualitatively reproduced by MPI models

LHC from 900 to 7000 GeV - ATLAS

A note on Energy Scaling

Discovery at LHC

Min-Bias \& UE are 10-20\% larger than we thought Scale a bit faster with energy
\rightarrow Be sure to use up-to-date (LHC) tunes

Central Charged-Track Multiplicity

A SENSITIVE E-SCALING PROBE:

Relative increase in the central charged-track multiplicity from 0.9 to 2.36 and 7 TeV

INEL>0 | $\eta \mid<1$

Data from ALICE EPJ C68 (2010) 345, Plot from arXiv:1308.2813

Number of MPI*

Minimum-Bias pp collisions at 7 TeV

Averaged over all pp impact parameters
(Really: averaged over all pp overlap enhancement factors)

*note: can be arbitrarily soft

Color Connections: nMPI \leftrightarrow nch ?

Leading Nc: each parton-parton interaction scatters 'new' colors \rightarrow incoherent addition of colors 1 or 2 strings per MPI

Quite clean, factorized picture

Multiplicity $\propto \mathrm{N}_{\text {MPI }}$

Color Reconnections?

E.g.,

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133)

Nc=3: Colors add coherently + collective effects?

Multiplicity $\nless k N_{\text {MPI }}$

MPI Models: Caveats

Main applications:
 Central Jets/EWK/top/
 Higgs/New Physics

Extrapolation to soft scales delicate.

Impressive successes with MPI-based models but still far from a solved problem

Form of PDFs at small x and $\mathrm{Q}^{2} \longleftrightarrow$ Saturation
Form and E_{cm} dependence of $\mathrm{p}_{\text {т }}$ regulator
Modeling of the diffractive component
Proton transverse mass distribution
Colour Reconnections, Collective Effects

See also Connecting hard to soft: KMR, EPJ C71 (2011) 1617 + PYTHIA "Perugia Tunes": PS, PRD82 (2010) $074018+\underline{\text { arXiv:1308.2813 }}$

Summary

Impact parameter plays important role in description of pp collisions

Models incorporate variable b, with non-trivial overlap profiles
Pedestal effect interpreted as min \rightarrow max bias
Large PDFs + Divergent partonic QCD $\sigma_{2 \rightarrow 2}$
Average collisions at LHC and beyond may involve perturbatively hard scales
"Central (or lumpy)" collisions \rightarrow enhancements
Connections between b , <nmpi>, and <nch> Complicated by colour structure \rightarrow hadronization Significant fluctuations (and uncertainties)

Strangeness: Kaons

Strangeness: ^ hyperons

Dynamical Models of Soft QCD

See e.g. Reviews by MCnet [arXiv: 1101.2599] and KMR [arXiv:1102.2844]

Diffraction (in PYTHIA 8)
 Navin, arXiv:

$\frac{\text { Diffractive Cross Section Formulæ: }}{\frac{\mathrm{d} \sigma_{\mathrm{sd}(A X)}(s)}{\mathrm{d} t \mathrm{~d} M^{2}}=\frac{g_{3 \mathbb{P}}}{16 \pi} \beta_{A \mathbb{P}}^{2} \beta_{B \mathbb{P}} \frac{1}{M^{2}} \exp \left(B_{\mathrm{sd}(A X)} t\right) F_{\mathrm{sd}},}$
$\frac{\mathrm{d} \sigma_{\mathrm{dd}}(s)}{\mathrm{d} t \mathrm{~d} M_{1}^{2} \mathrm{~d} M_{2}^{2}}=\frac{g_{\mathrm{sP}}^{2}}{16 \pi} \beta_{A \mathbb{P}} \beta_{B \mathbb{B}} \frac{1}{M_{1}^{2}} \frac{1}{M_{2}^{2}} \exp \left(B_{\mathrm{dd}} t\right) F_{\mathrm{dd}}$.
 Fragment
\rightarrow Tvpical_string-fragmentation spectrum

systent

+ NEW! Central Difflaction (\rightarrow fully contained gap-X-gap events)

Choice between 5 Pomeron PDFs. Free parameter $\sigma_{\text {Pp }}$ needed to fix $\left\langle n_{\text {interactions }}\right\rangle=\sigma_{\text {jet }} / \sigma_{\text {Pp }}$.

+ Recently Central Diffraction! Framework needs testing and tuning, e.g. of σ_{Pp}.

Menu

$\xrightarrow{\rightarrow \text { Front Page }}$
 \rightarrow Generator Versions
 \rightarrow Generator Validation
 \rightarrow Update History
 \rightarrow User Manual and Reference

Analysis filter:

\rightarrow ALL pp/ppbar
\rightarrow ALL ee
Specific analysis:
\rightarrow Latest analyses

Z (Drell-Yan)

\rightarrow Jet Multiplicities
$\rightarrow 1 / \sigma d \sigma(Z) / d \varphi_{n}^{*}$
$\rightarrow \mathrm{do}(\mathrm{Z}) \mathrm{dpTZ}$
$\rightarrow 1 / \sigma d \sigma(Z) / d p T Z$

W

\rightarrow Charge asymmetry vs η
\rightarrow Charge asymmetry vs $\mathrm{N}_{\mathrm{jet}}$
$\rightarrow \mathrm{do}(\mathrm{jet}) / \mathrm{dpT}$
\rightarrow Jet Multiplicities

Top (MC only)

$\rightarrow \Delta \varphi$ (ttbar)
$\rightarrow \Delta y$ (ttbar)
$\rightarrow|\Delta y|$ (ttbar)
$\rightarrow \mathrm{M}$ (ttbar)
\rightarrow PT (ttbar)
\rightarrow Cross sections
$\rightarrow \mathrm{y}$ (ttbar)
\rightarrow Asymmetry
\rightarrow Individual tops

Bottom

$\rightarrow \eta$ Distributions
\rightarrow pT Distributions
\rightarrow Cross sections

Underlying Event : TRNS : $\Sigma(\mathrm{pT})$ vs pT 1

| Generator Group: | General-Purpose MCs Soft-Inclusive MCs Alpgen Herwig++ Pythia 6 Pythia 8 Sherpa |
| :--- | :--- | :--- |
| Vincia Epos Phojet Custom | |
| Subgroup: | Defaults LHC Tunes C++ Generators Tevatron vs LHC tunes |

pp @ 7000 GeV

[pdf] [eps] [png] hide details \leftarrow
[ATLAS] reference
[Herwig++ (Def)] param [Pythia 6 (Def)] param [Pythia 8 (Def)] param [Sherpa (Def)] param [steer]

ATLAS $\mathrm{pT}>0.1$

[pdf] [eps] [png] show details \rightarrow

- Explicit tables of data \& MC points
- Run cards for each generator
- Link to experimental reference paper
- Steering file for plotting program
- (Will also add link to RIVET analysis)

1: A Simple Model

The minimal model incorporating single-parton factorization, perturbative unitarity, and energy-and-momentum conservation

$$
\underset{\text { Parton-Parton Cross Section }}{\sigma_{2 \rightarrow 2}\left(p_{\perp \min }\right)}=\langle n\rangle\left(p_{\perp \min }\right) \sigma_{\text {Hadron-Hadron Cross Section }}
$$

I. Choose $p_{T \text { min }}$ cutoff
$=$ main tuning parameter
2. Interpret $\langle n\rangle\left(p_{T \min }\right)$ as mean of Poisson distribution

Equivalent to assuming all parton-parton interactions equivalent and independent \sim each take an instantaneous "snapshot" of the proton
3. Generate n parton-parton interactions ($\mathrm{PQCD} 2 \rightarrow 2$) Veto if total beam momentum exceeded \rightarrow overall (E,p) cons
4. Add impact-parameter dependence $\rightarrow\langle n\rangle=\langle n\rangle(b) \quad$ brimar

Assume factorization of transverse and longitudinal d.o.f., \rightarrow PDFs : $f(x, b)=f(x) g(b)$
b distribution \propto EM form factor \rightarrow JIMMY model Butterworth, Forshaw, Seymour Z.Phys. C72 (1996) 637 Constant of proportionality $=$ second main tuning parameter
5. Add separate class of "soft" (zero-pt) interactions representing interactions with $p_{T}<p_{T \text { min }}$ and require $\sigma_{\text {soft }}+\sigma_{\text {hard }}=\sigma_{\text {tot }}$
\rightarrow Herwig++ model Bähr et al, arXiv:0905.467।

2: Interleaved Evolution

Sjöstrand \& Skands, JHEP 0403 (2004) 053; EPJ C39 (2005) I29

Also available for Pomeron-Proton collisions since Pythia 8.I65

Cross sections

Pileup rate $\propto \sigma_{\text {tot }}(s)=\sigma_{\mathrm{el}}(s)+\sigma_{\text {inel }}(s) \propto s^{0.08}$ or $\ln ^{2}(s)$?
Donnachie-Landshoff Froissart-Martin Bound

Scaling of Multiplicities

A From soft models based on Regge Theory, expect:

$$
\left.\frac{d N_{\mathrm{ch}}(s, \eta)}{d \eta}\right|_{\eta=0} \propto \frac{\operatorname{Im} f^{\mathbb{P}}(s, 0)}{s \sigma_{p p}^{\mathrm{inel}}(s)} \sim \frac{s^{\Delta_{\mathbb{P}}}}{\log ^{2} s}
$$

[^0]: \rightarrow see next talk by M. Strikman

