
Pe t e r  S k a n d s  -  C E R N  T h e o r e t i c a l  P hy s i c s 
(→  M o n a s h  U  f r o m  O c t  2 0 1 4 )

Modeling an LHC Coll ision
I n f o r m a l  S e m i n a r,  N o v  1 9  2 0 1 3 ,  S y d n e y  U n i v e r s i t y

p p



P.  S k a n d s

connect with the observable world 

of hadrons, photons, and leptons

Collider Calculations

2

Start from lowest-order perturbation theory, 
Include the ‘most significant’ corrections 

→ complete events

Calculate Everything ≈ solve QFT*  → requires compromise!

Reality is more complicated

*QFT = Quantum Field Theory

Events Histograms

+ Quantum Mechanics: only physical observables are meaningful!
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(PYTHIA)
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PYTHIA anno 1978
(then called JETSET)

LU TP 78-18
November, 1978

A Monte Carlo Program for Quark Jet 
Generation

T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is 
presented, that simulates the 
fragmentation of a fast parton into a 
jet of mesons. It uses an iterative 
scaling scheme and is compatible with 
the jet model of Field and Feynman.

Note: 
Field-Feynman was an early fragmentation model
Now superseded by the String (in PYTHIA) and 

Cluster (in HERWIG & SHERPA) models.
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LU TP 07-28 (CPC 178 (2008) 852)
October, 2007

A Brief Introduction to PYTHIA 8.1

T. Sjöstrand, S. Mrenna, P. Skands

The Pythia program is a standard tool 
for the generation of high-energy 
collisions, comprising a coherent set 
of physics models for the evolution 
from a few-body hard process to a 
complex multihadronic final state. It 
contains a library of hard processes 
and models for initial- and final-state 
parton showers, multiple parton-parton 
interactions, beam remnants, string 
fragmentation and particle decays. It 
also has a set of utilities and 
interfaces to external programs. […]

(PYTHIA)
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PYTHIA anno 2013
(now called PYTHIA 8)

~ 100,000 lines of C++

• Hard Processes (internal, inter-
faced, or via Les Houches events)

• BSM (internal or via interfaces)

• PDFs (internal or via interfaces)

• Showers (internal or inherited)

• Multiple parton interactions
• Beam Remnants
• String Fragmentation
• Decays (internal or via interfaces)

• Examples and Tutorial
• Online HTML / PHP Manual
• Utilities and interfaces to 

external programs 

What a modern MC generator has inside:
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Organizing the Calculation
Divide and Conquer → Split the problem into many (nested) pieces
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Pevent = Phard ⌦ Pdec ⌦ PISR ⌦ PFSR ⌦ PMPI ⌦ PHad ⌦ . . .

Hard Process & Decays: 
The basic hard process. E.g., gg → H0 → γγ 
→ Sets highest resolvable scale: QMAX

Initial- & Final-State Radiation (ISR & FSR): 
Bremsstrahlung, driven by differential evolution equations, dP/dQ2, 
as function of resolution scale; run from QMAX to ~ 1 GeV 

MPI (Multi-Parton Interactions)
Protons contain lots of partons → can have additional (soft) parton-
parton interactions → Additional (soft) “Underlying-Event” activity 

Hadronization
Non-perturbative modeling of parton → hadron transition

+ Quantum mechanics → Probabilities → Random Numbers
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1. Bremsstrahlung

6

Accelerated 
Charges

Associated field 
(fluctuations) continues

RadiationRadiation

The harder they get kicked, the harder the 
fluctations that continue to become strahlung

cf. equivalent-photon 
approximation

Weiszäcker, Williams 
~ 1934

a.k.a. Initial- and Final-state radiation
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Jets ≈  Fractals
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i

j

k

a

b

Partons ab → 
“collinear”:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

P(z) = DGLAP splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

/ 1

2(pa · pb)

+ scaling violation: gs2 → 4παs(Q2)

Gluon j → “soft”:

|MF+1(. . . , i, j, k. . . )|2
jg!0! g2sC

(pi · pk)
(pi · pj)(pj · pk)

|MF (. . . , i, k, . . . )|2
Coherence → Parton j really emitted by (i,k) “colour antenna” 

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times
→ nested factorizations 

Most bremsstrahlung is 
driven by divergent 
propagators → simple structure 

Amplitudes factorize in 
singular limits (→ universal 
“conformal” or “fractal” structure)

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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Practical Examples
(calculated process by process)For any basic process

Singularities: mandated by gauge theory
Non-singular terms: process-dependent 
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dσ
X$

dσ
X+1 &
dσ
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dσ

X+2&

Iterated factorization
Gives us a universal approximation to ∞-order tree-level cross sections. 

Exact in singular (strongly ordered) limit.
Finite terms (non-universal) → Uncertainties for non-singular (hard) radiation

But something is not right … Total σ would be infinite … 
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Infinite Orders
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Unitarity = Evolution
Unitarity

Kinoshita-Lee-Nauenberg: 
(sum over degenerate quantum states = finite)

Loop = - Int(Tree) + F
Parton Showers neglect F 

→ Leading-Logarithmic (LL) Approximation

→ includes both real (tree) and virtual (loop) corrections

Imposed by Event evolution:  

When (X) branches to (X+1):
Gain one (X+1). Loose one (X). 

→ evolution equation with kernel
d�X+1

d�X

Evolve in some measure of resolution 
~ hardness, 1/time … ~ fractal scale

►  Interpretation:  the structure evolves! (example: X = 2-jets) 
•  Take a jet algorithm, with resolution measure “Q”, apply it to your events 
•  At a very crude resolution, you find that everything is 2-jets  

•  At finer resolutions  some 2-jets migrate  3-jets = σX+1(Q) = σX;incl– σX;excl(Q) 
•  Later, some 3-jets migrate further, etc  σX+n(Q) = σX;incl– ∑σX+m<n;excl(Q) 
•  This evolution takes place between two scales, Qin ~ s and Qend ~ Qhad 

►  σX;tot  = Sum (σX+0,1,2,3,…;excl ) = int(dσX) 
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Evolution Equations
What we need is a differential equation

Boundary condition: a few partons defined at a high scale (QF)
Then evolves (or “runs”) that parton system down to a low scale 
(the hadronization cutoff ~ 1 GeV) → It’s an evolution equation in QF

Close analogue: nuclear decay
Evolve an unstable nucleus. Check if it decays + follow chains of 
decays.
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In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (�)

d�

= g2
s

C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
Q1 and Q2,
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where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.

This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,

dP (t)

dt
= c

N

. (11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is
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This case is especially simple, since the decay probability per unit time, c
N

, is constant. By conservation
of the total number of nuclei (unitarity), the activity per nucleon at time t, equivalent to the “resummed”
decay probability per unit time, is minus the derivative of �,

dPres(t)

dt
=

�d�

dt
= c

N

�(t1, t) . (13)

In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,

dPres(�)

d�
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s
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2
(�)) , (14)

where Q2
(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2
1, Q

2
) , (15)
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Decay constant Probability to remain undecayed in the time 
interval [t1,t2]
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6

Decay probability per unit time

(requires that the nucleus did not already decay)

= 1� cN�t+O(c2N )

∆(t1,t2) :  “Sudakov Factor”
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100 %

First Order

Second 
Order

Third Order

Early 
Times

Late 
Times

Nuclear Decay

12

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =
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1 −
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dt
dP
dt

)
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dtX+1
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All Orders
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The Sudakov Factor

In nuclear decay, the “Sudakov factor” counts: 
How many nuclei remain undecayed after a time t

The Sudakov factor for a parton system counts:
The probability that the parton system doesn’t evolve 
(branch) when we run the factorization scale (~1/time) 
from a high to a low scale 
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Evolution probability per unit “time”

(replace cN by proper shower evolution kernels)
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Probability to remain undecayed in the time interval [t1,t2]

(replace t by shower evolution scale)
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Bootstrapped Perturbation Theory

14

Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the 
perturbative series (approximate infinite-order resummation)

+0(2) +1(2) …

+0(1) +1(1) +2(1) +3(1)

Lowest 
Order +1(0) +2(0) +3(0)
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No. of Bremsstrahlung Emissions
(real corrections)

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Exponentiation

Unitarity

Cancellation of real & virtual singularities

fluctuations within fluctuations

But ≠ full QCD! Only LL Approximation
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Improvement #1: Coherence

15

Coherence

QED: Chudakov effect (mid-fifties)
e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Illustration by T. Sjöstrand

Approximations to 
Coherence:

Angular Ordering (HERWIG)

Angular Vetos (PYTHIA)

Coherent Dipoles/Antennae 
(ARIADNE, Catani-Seymour, VINCIA)

More interference effects can be included by matching to full matrix elements

→ an example of an interference effect that can be treated probabilistically
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Figure 2: The Drell-Yan pT spectrum. The dashed red curve
shows the value computed using Vincia with default antennæ
functions, while the dotted green curve shows the Vincia pre-
dicted with an enhanced antenna function. The solid blue
curve gives the Pythia 8 prediction. The inset shows the high-
pT tail.

certainty due to the shower function and in particu-
lar higher-order terms in the shower. The di↵er-
ence shown here is illustrative only; a more ex-
tensive exploration of possible antenna variations
would be required before taking the spread as a
quantitative estimate of the uncertainty. We may
nonetheless observe that the Pythia 8 reference
calculation di↵ers from the Vincia one (with de-
fault antenna) by roughly the same amount in the
peak region as does the enhanced Vincia predic-
tion. This illustrates a tradeo↵ between a more ac-
tive recoil strategy (Pythia) and a more active radi-
ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the e↵ect
is given in fig. 3, which shows qq ! qq scatter-
ing with two di↵erent color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Di↵erent color flows and corresponding emission
patterns in qq ! qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.
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Figure 4: Angular distribution of the first gluon emission in
qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color
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Coherence at Work
Example: quark-quark scattering in hadron collisions  

Consider one specific phase-space point (eg scattering at 45o) 
2 possible colour flows: a and b
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Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Another good recent example is the SM contribution to the Tevatron top-quark forward-
backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

http://arxiv.org/abs/arXiv:1210.6345
http://arxiv.org/abs/arXiv:1210.6345
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Slicing: the “MLM” & “CKKW-L” prescriptions
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events

— 47 —

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)
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while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
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ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
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factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
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No “matching scale”

No negative-weight events
Can be very fast

VINCIA

LO: Giele, Kosower, Skands, PRD84(2011)054003           NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Start from pure shower
Correct each coefficient

http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1303.4974
http://arxiv.org/abs/arXiv:1303.4974
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; 

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)
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2. Hadronization
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& the “underlying event”
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Test4Theory - LHC@home

22

New 
Users/
Day

May June July Aug Sep

July 4th 
2012

The	  LHC@home	  2.0	  project	  Test4Theory	  allows	  users	  to	  par#cipate	  in	  running	  
simula#ons	  of	  high-‐energy	  par#cle	  physics	  using	  their	  home	  computers.

The	  results	  are	  submiHed	  to	  a	  database	  which	  is	  used	  as	  a	  common	  resource	  by	  both	  
experimental	  and	  theore#cal	  scien#sts	  working	  on	  the	  Large	  Hadron	  Collider	  at	  CERN.

New:	  Ci#zen	  Cyberlab	  EU	  ICT

Develop	  an	  app	  that	  lets	  ci#zen	  scien#sts	  
learn	  about,	  interact	  with,	  and	  op4mize	  
high-‐energy	  physics	  simula4ons,	  by	  
comparing	  them	  to	  real	  data

http://lhcathome2.cern.ch/test4theory
http://lhcathome2.cern.ch/test4theory
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://mcplots.cern.ch/
http://mcplots.cern.ch/
http://public.web.cern.ch/public/en/lhc/lhc-en.html
http://public.web.cern.ch/public/en/lhc/lhc-en.html
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Summary

QCD phenomenology is witnessing a rapid evolution:
Driven by demand of high precision for LHC environment

Exploring physics: infinite-order structure of quantum field 
theory. Universalities vs process-dependence.

Non-perturbative QCD is still hard
Lund string model remains best bet, but ~ 30 years old

Lots of input from LHC (THANK YOU to the experiments!)

“Solving the LHC” is both interesting and rewarding
New ideas needed and welcome on both perturbative and 
non-perturbative sides → many opportunities for theory-
experiment interplay

Key to high precision → max information about the Terascale
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Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003
Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Virtual Numerical Collider with 
Interleaved Antennae

Written as a Plug-in to PYTHIA 8
C++ (~20,000 lines)

Based on antenna factorization
- of Amplitudes (exact in both soft and collinear limits)

- of Phase Space (LIPS : 2 on-shell → 3 on-shell partons, with (E,p) cons)

Resolution Time
Infinite family of continuously deformable QE

Special cases: transverse momentum, invariant mass, energy
+ Improvements for hard 2→4: “smooth ordering”

Radiation functions
Written as Laurent-series with arbitrary coefficients, anti 
Special cases for non-singular terms: Gehrmann-Glover, MIN, MAX 
+ Massive antenna functions for massive fermions (c,b,t)

Kinematics maps
Formalism derived for infinitely deformable κ3→2

Special cases: ARIADNE, Kosower, + massive generalizations
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y

ij

, y
jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
ij

> y
jk

. For the other
branch, y

ij

and y
jk

should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.
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variables, which contain the non-analytic function
min(y

ij

, y
jk
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branch, y
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should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
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+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y
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), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
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jk

. For the other
branch, y
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and y
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should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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