Friday Seminar, Apr 19 2013, CERN

Interleaved Evolution with NLO- and Helicity-Amplitudes

Peter Skands (CERN TH)

Why?

+ huge amount of other physics studies:

of journal papers so far:225 ATLAS, 195 CMS, 83 LHCb,62 ALICE

Some of these are already, or will ultimately be, **theory limited**

Why?

+ huge amount of other physics studies:

of journal papers so far:225 ATLAS, 195 CMS, 83 LHCb,62 ALICE

Some of these are already, or will ultimately be, **theory limited**

Precision = Clarity, in our vision of the Terascale

- Searching towards lower cross sections, the game gets harder
- + Intense scrutiny (after discovery): **precision = information**
- Theory task: invest in precision
- (+ lots of interesting structures in QFT, can compare to data, ...)

This talk: a new formalism for highly accurate collider-physics calculations + some future perspectives

How?

Fixed Order Perturbation Theory:

Problem: limited orders

Parton Showers:

Problem: limited precision

"Matching": Best of both Worlds?

Problem: stitched together, slow, limited orders

Interleaved pQCD

→ Infinite orders, high precision, fast

The harder they get kicked, the harder the fluctations that continue to become strahlung

ergy

- Most bremsstrahlung is driven by divergent propagators → simple structure
- Amplitudes factorize in singular limits (→ universal "conformal" or "fractal" structure)

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

- Most bremsstrahlung is driven by divergent propagators → simple structure
- Amplitudes factorize in singular limits (→ universal "conformal" or "fractal" structure)

Partons ab \rightarrow P(z) = Altarelli-Parisi splitting kernels, with z = energy fraction = E_a/(E_a+E_b) "collinear": $|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)|^2 \xrightarrow{a||b} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots, a+b, \ldots)|^2$

- Most bremsstrahlung is driven by divergent propagators → simple structure
- Amplitudes factorize in singular limits (→ universal "conformal" or "fractal" structure)

Partons ab \rightarrow P(z) = Altarelli-Parisi splitting kernels, with z = energy fraction = E_a/(E_a+E_b) "collinear": $|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)|^2 \xrightarrow{a||b} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots, a+b, \ldots)|^2$

$$\begin{array}{l} \text{Gluon j} & \text{Coherence} \rightarrow \text{Parton j really emitted by (i,k) "colour} \\ \rightarrow \text{"soft":} \\ |\mathcal{M}_{F+1}(\ldots,i,j,k\ldots)|^2 \stackrel{j_g \rightarrow 0}{\rightarrow} g_s^2 \mathcal{C} \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots,i,k,\ldots)|^2 \end{array}$$

+ scaling violation: $g_s^2 \rightarrow 4\pi \alpha_s(Q^2)$

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

- Most bremsstrahlung is driven by divergent propagators → simple structure
- Amplitudes factorize in singular limits (→ universal "conformal" or "fractal" structure)

Partons ab \rightarrow P(z) = Altarelli-Parisi splitting kernels, with z = energy fraction = E_a/(E_a+E_b) "collinear": $|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)|^2 \xrightarrow{a||b} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots, a+b, \ldots)|^2$

$$\begin{array}{l} \text{Gluon j} & \text{Coherence} \rightarrow \text{Parton j really emitted by (i,k) "colour} \\ \rightarrow \text{"soft":} \\ |\mathcal{M}_{F+1}(\ldots,i,j,k\ldots)|^2 \stackrel{j_g \rightarrow 0}{\rightarrow} g_s^2 \mathcal{C} \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots,i,k,\ldots)|^2 \end{array}$$

+ scaling violation: $g_s^2 \rightarrow 4\pi \alpha_s(Q^2)$

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times → nested factorizations

Divide and Conquer → Event Generators

Factorization → Split the problem into many (nested) pieces

+ Quantum mechanics → Probabilities → Random Numbers

$$\mathcal{P}_{\mathrm{event}} \;=\; \mathcal{P}_{\mathrm{hard}} \,\otimes\, \mathcal{P}_{\mathrm{dec}} \,\otimes\, \mathcal{P}_{\mathrm{ISR}} \,\otimes\, \mathcal{P}_{\mathrm{FSR}} \,\otimes\, \mathcal{P}_{\mathrm{MPI}} \,\otimes\, \mathcal{P}_{\mathrm{Had}} \,\otimes\, \dots$$

Hard Process & Decays:

Use (N)LO matrix elements

 \rightarrow Sets "hard" resolution scale for process: Q_{MAX}

ISR & FSR (Initial & Final-State Radiation):

Altarelli-Parisi equations \rightarrow differential evolution, dP/dQ², as function of resolution scale; run from Q_{MAX} to ~ 1 GeV (More later)

MPI (Multi-Parton Interactions)

Additional (soft) parton-parton interactions: LO matrix elements

→ Additional (soft) "Underlying-Event" activity (Not the topic for today)

Hadronization

Non-perturbative model of color-singlet parton systems \rightarrow hadrons

Last Ingredient: Loops

PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Unitarity (KLN):

Singular structure at loop level must be equal and opposite to tree level Loop = -Int(Tree) + F

Neglect $F \rightarrow$ Leading-Logarithmic (LL) Approximation

 \rightarrow Virtual (loop) correction:

$$2\operatorname{Re}[\mathcal{M}_{F}^{(0)}\mathcal{M}_{F}^{(1)*}] = -g_{s}^{2}N_{C}\left|\mathcal{M}_{F}^{(0)}\right|^{2}\int \frac{\mathrm{d}s_{ij}\,\mathrm{d}s_{jk}}{16\pi^{2}s_{ijk}}\left(\frac{2s_{ik}}{s_{ij}s_{jk}} + \text{less singular terms}\right)$$

Last Ingredient: Loops

PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Unitarity (KLN):

Singular structure at loop level must be equal and opposite to tree level Loop = -Int(Tree) + F

Neglect $F \rightarrow$ Leading-Logarithmic (LL) Approximation

 \rightarrow Virtual (loop) correction:

$$2\operatorname{Re}[\mathcal{M}_{F}^{(0)}\mathcal{M}_{F}^{(1)*}] = -g_{s}^{2}N_{C}\left|\mathcal{M}_{F}^{(0)}\right|^{2}\int \frac{\mathrm{d}s_{ij}\,\mathrm{d}s_{jk}}{16\pi^{2}s_{ijk}}\left(\frac{2s_{ik}}{s_{ij}s_{jk}} + \text{less singular terms}\right)$$

Realized by Event evolution in Q = fractal scale (virtuality, pt, formation time, ...)

$$\begin{array}{ll} \begin{array}{ll} \text{Resolution scale} \\ t = \ln(\mathbb{Q}^{2}) \end{array} & \frac{\mathrm{d}N_{F}(t)}{\mathrm{d}t} = -\frac{\mathrm{d}\sigma_{F+1}}{\mathrm{d}\sigma_{F}} N_{F}(t) \\ &= \text{Approximation to Real Emissions} \end{array}$$

$$\begin{array}{ll} \text{Probability to remain} \\ \text{``unbranched'' from t_{0} to t} \\ \rightarrow \text{The ``Sudakov Factor''} \end{array} & \frac{N_{F}(t)}{N_{F}(t_{0})} = \Delta_{F}(t_{0},t) = \exp\left(-\int \frac{\mathrm{d}\sigma_{F+1}}{\mathrm{d}\sigma_{F}}\right) \\ &= \text{Approximation to Loop Corrections} \end{array}$$

Bootstrapped Perturbation Theory

Start from an **arbitrary lowest-order** process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (yellow = fractal with scaling violation)

Bootstrapped Perturbation Theory

Start from an **arbitrary lowest-order** process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (yellow = fractal with scaling violation)

→ Jack of All Orders, Master of None?

"Good" Shower(s) → Dominant all-orders structures

But what about all these unphysical choices?

- Renormalization Scales (for each power of α_s)
- The choice of shower evolution "time" ~ Factorization Scale(s)
- The radiation/antenna/splitting functions (hard jets are non-singular)
- Recoils (kinematics maps, $d\Phi_{n+1}/d\Phi_n$)
- The infrared cutoff contour (hadronization cutoff)

Nature does not depend on them \rightarrow vary to estimate uncertainties **Problem**: existing approaches vary only one or two of these choices

 I. Systematic Variations
 → Comprehensive Theory Uncertainty Estimates

Including LO Matrix Elements

Conceptual Example of Current Approaches: MLM-like "Slicing":

Use ME for p_T > p_{Tmatch} ; Use PS for p_T < p_{Tmatch}

Born	Born + I	Born + 2
Compute inclusive σ_B	Compute incl σ_{B+1} (p _{Tmatch})	Compute incl $\sigma_{B+2}(p_{Tmatch})$
Generate $d\sigma_B$ Phase Space	Generate $d\sigma_{B+1}$ Phase Space	Generate $d\sigma_{B+2}$ Phase Space
Shower	Shower	Shower
Reject if jet(s) > p _{Tmatch} → retain Sudakov fraction	Reject if jet(s) > p _{Tmatch} → retain Sudakov fraction	Reject if jet(s) > pī2 → retain Sudakov fraction
\rightarrow Exclusive $\sigma_{B}(p_{Tmatch})$	\rightarrow Exclusive σ_{B+1} (p _{Tmatch})	\rightarrow Inclusive σ_{B+2}
Unweight (incl PDFs, α_s)	Unweight (incl PDFs, αs)	Unweight (incl PDFs, αs)

Fixed Order is starting point. Treats each multiplicity as a separate calculation. Inefficiencies can enter in PS generation, Rejection, and Unweighting Steps

Changing Paradigm

Start not from fixed order, but from what fixed order is an expansion of

Ask:

Is it possible to interpret the all-orders structure that a shower generates as a trial distribution for a more precise evolution?

Would essentially amount to using a QCD shower as your (only) phase space generator, on top of which fixed-order amplitudes are imprinted as (unitary and finite) multiplicative corrections

Changing Paradigm

Start not from fixed order, but from what fixed order is an expansion of

Ask:

Is it possible to interpret the all-orders structure that a shower generates as a trial distribution for a more precise evolution?

Would essentially amount to using a QCD shower as your (only) phase space generator, on top of which fixed-order amplitudes are imprinted as (unitary and finite) multiplicative corrections

Answer:

Used to be no.

First order worked out in the eighties (Sjöstrand, also used in POWHEG), but higher-order expansions rapidly became too complicated

VINCIA

Virtual Numerical Collider with Interleaved Antennae Written as a Plug-in to PYTHIA 8 C++ (~20,000 lines)

m+1

Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Based on antenna factorization

- of Amplitudes (exact in both soft and collinear limits)
- of Phase Space (LIPS : 2 on-shell \rightarrow 3 on-shell partons, with (E,p) cons)

VINCIA

Virtual Numerical Collider with Interleaved Antennae Written as a Plug-in to PYTHIA 8 C++ (~20,000 lines)

b,t)

Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Based on antenna factorization

- of Amplitudes (exact in both soft and collinear limits)
- of Phase Space (LIPS : 2 on-shell \rightarrow 3 on-shell partons, with (E,p) constants

Resolution Time

Infinite family of continuously deformable Q_E

Special cases: transverse momentum, dipole mass, energy

Radiation functions

Arbitrary non-singular coefficients, anti

+ Massive antenna functions for massive fermions (

Kinematics maps

Formalism derived for arbitrary $2 \rightarrow 3$ recoil maps, $\kappa_{3\rightarrow 2}$ Default: massive generalization of Kosower's antenna maps

vincia.hepforge.org

 $|(y_R; z)|^2$

Interleaved ME Corrections

LO: Giele, Kosower, Skands, PRD 84 (2011) 054003 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Start from quasi-conformal all-orders structure (approximate) Impose exact higher orders as finite multiplicative corrections Truncate at fixed **scale** (rather than fixed order) **Bonus:** low-scale partonic events \rightarrow can be hadronized

Problems:

Idea:

Traditional parton showers are history-dependent (non-Markovian)

 \rightarrow Number of generated terms grows like $2^{N}N!$

+ Dead zones and complicated expansions

Solution: (MC)² : Monte-Carlo Markov Chain

Markovian Antenna Showers (VINCIA)

- \rightarrow Number of generated terms grows like N
- + exact phase space & simple expansions

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

Start at Born level $|M_F|^2$

Loops +2 +1+0+3 Legs +2 +0+1 +The VINCIA Code **PYTHIA 8**

Loops Start at Born level $|M_{F}|^{2}$ +2 Generate "shower" emission $|M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$ +1i∈ant **Correct to Matrix Element** +0 $a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$ +3 Legs +2 +0+1 ╇ The VINCIA Code **PYTHIA 8** "Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003 HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Start at Born level $|M_F|^2$ Generate "shower" emission $|M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2$

Correct to Matrix Element $a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$

Unitarity of Shower Virtual = $-\int \text{Real}$

Start at Born level $|M_F|^2$ Generate "shower" emission $|M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$

 $i \in \text{ant}$

Correct to Matrix Element $a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$

Unitarity of Shower Virtual = $-\int \text{Real}$

Correct to Matrix Element $|M_F|^2 \rightarrow |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$

NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Repeat

P. Skands
Helicities

Larkoski, Peskin, PRD 81 (2010) 054010 Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Traditional parton showers use the standard Altarelli-Parisi kernels, P(z) = helicity sums/averages over:

Generalize these objects to dipole-antennae

E.g.,

$$\begin{array}{l} q \overline{q} \rightarrow q g \overline{q} \\ ++ \rightarrow ++ + & \mathsf{MHV} \\ ++ \rightarrow +- + & \mathsf{NMHV} \\ +- \rightarrow ++ - & \mathsf{P-wave} \\ +- \rightarrow +- - & \mathsf{P-wave} \end{array}$$

→ Can trace helicities through shower

→ Eliminates contribution from unphysical helicity configurations

→ Can match to individual helicity amplitudes rather than helicity sum → Fast! (gets rid of another factor 2^N)

Helicity Contributions

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Helicity Contributions

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Fraction of Phase Space Distribution of PS/ME $H \rightarrow q g g \overline{q}$ H→ q g g q 2g 3g Finite terms variation Finite terms variation ratio (summed over helicities) global, matched to $H \rightarrow 3$ sector, matched to $H \rightarrow 3$ Vincia 1.029 Vincia 1.029 Vincia shower already CENTRAL CENTRAL - MAX MAX quite close to ME - - ' MIN MIN 10^{-2} → small corrections 10⁻³ Note: precision not greatly improved by helicity dependence 10-4 log₁₀(PS/ME) log_(PS/ME)

P. Skands

Helicity Contributions

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; E_{CM} = 91.2 GeV ; Q_{match} = 5 GeV SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ; VINCIA 1.0.29 + MADGRAPH 4.4.26 ; gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026 Hartgring, Laenen, Skands, arXiv:1303.4974

Pedagogical Example: $Z^0 \rightarrow q\bar{q}$ First Order (~POWHEG)

Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026 Hartgring, Laenen, Skands, arXiv:1303.4974

Pedagogical Example: $Z^0 \rightarrow q\bar{q}$ First Order (~POWHEG)

Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026 Hartgring, Laenen, Skands, arXiv:1303.4974

Pedagogical Example: $Z^0 \rightarrow q\bar{q}$ First Order (~POWHEG)

$$\frac{2\operatorname{Re}[M_0^0 M_0^{1^*}]}{|M_0^0|^2} = \frac{\alpha_s}{2\pi} 2C_F \left(2I_{q\bar{q}}(\epsilon, \mu^2/m_Z^2) - 4\right)$$

$$\int_0^s d\Phi_{\text{ant}} 2C_F g_s^2 A_{g/q\bar{q}} = \frac{\alpha_s}{2\pi} 2C_F \left(-2I_{q\bar{q}}(\epsilon, \mu^2/m_Z^2) + \frac{19}{4}\right)$$
IR Singularity Operator

$$|M_0^0|^2 \to \left(1 + \frac{\alpha_s}{\pi}\right) |M_0^0|^2$$

Hartgring, Laenen, Skands, arXiv:1303.4974

Getting Serious: second order

Hartgring, Laenen, Skands, arXiv:1303.4974

$$\begin{split} V_{1Z}(q,g,\bar{q}) &= \left[\frac{2\operatorname{Re}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{\operatorname{LC}} - \frac{\alpha_{s}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right) \ln\left(\frac{\mu_{\operatorname{ME}}^{2}}{\mu_{\operatorname{PS}}^{2}}\right) \\ &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{gq}) + \frac{34}{3}\right] \\ &+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 1\right] \\ &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{aut}} A_{g^{\mathrm{td}}\bar{q}}^{\mathrm{std}} + 8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{aut}} \delta A_{g/q\bar{q}} \\ &- \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{aut}} \left(1 - O_{Ej}\right) A_{g^{\mathrm{td}}g}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{aut}} \delta A_{g/qg} \\ &- \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{aut}} \left(1 - O_{Sj}\right) P_{Aj} A_{\bar{q}\bar{q}g}^{\mathrm{std}} \\ &+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{aut}} \left(1 - O_{Sj}\right) P_{Aj} A_{\bar{q}\bar{q}g}^{\mathrm{std}} \\ &- \frac{1}{6} \frac{s_{qg} - s_{g\bar{q}}}{s_{qg} + s_{g\bar{q}}} \ln\left(\frac{s_{qg}}{s_{g\bar{q}}}\right)\right], \end{split}$$

Hartgring, Laenen, Skands, arXiv:1303.4974

$$V_{1Z}(q, g, \bar{q}) = \left[\frac{2\operatorname{Rc}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{\operatorname{LC}} - \frac{\alpha_{s}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right) \ln\left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) \\ + \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{qg}) + \frac{34}{3}\right] \\ + \frac{\alpha_{s}n_{F}}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^{2}/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon, \mu^{2}/s_{qg}) - 1\right] \\ + \frac{\alpha_{s}C_{A}}{2\pi} \left[8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} d\Phi_{\mathrm{ant}} A_{g/q\bar{q}}^{\mathrm{std}} + 8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} d\Phi_{\mathrm{ant}} \delta A_{g/q\bar{q}} \\ - \sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}} (1 - O_{Ej}) A_{g/qg}^{\mathrm{std}} + \sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}} \delta A_{g/qg}\right] \\ - \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}}(1 - O_{Sj}) P_{Aj} A_{\bar{q}/qg}^{\mathrm{std}} \\ + \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}}(1 - O_{Sj}) P_{Aj} A_{\bar{q}/qg}^{\mathrm{std}} \\ - \frac{1}{6}\frac{s_{qg} - s_{q\bar{q}}}{s_{qg} + s_{qq}} \ln\left(\frac{s_{qg}}{s_{q\bar{q}}}\right)\right],$$
(72)
The "Ariadne" Log

Hartgring, Laenen, Skands, arXiv:1303.4974

$$\begin{split} V_{1Z}(q,g,\bar{q}) &= \left[\frac{2\operatorname{Rc}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{\operatorname{LC}} - \frac{\alpha_{s}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right)^{\operatorname{HR}} \left(\frac{\mu_{\mathrm{AEE}}^{2}}{\ln\left(\frac{\mu_{\mathrm{AEE}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right)} \right. \\ &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{qg}) + \frac{34}{3} \right] \\ &+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{gq,F}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 1 \right] \\ &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{ant}} A_{g/q\bar{q}}^{\mathrm{std}} + 8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/q\bar{q}} \right. \\ &- \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} (1 - O_{Ej}) A_{g/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/qg} \right] \\ &+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} (1 - O_{Sj}) P_{Aj} A_{g/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{q/qg} \right] \\ &+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} (1 - O_{Sj}) P_{Aj} A_{g/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{q/qg} \right] \\ &- \frac{1}{6} \frac{s_{qg} - s_{g\bar{q}}}{s_{qg} + s_{q\bar{q}}} \ln\left(\frac{s_{qg}}{s_{q\bar{q}}}\right) \right], \end{split}$$
(72) The "Ariadne" Log

Hartgring, Laenen, Skands, arXiv:1303.4974

$$V_{1Z}(q, g, \bar{q}) = \left[\frac{2\operatorname{Re}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{\mathrm{LC}} - \frac{\alpha_{s}^{\mathrm{J}}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right)^{\mathrm{LR}} \left(\frac{\mu_{\mathrm{ME}}^{2}}{\ln}\left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right)\right)$$

$$\begin{array}{l} \text{Gluon Emission IR Singularity} (std antenna integral) & + \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{qg}) + \frac{34}{3} \right] \\ \text{Gluon Splitting IR Singularity} (std antenna integral) & + \frac{\alpha_{s}n_{F}}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^{2}/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon, \mu^{2}/s_{qg}) - 1 \right] \\ & + \frac{\alpha_{s}C_{A}}{2\pi} \left[8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{ant}} A_{g^{\mathrm{d}}q}^{\mathrm{std}} + 8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/q\bar{q}} \right] \\ & - \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} (1 - O_{Fj}) A_{g^{\mathrm{d}}q}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/qg} \right] \\ & - \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} (1 - O_{Fj}) P_{Aj} A_{g^{\mathrm{d}}q}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/qg} \right] \\ & - \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} (1 - O_{Sj}) P_{Aj} A_{\bar{q}j^{\mathrm{d}}q}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{\bar{q}/qg} \right] \\ & - \frac{1}{6} \frac{s_{qg} - s_{gq}}{s_{qg}} \ln \left(\frac{s_{qg}}{s_{g\bar{q}}}\right) \right], \tag{72}$$

Hartgring, Laenen, Skands, arXiv:1303.4974

$$V_{1Z}(q, g, \bar{q}) = \left[\frac{2\operatorname{Rc}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{\mathrm{LC}} - \frac{\alpha_{s}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right)^{\frac{||\mathbf{R}|}{|\mathbf{n}|}} \left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right)\right)$$

$$\operatorname{Gluon Emission IR Singularity}_{(std antenna integral)} + \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{\bar{q}g}) - 2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{gg}) + \frac{34}{3}\right]$$

$$\operatorname{Gluon Splitting IR Singularity}_{(std antenna integral)} + \frac{\alpha_{s}n_{F}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon, \mu^{2}/s_{qg}) - 1\right]$$

$$\operatorname{Standard}_{2 \to 3} \operatorname{Sudakov Logs} + \frac{\alpha_{s}C_{A}}{2\pi} \left[8\pi^{2}\int_{Q_{1}^{m_{Z}^{2}}}^{m_{Z}^{2}} d\Phi_{\mathrm{ant}} A_{g/q\bar{q}}^{\mathrm{std}}}{N_{q}^{2}} + 8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} d\Phi_{\mathrm{ant}} \delta A_{g/q\bar{q}}\right]$$

$$- \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}} (1 - O_{Ej}) A_{g/qg}^{\mathrm{std}}}{N_{g}^{2}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}} \delta A_{g/qg}\right]$$

$$+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}} (1 - O_{Sj}) P_{Aj} A_{\bar{q}/qg}^{\mathrm{std}}}{N_{q}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}} \delta A_{\bar{q}/qg}\right]$$

$$+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}} (1 - O_{Sj}) P_{Aj} A_{\bar{q}/qg}^{\mathrm{std}}}{N_{q}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}} \delta A_{\bar{q}/qg}\right]$$

$$- \frac{1}{6} \frac{s_{gg} - s_{g\bar{q}}}{s_{gg} + s_{g\bar{q}}} \ln \left(\frac{s_{gg}}{s_{g\bar{q}}}\right)\right], \qquad (72)$$

Hartgring, Laenen, Skands, arXiv:1303.4974

$$V_{1Z}(q,g,\bar{q}) = \left[\frac{2\operatorname{Rc}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{1,C} - \frac{\alpha_{s}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right)^{||\mathbf{R}|} \left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right)$$

$$\frac{\operatorname{Gluon Emission IR Singularity}{(\operatorname{std antenna integral})} + \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{qg}) + \frac{34}{3}\right]$$

$$\frac{\operatorname{Gluon Splitting IR Singularity}{(\operatorname{std antenna integral})} + \frac{\alpha_{s}n_{F}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 1\right]$$

$$\frac{\operatorname{Standard}(\operatorname{universal})}{2 - 3\operatorname{Sudakov Logs}} + \frac{\alpha_{s}C_{A}}{2\pi} \left[8\pi^{2}\int_{Q_{1}^{m_{Z}^{2}}}^{m_{Z}^{2}} d\Phi_{\mathrm{ant}} A_{g/qg}^{\mathrm{std}}} + 8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} d\Phi_{\mathrm{ant}} \delta A_{g/qg}\right]$$

$$\frac{2^{2}\operatorname{Sudakov Logs}}{\operatorname{Sudakov Logs: C_{A}}} + \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}}(1 - O_{Ej})A_{g/qg}^{\mathrm{std}}} + \sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}} \delta A_{g/qg}\right]$$

$$+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}}(1 - O_{Sj})P_{Aj}A_{\overline{q}/qg}^{\mathrm{std}}} + \sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\mathrm{ant}} \delta A_{\overline{q}/qg}\right]$$

$$- \frac{1}{6}\frac{s_{qg} - s_{g\overline{q}}}{s_{qg} + s_{g\overline{q}}} \ln\left(\frac{s_{qg}}{s_{g\overline{q}}}\right)\right], \qquad (72)$$

Hartgring, Laenen, Skands, arXiv:1303.4974

$$V_{1Z}(q,g,\bar{q}) = \left[\frac{2\operatorname{Re}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{1,C} - \frac{\alpha_{s}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right)^{\frac{||\mathbf{R}||}{|\mathbf{n}|}} \left(\frac{\mu_{ME}^{2}}{\mu_{PS}^{2}}\right)$$

$$\left[\begin{array}{c} \operatorname{Gluon Emission IR Singularity (std antenna integral) + \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{\bar{q}g}) - 2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{\bar{q}g}) + \frac{34}{3} \right] \right]$$

$$\left[\begin{array}{c} \operatorname{Gluon Splitting IR Singularity (std antenna integral) + \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{gg,F}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 1 \right] \right]$$

$$\left[\begin{array}{c} \operatorname{Standard} (\operatorname{universal}) \\ 2 \rightarrow 3 \operatorname{Sudakov Logs} + \frac{\alpha_{s}C_{A}}{2\pi} \left[8\pi^{2}\int_{Q_{1}^{m_{Z}^{2}}}^{m_{Z}^{2}} d\Phi_{\operatorname{ant}} A_{g/qg}^{\operatorname{std}} + 8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} d\Phi_{\operatorname{ant}} \delta A_{g/qg} \right] \right]$$

$$\left[\begin{array}{c} \operatorname{Standard} (\operatorname{universal}) \\ \operatorname{Standard} (\operatorname{universal}) \\ \operatorname{Sudakov Logs: C_{A}} \end{array} \right] + \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\operatorname{ant}} (1 - O_{Ej}) A_{g/qg}^{\operatorname{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} d\Phi_{\operatorname{ant}} \delta A_{g/qg} \right] \right]$$

$$\left[\begin{array}{c} \operatorname{Standard} (\operatorname{universal}) \\ \operatorname{Standarv Logs: n_{F}} \end{array} \right] + \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^{2} \int_{0}^{s_{j}} d\Phi_{\operatorname{ant}} (1 - O_{Sj}) P_{Aj} A_{g/qg}^{\operatorname{std}} + \sum_{j=1}^{2} 8\pi^{2} \int_{0}^{s_{j}} d\Phi_{\operatorname{ant}} \delta A_{g/qg} \right] \right] \right]$$

$$\left[\begin{array}{c} \operatorname{Standard} (\operatorname{universal}) \\ \operatorname{Standarv Logs: n_{F}} \end{array} \right] + \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^{2} \int_{0}^{s_{j}} d\Phi_{\operatorname{ant}} (1 - O_{Sj}) P_{Aj} A_{g/qg}^{\operatorname{std}} + \sum_{j=1}^{2} 8\pi^{2} \int_{0}^{s_{j}} d\Phi_{\operatorname{ant}} \delta A_{g/qg} \right] \right] \right]$$

$$\left[\begin{array}{c} \operatorname{Standarv Logs: n_{F}} \end{array} \right] + \frac{\alpha_{s}n_{F}}{2\pi} \left[-\sum_{j=1}^{2} 8\pi^{2} \int_{0}^{s_{j}} d\Phi_{\operatorname{ant}} (1 - O_{Sj}) P_{Aj} A_{g/qg}^{\operatorname{std}} + \sum_{j=1}^{2} 8\pi^{2} \int_{0}^{s_{j}} d\Phi_{\operatorname{ant}} \delta A_{q/qg} \right] \right] \right] \right]$$

$$\left[\begin{array}{c} \operatorname{Standarv Logs: n_{F}} \end{array} \right] \left\{ \begin{array}{c} \operatorname{Standarv Logs: n_{F}} \end{array} \right] = \frac{\alpha_{s}n_{F}} \left[-\sum_{j=1}^{2} 8\pi^{2} \int_{0}^{s_{j}} d\Phi_{\operatorname{ant}} \left[-\sum_$$

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

P. Skands

Sudakov Integrals

Hartgring, Laenen, Skands, arXiv:1303.4974

Figure 14: Distribution of the size of the δA terms (normalized so the LO result is unity) in actual VIN-CIA runs. *Left:* linear scale, default settings. *Right:* logarithmic scale, with variations on the minimum number of MC points used for the integrations (default is 100).

		$\begin{array}{c} \text{LO level} \\ Z \rightarrow \end{array}$	NLO level $Z \rightarrow$	Time / Event [milliseconds]	Speed relative to PYTHIA $\frac{1}{\text{Time}}$ / PYTHIA 8	
Speed:	PYTHIA 8	2,3	2	0.4	1	
	VINCIA (NLO off)	2, 3, 4, 5	2	2.2	$\sim 1/5$	
	VINCIA (NLO on)	2, 3, 4, 5	2,3	3.0	$\sim 1/7$ \blacktriangleleft	– OK

1) IR Limits

Hartgring, Laenen, Skands, arXiv:1303.4974

Pole-subtracted one-loop matrix element

$$\begin{aligned} \text{SVirtual} &= \left[\frac{2 \operatorname{Re}[M_3^0 M_3^{1*}]}{|M_3^0|^2} \right]^{\operatorname{LC}} + \frac{\alpha_s C_A}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{g\bar{q}}) + \frac{34}{3} \right] \\ &+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right] \\ \\ &\text{SVirtual} \quad \frac{\operatorname{soft}}{\operatorname{hard \ collinear}} \quad \left(\frac{-L^2 - \frac{10}{3}L - \frac{\pi^2}{6}}{3} \right) C_A + \frac{1}{3} n_F L}{\operatorname{hard \ collinear}} \quad s_{qg} = s_{g\bar{q}} = y \to 0 \\ &s_{qg} = y \to 0, s_{g\bar{q}} \to s \end{aligned}$$

Second-Order Antenna Shower Expansion:

		strong	smooth	V_{3Z}
p_{\perp}	soft	$\left(L^2 - \frac{1}{3}L + \frac{\pi^2}{6} \right) C_A + \frac{1}{3}n_F L$	$\left(L^2 - \frac{1}{3}L - \frac{\pi^2}{6}\right)C_A + \frac{1}{3}n_F L$	$-\beta_0 L$
	hard collinear	$-\frac{1}{6}LC_A + \frac{1}{6}n_FL$	$\left(-\frac{1}{6}L - \frac{\pi^2}{6}\right)C_A + \frac{1}{6}n_F L$	$-\frac{1}{2}\beta_0 L$
	soft	$\left(L^2 + \frac{3}{2}L - \frac{\pi^2}{6}\right)C_A$	$\left(L^2 + \frac{3}{2}L - \frac{\pi^2}{6}\right)C_A$	$-\frac{1}{2}\beta_0 L$
	hard collinear	$-\frac{1}{6}LC_A + \frac{1}{6}n_FL$	$\left(-\frac{1}{6}L - \frac{\pi^2}{3}\right)C_A + \frac{1}{6}n_F L$	$-\frac{1}{2}\beta_0 L$

2) NLO Evolution

Hartgring, Laenen, Skands, arXiv:1303.4974

Vincia : NLO Z \rightarrow 2 \rightarrow 3 Jets + Markov Shower

Choice of μ_R

Renormalization: 1) Choose $\mu_R \sim p_{Tjet}$ (absorbs universal β-dependent terms) 2) Translate from MSbar to CMW scheme ($\Lambda_{CMW} \sim 1.6 \Lambda_{MSbar}$ for coherent showers)

Markov Evolution in: Transverse Momentum, $a_S(M_Z) = 0.12$

Hartgring, Laenen, Skands, arXiv:1303.4974

The choice of evolution variable (Q)

 $O_{r} = \langle \operatorname{stron}_{\sigma} \rangle$

 $O_{\Gamma} = m_{\Gamma}$ (strong)

26

The proof of the pudding

Hartgring, Laenen, Skands, arXiv:1303.4974

$ig\langle \chi^{f 2}ig angle$ Shapes	T	C D	B_W	B_T		$\left\langle \chi^{f 2} ight angle$ Fra	ag	$N_{ m ch}$	x M	lesons 1	Baryons
PYTHIA 8 VINCIA (LO)	0.4 0.2	0.4 0.6 0.4 0.4	0.3 0.3	0.2 0.3		PYTHIA VINCIA (8 (LO)	0.8 0.0).4).5	0.9 0.3	1.2 0.6
VINCIA (NLO)	0.2	0.2 0.6	0.3	0.2		VINCIA ((NLO)	0.1).7	0.2	0.6
$\left\langle \chi^{2} \right angle$ Jets	$r_{1j}^{ m exc}$	$\ln(y_{12})$	$r_{2j}^{ m exc}$	$\ln(y_{23})$	$r_{3j}^{ m exc}$	$\ln(y_{34})$	$r_{4j}^{ m exc}$	$\ln(y_{45})$	$r_{5j}^{ m exc}$	$\ln(y_{56})$) r_{6j}^{inc}
pythia 8	0.1	0.2	0.1	0.2	0.1	0.3	0.2	0.3	0.2	0.4	0.3
VINCIA (LO)	0.1	0.2	0.1	0.2	0.0	0.2	0.3	0.1	0.1	0.0	0.0
VINCIA (NLO)	0.2	0.4	0.1	0.3	0.1	0.3	0.2	0.2	0.1	0.2	0.1
	$\langle \chi^2 \rangle$ Shapes PYTHIA 8 VINCIA (LO) VINCIA (NLO) $\langle \chi^2 \rangle$ Jets PYTHIA 8 VINCIA (LO) VINCIA (NLO)	$\begin{array}{c c} \left< \chi^2 \right> {\rm Shapes} & T \\ \\ \mbox{PYTHIA 8} & 0.4 \\ \\ \mbox{VINCIA (LO)} & 0.2 \\ \\ \mbox{VINCIA (NLO)} & 0.2 \\ \hline \\ \left< \chi^2 \right> {\rm Jets} & r_{1j}^{\rm exc} \\ \\ \mbox{PYTHIA 8} & 0.1 \\ \\ \mbox{VINCIA (LO)} & 0.1 \\ \\ \mbox{VINCIA (NLO)} & 0.2 \\ \end{array}$	$\begin{array}{c ccccc} \left<\chi^2\right> {\rm Shapes} & T & C & D \\ \\ \mbox{PYTHIA 8} & 0.4 & 0.4 & 0.6 \\ \mbox{VINCIA (LO)} & 0.2 & 0.4 & 0.4 \\ \mbox{VINCIA (NLO)} & 0.2 & 0.2 & 0.6 \\ \hline \left<\chi^2\right> {\rm Jets} & r_{1j}^{\rm exc} & \ln(y_{12}) \\ \\ \mbox{PYTHIA 8} & 0.1 & 0.2 \\ \mbox{VINCIA (LO)} & 0.1 & 0.2 \\ \\ \mbox{VINCIA (LO)} & 0.2 & 0.4 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Beyond Perturbation Theory

Better pQCD → Better non-perturbative constraints

Soft QCD & Hadronization:

Less perturbative ambiguity → improved clarity

ALICE/RHIC:

pp as reference for AA Collective (soft) effects in pp

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:29:42 Fill : 1482 Run : 137124 Event : 0x0000000271EC693

central slice (0.5% of tracks in th

Beyond Colliders?

Other uses for a high-precision fragmentation model

Dark-matter annihilation: Photon & particle spectra

Cosmic Rays: Extrapolations to ultra-high energies

> ISS, March 28, 2012 Aurora and sunrise over Ireland & the UK

Outlook

Thank You

Outlook

р

+ 2nd order showers NLO ee → 4 jets NLO w helicity dependence NLO w massive fermions NLO automated Interleaved showers & decays

р

Thank You

Niels Erik 3 Months Today

р

р

+

 2^{nd} order showers NLO ee \rightarrow 4 jets NLO w helicity dependence NLO w massive fermions NLO automated Interleaved showers & dec Niels Erik 3 Months Today

+ 2nd order showers NLO ee → 4 jets NLO w helicity dependence NLO w massive fermions NLO automated Interleaved showers & dec

р

р

Oct 2014 → Monash University Melbourne, Australia

Fixed Order: Recap

Improve by computing quantum corrections, order by order

(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)

Next-to-Leading Order

Fixed Order: Recap

Improve by computing quantum corrections, order by order

(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)

Next-to-Leading Order

$$\sigma^{\rm NLO} = \sigma^{\rm Born} + \int d\Phi_{F+1} \left| \mathcal{M}_{F+1}^{(0)} \right|^2 + \int d\Phi_F 2\operatorname{Re} \left[\mathcal{M}_F^{(1)} \mathcal{M}_F^{(0)*} \right]_{\rightarrow 1/\epsilon^2 + 1/\epsilon + \operatorname{Finite}} + \int d\Phi_F 2\operatorname{Re} \left[\mathcal{M}_F^{(1)} \mathcal{M}_F^{(0)*} \right]_{\rightarrow 1/\epsilon^2 - 1/\epsilon^2$$

Fixed Order: Recap

Improve by computing quantum corrections, order by order

(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)

Shower Types

Traditional vs Coherent vs Global vs Sector vs Dipole

Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity of the IK pair, respectively, originate in different shower types. (Θ_I and Θ_K represent angular vetos with respect to partons I and K, respectively, and Θ_{IK} represents a sector phase-space veto, see text.)

Global Antennae

×	$rac{1}{y_{ij}y_{jk}}$	$\frac{1}{y_{ij}}$	$rac{1}{y_{jk}}$	$rac{y_{jk}}{y_{ij}}$	$rac{y_{ij}}{y_{jk}}$	$\frac{y_{jk}^2}{y_{ij}}$	$\frac{y_{ij}^2}{y_{jk}}$	1	y_{ij}	y_{jk}
$q\bar{q} ightarrow qg\bar{q}$										
$++ \rightarrow +++$	1	0	0	0	0	0	0	0	0	0
$++ \rightarrow +-+$	1	-2	-2	1	1	0	0	2	0	0
$+- \rightarrow + + -$	1	0	-2	0	1	0	0	0	0	0
$+- \rightarrow +$	1	-2	0	1	0	0	0	0	0	0
$qg \rightarrow qgg$										
$++ \rightarrow +++$	1	0	$-\alpha + 1$	0	$2\alpha - 2$	0	0	0	0	0
$++ \rightarrow +-+$	1	-2	-3	1	3	0	-1	3	0	0
$+- \rightarrow ++-$	1	0	-3	0	3	0	-1	0	0	0
$+- \rightarrow +$	1	-2	$-\alpha + 1$	1	$2\alpha - 2$	0	0	0	0	0
$gg \rightarrow ggg$								1		
$++ \rightarrow +++$	1	$ -\alpha+1 $	$-\alpha + 1$	$2\alpha - 2$	$2\alpha - 2$	0	0	0	0	0
$++ \rightarrow +-+$	1	-3	-3	3	3	-1	-1	3	1	1
$+- \rightarrow + + -$	1	$-\alpha + 1$	-3	$2\alpha - 2$	3	0	-1	0	0	0
$+- \rightarrow +$	1	-3	$-\alpha + 1$	3	$2\alpha - 2$	-1	0	0	0	0
$qg ightarrow q \bar{q}' q'$		I						1		
$++ \rightarrow ++ -$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0
$++ \rightarrow +-+$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{\overline{1}}{2}$	0	0	0
$+- \rightarrow ++-$	0	0	$\frac{\overline{1}}{2}$	0	-1	0	$\frac{\overline{1}}{2}$	0	0	0
$+- \rightarrow +$	0	0	$\overset{2}{0}$	0	0	0	$\frac{\overline{1}}{2}$	0	0	0
$gg \to g\bar{q}q$		I								
$++ \rightarrow ++ -$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0
$++ \rightarrow +-+$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{\tilde{1}}{2}$	0	0	0
$+- \rightarrow ++ -$	0	0	$\frac{\tilde{1}}{2}$	0	-1	0	$\frac{1}{2}$	0	0	0
$+- \rightarrow +-+$	0	0	Ő	0	0	0	$\frac{1}{2}$	0	0	0

Sector Antennae

Global
$$\bar{a}_{g/qg}^{\text{gl}}(p_i, p_j, p_k) \xrightarrow{s_{jk} \to 0} \frac{1}{s_{jk}} \left(P_{gg \to G}(z) - \frac{2z}{1-z} - z(1-z) \right) \xrightarrow{\rightarrow} P(z) = \text{Sum over two}$$

neigboring antennae

The Denominator

In a traditional parton shower, you would face the following problem:

Existing parton showers are not really Markov Chains

Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to n^{th} branching $\propto 2^{n}n!$

 $\left(\left(\sum_{i=1}^{j=1} -2 \operatorname{terms}^{j=1} \right) \right) \xrightarrow{j=1}{2 \operatorname{terms}^{j=1}}$

(f + (f) = 2) $\rightarrow 4 \text{ terms}$

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

 $a_i \rightarrow$

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

 $2^{n}n! \rightarrow n!$

Giele, Kosower, Skands, PRD 84 (2011) 054003

+ Change "shower restart" to Markov criterion:

Given an *n*-parton configuration, "ordering" scale is

 $Q_{\text{ord}} = min(Q_{E1}, Q_{E2}, ..., Q_{En})$

Unique restart scale, independently of how it was produced

+ Matching: $n! \rightarrow n$

Given an *n*-parton configuration, its phase space weight is:

 $|M_n|^2$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

+ **Sector** antennae

 \rightarrow I term at *any* order

Larkosi, Peskin, Phys. Rev. D81 (2010) 054010 Lopez-Villarejo, Skands, JHEP 1111 (2011) 150 Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Approximations

Q: How well do showers do?

Exp: Compare to data. Difficult to interpret; all-orders cocktail including hadronization, tuning, uncertainties, etc

Th: Compare products of splitting functions to full tree-level matrix elements

Plot distribution of Log₁₀(PS/ME)

Dead Zone: I-2% of phase space have no strongly ordered paths leading there*

*fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

Generate Branchings without imposing strong ordering

Better Approximations

Distribution of Log₁₀(PS_{LO}/ME_{LO}) (inverse ~ matching coefficient)

+ Matching (+ full colour)

IR Singularity Operators

Gehrmann, Gehrmann-de Ridder, Glover, JHEP 0509 (2005) 056

$$\begin{split} q\bar{q} &\to qg\bar{q} \text{ antenna function} \\ A_{ijk}^0 = S_{ijk,IK} \frac{|\mathcal{M}_{ijk}^0|^2}{|\mathcal{M}_{IK}^0|^2} \\ A_3^0(1_q, 3_g, 2_{\bar{q}}) &= \frac{1}{s_{123}} \left(\frac{s_{13}}{s_{23}} + \frac{s_{23}}{s_{13}} + 2\frac{s_{12}s_{123}}{s_{13}s_{23}} \right) \end{split}$$

Integrated antenna

$$\mathcal{P}oles\left(\mathcal{A}_{3}^{0}(s_{123})\right) = -2\mathbf{I}_{q\bar{q}}^{(1)}\left(\epsilon, s_{123}\right)$$
$$\mathcal{F}inite\left(\mathcal{A}_{3}^{0}(s_{123})\right) = \frac{19}{4} \ .$$
$$\mathcal{X}_{ijk}^{0}(s_{ijk}) = \left(8\pi^{2}\left(4\pi\right)^{-\epsilon}e^{\epsilon\gamma}\right)\int \mathrm{d}\Phi_{X_{ijk}} X_{ijk}^{0}.$$

Singularity Operators

$$\mathbf{I}_{q\bar{q}}^{(1)}\left(\epsilon,\mu^{2}/s_{q\bar{q}}\right) = -\frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)} \left[\frac{1}{\epsilon^{2}} + \frac{3}{2\epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q\bar{q}}}\right)^{\epsilon}$$
$$\mathbf{I}_{qg}^{(1)}\left(\epsilon,\mu^{2}/s_{qg}\right) = -\frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)} \left[\frac{1}{\epsilon^{2}} + \frac{5}{3\epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{qg}}\right)^{\epsilon} \quad \text{for } qg \rightarrow qgg$$
$$\mathbf{I}_{qg,F}^{(1)}\left(\epsilon,\mu^{2}/s_{qg}\right) = \frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)} \frac{1}{6\epsilon} \operatorname{Re}\left(-\frac{\mu^{2}}{s_{qg}}\right)^{\epsilon} \quad \text{for } qg \rightarrow qq'q'$$

Uncertainties

No calculation is more precise than the reliability of its uncertainty estimate \rightarrow aim for full assessment of TH uncertainties.

Doing Variations

Giele, Kosower, Skands, PRD 84 (2011) 054003

Traditional Approach:

Run calculation $1_{central} + 2N_{variations} = slow$

Another use for simple analytical expansions?

For each event, can compute *probability this event* would have resulted under alternative conditions

 $P_2 = \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$

+ **Unitarity**: also recompute no-evolution probabilities

$$P_{2;no} = 1 - P_2 = 1 - \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$$

Doing Variations

Giele, Kosower, Skands, PRD 84 (2011) 054003

Traditional Approach:

Run calculation $1_{central} + 2N_{variations} = slow$

Another use for simple analytical expansions?

For each event, can compute *probability this event would have resulted under alternative conditions*

 $P_2 = \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$

+ **Unitarity**: also recompute no-evolution probabilities

$$P_{2;no} = 1 - P_2 = 1 - \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$$

VINCIA:

= fast, automatic

Central weights = 1

- + N sets of alternative weights = **variations** (all with <w>=1)
- → For every configuration/event, calculation tells how sure it is

Bonus: events only have to be hadronized & detector-simulated ONCE!

Quantifying Precision

Example of Physical Observable: Before (left) and After (right) Matching

Jet Broadening = LEP event-shape variable, measures "fatness" of jets

Example: Non-Singular Terms

Giele, Kosower, Skands, PRD 84 (2011) 054003

Thrust = LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)

Example: µ_R

Giele, Kosower, Skands, PRD 84 (2011) 054003

Thrust = LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)