Interleaved Evolution with NLO- and Helicity-Amplitudes

Peter Skands (CERN TH)

Why?

+ huge amount of other physics studies:
\# of journal papers so far: 225 ATLAS, 195 CMS, 83 LHCb, 62 ALICE

Some of these are already, or will ultimately be, theory limited

Why?

+ huge amount of other physics studies:
\# of journal papers so far:
225 ATLAS, 195 CMS, 83 LHCb, 62 ALICE
Some of these are already, or will ultimately be, theory limited

Precision = Clarity, in our vision of the Terascale
Searching towards lower cross sections, the game gets harder

+ Intense scrutiny (after discovery): precision = information
Theory task: invest in precision
(+ lots of interesting structures in QFT, can compare to data, ...)
This talk: a new formalism for highly accurate collider-physics calculations + some future perspectives

Fixed Order Perturbation Theory:

Problem: limited orders

Parton Showers:

Problem: limited precision
"Matching": Best of both Worlds?
Problem: stitched together, slow, limited orders

Interleaved pQCD

\rightarrow Infinite orders, high precision, fast

The Problem of Bremsstrahlung

ATLASEXPERIMENT

The Problem of Bremsstrahlung

ATLASEXPERIMENT

The Problem of Bremsstrahlung

Associated field
(fluctuations) continues
lision Energy
482137

The Problem of Bremsstrahlung

Associated field (fluctuations) continues
lision Energy
482137

The Problem of Bremsstrahlung

The harder they get kicked, the harder the fluctations that continue to become strahlung

Jets $=$ Fractals

- Most bremsstrahlung is driven by divergent propagators \rightarrow simple structure
- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Jets $=$ Fractals

- Most bremsstrahlung is driven by divergent propagators \rightarrow simple structure
- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

$$
\begin{aligned}
& \text { Partons ab } \rightarrow \quad \mathrm{P}(z)=\text { Altarelli-Parisi splitting kernels, with } \mathrm{z}=\text { energy fraction }=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right) \\
& \text { "collinear": } \\
& \qquad\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \mid l b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{aligned}
$$

Jets $=$ Fractals

- Most bremsstrahlung is

 driven by divergent propagators \rightarrow simple structure- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

$$
\begin{aligned}
& \text { Partons ab } \rightarrow \quad \mathrm{P}(\mathrm{z})=\text { Altarelli-Parisi splitting kernels, with } \mathrm{z}=\text { energy fraction }=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right) \\
& \text { "collinear": } \\
& \qquad\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a| | b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{aligned}
$$

Gluon j

$$
\rightarrow \text { "soft": }\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{g_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\text { notena" }\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

+ scaling violation: $g_{\mathrm{s}}{ }^{2} \rightarrow 4 \pi \alpha_{\mathrm{s}}\left(\mathrm{Q}^{2}\right)$
See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Jets $=$ Fractals

- Most bremsstrahlung is

 driven by divergent propagators \rightarrow simple structure- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

$$
\begin{aligned}
& \text { Partons ab } \rightarrow \quad \mathrm{P}(\mathrm{z})=\text { Altarelli-Parisi splitting kernels, with } \mathrm{z}=\text { energy fraction }=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right) \\
& \text { "collinear": } \\
& \qquad\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{aligned}
$$

Gluon j

$$
\rightarrow \text { "soft": }\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\text { antena" }\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

+ scaling violation: $g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(\mathrm{Q}^{2}\right)$
See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times
\rightarrow nested factorizations

Divide and Conquer \rightarrow Event Generators

Factorization \rightarrow Split the problem into many (nested) pieces

+ Quantum mechanics \rightarrow Probabilities \rightarrow Random Numbers

$$
\mathcal{P}_{\text {event }}=\mathcal{P}_{\text {hard }} \otimes \mathcal{P}_{\text {dec }} \otimes \mathcal{P}_{\mathrm{ISR}} \otimes \mathcal{P}_{\mathrm{FSR}} \otimes \mathcal{P}_{\mathrm{MPI}} \otimes \mathcal{P}_{\mathrm{Had}} \otimes \ldots
$$

Hard Process \& Decays:
Use (N)LO matrix elements
\rightarrow Sets "hard" resolution scale for process: $Q_{\text {max }}$
ISR \& FSR (Initial \& Final-State Radiation):
Altarelli-Parisi equations \rightarrow differential evolution, $\mathrm{dP} / \mathrm{dQ}^{2}$, as function of resolution scale; run from $Q_{\text {max }}$ to ~ 1 GeV (More later)

MPI (Multi-Parton Interactions)
Additional (soft) parton-parton interactions: LO matrix elements
\rightarrow Additional (soft) "Underlying-Event" activity (Not the topic for today)
Hadronization
Non-perturbative model of color-singlet parton systems \rightarrow hadrons

Last Ingredient: Loops

PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Unitarity (KLN):

Singular structure at loop level must be equal and opposite to tree level

$$
\begin{aligned}
& \text { Loop }=-\operatorname{Int}(\text { Tree })+\mathrm{F} \\
& \text { Neglect } F \rightarrow \text { Leading-Logarithmic (LL) } \\
& \text { Approximation }
\end{aligned}
$$

\rightarrow Virtual (loop) correction:
$2 \operatorname{Re}\left[\mathcal{M}_{F}^{(0)} \mathcal{M}_{F}^{(1) *}\right]=-g_{s}^{2} N_{C}\left|\mathcal{M}_{F}^{(0)}\right|^{2} \int \frac{\mathrm{~d} s_{i j} \mathrm{~d} s_{j k}}{16 \pi^{2} s_{i j k}}\left(\frac{2 s_{i k}}{s_{i j} s_{j k}}+\right.$ less singular terms $)$

Last Ingredient: Loops

Unitarity (KLN):

Singular structure at loop level must be equal and opposite to tree level

$$
\text { Loop }=-\operatorname{Int}(\text { Tree })+F
$$

Neglect $F \rightarrow$ Leading-Logarithmic (LL) Approximation
\rightarrow Virtual (loop) correction:
$2 \operatorname{Re}\left[\mathcal{M}_{F}^{(0)} \mathcal{M}_{F}^{(1) *}\right]=-g_{s}^{2} N_{C}\left|\mathcal{M}_{F}^{(0)}\right|^{2} \int \frac{\mathrm{~d} s_{i j} \mathrm{~d} s_{j k}}{16 \pi^{2} s_{i j k}}\left(\frac{2 s_{i k}}{s_{i j} s_{j k}}+\right.$ less singular terms $)$

Realized by Event evolution in $\mathrm{Q}=$ fractal scale (virtuality, p_{T}, formation time, ...)

> Resolution scale $$
t=\ln \left(Q^{2}\right)
$$

$$
\begin{aligned}
\frac{\mathrm{d} N_{F}(t)}{d t}= & -\frac{\mathrm{d} \sigma_{F+1}}{\mathrm{~d} \sigma_{F}} N_{F}(t) \\
& =\text { Approximation to Real Emissions }
\end{aligned}
$$

Probability to remain
"unbranched" from to to \dagger
\rightarrow The "Sudakov Factor"

$$
\begin{aligned}
\frac{N_{F}(t)}{N_{F}\left(t_{0}\right)}= & \Delta_{F}\left(t_{0}, t\right)=\exp \left(-\int \frac{\mathrm{d} \sigma_{F+1}}{\mathrm{~d} \sigma_{F}}\right) \\
& =\text { Approximation to Loop Corrections }
\end{aligned}
$$

Bootstrapped Perturbation Theory

Start from an arbitrary lowest-order process (green = QFT amplitude squared)
Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (yellow $=$ fractal with scaling violation)

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Cancellation of real \& virtual singularities
Exponentiation
fluctuations within fluctuations

No. of Bremsstrahlung Emissions
(real corrections)

Bootstrapped Perturbation Theory

Start from an arbitrary lowest-order process (green = QFT amplitude squared)
Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (yellow = fractal with scaling violation)

\rightarrow Jack of All Orders, Master of None?

"Good" Shower(s) \rightarrow Dominant all-orders structures

But what about all these unphysical choices?
Renormalization Scales (for each power of α_{s})
The choice of shower evolution "time" ~ Factorization Scale(s)
The radiation/antenna/splitting functions (hard jets are non-singular)
Recoils (kinematics maps, $d \Phi_{n+1} / d \Phi_{n}$)
The infrared cutoff contour (hadronization cutoff)
Nature does not depend on them \rightarrow vary to estimate uncertainties
Problem: existing approaches vary only one or two of these choices
I. Systematic Variations
\rightarrow Comprehensive Theory Uncertainty Estimates
2. Higher-Order Corrections
\rightarrow Systematic Reduction of
Uncertainties

Including LO Matrix Elements

Conceptual Example of Current Approaches: MLM-like "Slicing": Use ME for $\mathrm{p}_{\mathrm{T}}>$ PTmatch ; Use PS for $\mathrm{p}_{\mathrm{T}}<$ PImatch

Born

Born + 1
Born + 2

Compute inclusive σ_{B}
Generate dó Phase Space
Shower
Reject if jet(s) > PTmatch
\rightarrow retain Sudakov fraction
\rightarrow Exclusive σ_{B} (PTmatch)
Unweight (incl PDFs, a_{s}

Compute incl σ_{B+1} (Pimatch)
Generate dob+1 Phase Space
Shower
Reject if jet(s) > PTmatch
\rightarrow retain Sudakov fraction
\rightarrow Exclusive σ_{B+1} (PTmatch)
Unweight (incl PDFs, a_{s})

Compute incl $\sigma_{\mathrm{B}+2}$ (PTmatch)
Generate dob $_{\mathrm{B}+2}$ Phase Space
Shower
Reject if jet(s) > pT2
\rightarrow retain Sudakov fraction
\rightarrow Inclusive σ_{B+2}
Unweight (incl PDFs, as)

Fixed Order is starting point. Treats each multiplicity as a separate calculation. Inefficiencies can enter in PS generation, Rejection, and Unweighting Steps

Changing Paradigm

Start not from fixed order, but from what fixed order is an expansion of

Ask:

Is it possible to interpret the all-orders structure that a shower generates as a trial distribution for a more precise evolution?

Would essentially amount to using a QCD shower as your (only) phase space generator, on top of which fixed-order amplitudes are imprinted as (unitary and finite) multiplicative corrections

Changing Paradigm

Start not from fixed order, but from what fixed order is an expansion of

Ask:
Is it possible to interpret the all-orders structure that a shower generates as a trial distribution for a more precise evolution?

Would essentially amount to using a QCD shower as your (only) phase space generator, on top of which fixed-order amplitudes are imprinted as (unitary and finite) multiplicative corrections

Answer:

Used to be no.
First order worked out in the eighties (Sjöstrand, also used in POWHEG), but higher-order expansions rapidly became too complicated

Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Based on antenna factorization

- of Amplitudes (exact in both soft and collinear limits)

- of Phase Space (LIPS : 2 on-shell $\rightarrow 3$ on-shell partons, with (E,p) cons)

Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Based on antenna factorization

- of Amplitudes (exact in both soft and collinear limits)
- of Phase Space (LIPS : 2 on-shell $\rightarrow 3$ on-shell partons, with (E, p) cons)

Resolution Time

Infinite family of continuously deformable Q_{E}
Special cases: transverse momentum, dipole mass, energy

Radiation functions

Arbitrary non-singular coefficients, ant i_{i}

+ Massive antenna functions for massive fermions (c, b, t)

Kinematics maps

Formalism derived for arbitrary $2 \rightarrow 3$ recoil maps, $K_{3 \rightarrow 2}$
Default: massive generalization of Kosower's antenna maps

Interleaved ME Corrections

Idea:

Start from quasi-conformal all-orders structure (approximate)
Impose exact higher orders as finite multiplicative corrections
Truncate at fixed scale (rather than fixed order)
Bonus: low-scale partonic events \rightarrow can be hadronized

Problems:

Traditional parton showers are history-dependent (non-Markovian)
\rightarrow Number of generated terms grows like $2^{\mathrm{N}} \mathrm{N}$!

+ Dead zones and complicated expansions

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Solution: (MC) ${ }^{2}$: Monte-Carlo Markov Chain Markovian Antenna Showers (VINCIA)
\rightarrow Number of generated terms grows like N

+ exact phase space \& simple expansions

$$
\begin{aligned}
& \text { Markovian Antenna Shower: } \\
& \text { After } 2 \text { branchings: } 2 \text { terms } \\
& \text { After } 3 \text { branchings: } 3 \text { terms } \\
& \text { After } 4 \text { branchings: } 4 \text { terms }
\end{aligned}
$$

New: Markovian pQCD

Start at Born level
$\left|M_{F}\right|^{2}$

$+$

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003 HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

New: Markovian pQCD

Start at Born level

$\left|M_{F}\right|^{2}$
Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

New: Markovian pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F++}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

New: Markovian pQCD

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

New: Markovian pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element

$$
\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int \operatorname{Real}
$$

$+$

The VINCIA Code

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

New: Markovian pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2 L} \underset{i \in \operatorname{eant}}{ } a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element $\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

New: Markovian pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element $\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

New: Markovian pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\begin{aligned}
& \qquad a_{i}^{L} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i} \\
& \text { Unitarity of Shower } \\
& \text { Virtual }=-\int \text { Real }
\end{aligned}
$$

Correct to Matrix Element $\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

"Higher-Order Corrections To Timelike Jets" GeekS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

New: Markovian pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission $\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { any }} a_{i}\left|M_{F}\right|^{2}$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F++}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element $\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

New: Markovian pQCD

Start at Born level

$\left|M_{F}\right|^{2}$
Generate "shower" emission
$\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\stackrel{ }{i t \in a n y}} a_{i}\left|M_{F}\right|^{2}$
Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element $\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

New: Markovian pQCD

Start at Born level

$\left|M_{F}\right|^{2}$
Generate "shower" emission

"Higher-Order Corrections To Timelike Jets" GeekS: Giele, Kosower, Skands, PRD 84 (2011) 054003
HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Helicities

Larkoski, Peskin, PRD 81 (2010) 054010
Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033
Traditional parton showers use the standard Altarelli-Parisi kernels, $\mathrm{P}(\mathrm{z})=$ helicity sums/averages over:

$P(z)$	++	-+	+-	--
$g_{+} \rightarrow g g:$	$1 / z(1-z)$	$(1-z)^{3} / z$	$z^{3} /(1-z)$	0
$g_{+} \rightarrow q \bar{q}:$	-	$(1-z)^{2}$	z^{2}	-
$q_{+} \rightarrow q g:$	$1 /(1-z)$	-	$z^{2} /(1-z)$	-
$q_{+} \rightarrow g q:$	$1 / z$	$(1-z)^{2} / z$	-	-

Generalize these objects to dipole-antennae
E.g.,

$$
\begin{aligned}
& q \bar{q} \rightarrow q g \bar{q} \\
& ++\rightarrow+++\quad \mathrm{MHV} \\
& ++\rightarrow+-+\mathrm{NMHV} \\
& +-\rightarrow++-\quad \text { P-wave } \\
& +-\rightarrow+--\quad \text { P-wave }
\end{aligned}
$$

\rightarrow Can trace helicities through shower
\rightarrow Eliminates contribution from unphysical helicity configurations
\rightarrow Can match to individual helicity amplitudes rather than helicity sum
\rightarrow Fast! (gets rid of another factor 2^{N})

Helicity Contributions

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033
Flat phase-space scan. $\mathrm{H}^{0} \rightarrow \mathrm{qq}+\mathrm{ng}$. Size of helicity contributions.

Helicity Contributions

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033
Flat phase-space scan. $\mathrm{H}^{0} \rightarrow \mathrm{qq}+\mathrm{ng}$. Size of helicity contributions.

Distribution of PS/ME
ratio (summed over helicities)
Vincia shower already quite close to ME
\rightarrow small corrections
Note: precision not greatly improved by helicity dependence

Helicity Contributions

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033
Flat phase-space scan. $\mathrm{H}^{0} \rightarrow \mathrm{qq}+\mathrm{ng}$. Size of helicity contributions.

Distribution of PS/ME
ratio (summed over helicities)
Vincia shower already quite close to ME
\rightarrow small corrections
Note: precision not greatly
improved by helicity dependence

Eag Speed

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Loop Corrections

Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026
Hartgring, Laenen, Skands, arXiv:1303.4974
Pedagogical Example: $Z^{0} \rightarrow q \bar{q}$ First Order (~POWHEG)
Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at $\mathrm{Q}=$ Qhad

$$
=\underset{\text { Born }}{\left|M_{0}^{0}\right|^{2}}\left(1+\frac{2 \operatorname{Re}\left[M_{0}^{0} M_{0}^{\left.1^{*}\right]}\right.}{\left|M_{0}^{0}\right|^{2}}+\int_{\text {Virtual }}^{Q_{\text {had }}^{2}} \underset{\text { Unresolved Real }}{\left.\mathrm{d} \Phi_{\text {ant }} g_{s}^{2} \mathcal{C} A_{g / q \bar{q}}\right)} \xrightarrow{\left|M_{0}^{0}\right|^{2}}\right.
$$

Loop Corrections

Pedagogical Example: $Z^{0} \rightarrow q \bar{q}$ First Order (rrownes)

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at $\mathrm{Q}=\mathrm{Qhad}_{\text {had }}$

$$
=\underset{\text { Born }}{\left|M_{0}^{0}\right|^{2}\left(1+\frac{2 \operatorname{Re}\left[M_{0}^{0} M_{0}^{1^{*}}\right]}{\left|M_{0}^{0}\right|^{2}}+\int_{\text {Virtual }}^{Q_{0}^{2}} \underset{\text { Undesolved Real }}{ } \mathrm{d} \Phi_{\text {ant }}^{2} g_{s}^{2} \mathcal{C} A_{g / q \bar{q}}\right)}=\frac{\left|M_{1}^{0}\right|^{2}}{\left|M_{0}^{0}\right|^{2}}
$$

LO Vincia: Exclusive 2-jet rate (2 and only 2 jets), at $\mathrm{Q}=\mathrm{Q}_{\text {had }}$

$$
\begin{gathered}
\left|M_{0}^{0}\right|^{2} \Delta\left(s, Q_{\text {had }}^{2}\right)=\left|M_{0}^{0}\right|^{2}\left(1-\int_{\substack{Q_{\text {had }}^{2} \\
\text { Approximate Virtual + Unresolved Real }}}^{s} \mathrm{~d} \Phi_{\text {ant }} g_{s}^{2} \mathcal{C} A_{g / q \bar{q}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
\end{gathered}
$$

Loop Corrections

Pedagogical Example: $Z^{0} \rightarrow q \bar{q}$ First Order (meownes)

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at $\mathrm{Q}=\mathrm{Qhad}_{\text {had }}$

$$
=\underset{\text { Born }}{\left|M_{0}^{0}\right|^{2}}\left(1+\frac{2 \operatorname{Re}\left[M_{0}^{0} M_{0}^{\left.1^{*}\right]}\right.}{\left|M_{0}^{0}\right|^{2}}+\int_{\text {Virtual }}^{Q_{\text {had }}^{2}} \underset{\text { Unresolved Real }}{\left.\mathrm{d} \Phi_{\text {ant }} g_{s}^{2} \mathcal{C} A_{g / q \bar{q}}\right)} \xrightarrow{\longrightarrow}=\frac{\left|M_{1}^{0}\right|^{2}}{\left|M_{0}^{0}\right|^{2}}\right.
$$

LO Vincia: Exclusive 2-jet rate (2 and only 2 jets), at $\mathrm{Q}=\mathrm{Q}_{\mathrm{had}}$

$$
\left|M_{0}^{0}\right|^{2} \Delta\left(s, Q_{\mathrm{had}}^{2}\right)=\left|M_{0}^{0}\right|^{2}\left(1-\int_{Q_{\mathrm{had}}^{2}}^{s} \mathrm{~d} \Phi_{\text {ant }} g_{s}^{2} \mathcal{C} A_{g / q \bar{q}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

Born
Sudakov
Approximate Virtual + Unresolved Real

NLO Correction: Subtract and correct by difference

$$
\left.\begin{array}{rl}
\frac{2 \operatorname{Re}\left[M_{0}^{0} M_{0}^{1 *}\right]}{\left|M_{0}^{0}\right|^{2}} & =\frac{\alpha_{s}}{2 \pi} 2 C_{F}\left(2 I_{q \bar{q}}\left(\epsilon, \mu^{2} / m_{Z}^{2}\right)-4\right) \\
\int_{0}^{s} \mathrm{~d} \Phi_{\text {ant }} 2 C_{F} g_{s}^{2} A_{g / q \bar{q}} & =\frac{\alpha_{s}}{2 \pi} 2 C_{F}\left(-2 I_{q \bar{q}}\left(\epsilon, \mu^{2} / m_{Z}^{2}\right)+\frac{19}{4}\right)
\end{array}\right\} \quad\left|M_{0}^{0}\right|^{2} \rightarrow\left(1+\frac{\alpha_{s}}{\pi}\right)\left|M_{0}^{0}\right|^{2}
$$

Loop Corrections

Getting Serious: second order

Fixed Order: Exclusive 3-jet rate (3 and only 3 jets), at $\mathrm{Q}=\mathrm{Qhad}^{\text {a }}$

$$
\text { Exact } \rightarrow \underset{\text { Born }}{\left|M_{1}^{0}\right|^{2}}+\underset{\text { Re }}{\operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}+\int_{0}^{\text {Virtual }_{\text {had }}^{2}} \underset{\text { Unresolved Real }}{\frac{\mathrm{d} \Phi_{2}}{\mathrm{~d} \Phi_{1}}\left|M_{2}^{0}\right|^{2}}
$$

Vincia:

Approximate $\rightarrow\left(1+V_{0}\right)\left|M_{1}^{0}\right|^{2} \Delta_{2}\left(m_{Z}^{2}, Q_{1}^{2}\right) \Delta_{3}\left(Q_{R 1}^{2}, Q_{\text {had }}^{2}\right)$, $V_{0}=\alpha_{s} / \pi \quad \mu_{R} \quad 2 \rightarrow 3$ Evolution $\quad 3 \rightarrow 4$ Evolution

Loop Corrections

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$
\begin{aligned}
& V_{1 Z}(q, g, \bar{q})=\left[\frac{2 \operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}{\left|M_{1}^{0}\right|^{2}}\right]^{\mathrm{LC}}-\frac{\alpha_{s}}{\pi}-\frac{\alpha_{s}}{2 \pi}\left(\frac{11 N_{C}-2 n_{F}}{6}\right) \ln \left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) \\
& +\frac{\alpha_{s} C_{A}}{2 \pi}\left[-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{g \bar{q}}\right)+\frac{34}{3}\right] \\
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-2 I_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{g \bar{q}, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-1\right]
\end{aligned}
$$

$$
\begin{align*}
& \left.-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \begin{array}{c}
\text { Resolution Scale } \\
\mathrm{d} \Phi_{\text {ant }}\left(1-O_{E j}\right) A_{\text {Ej }}=\text { Gluon-Emission } \\
\text { std }
\end{array}+\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{g / q g}\right] \\
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }}\left(1-O_{S j}\right) P_{A j} A_{\bar{q} / q g}^{\text {Osj }} \begin{array}{l}
\text { Oluon-Splitting } \\
\text { Osdering Function }
\end{array}+\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{\bar{q} / q g}\right. \\
& \left.-\frac{1}{6} \frac{s_{q g}-s_{g \bar{q}}}{s_{q g}+s_{g \bar{q}}} \ln \left(\frac{s_{q g}}{s_{g \bar{q}}}\right)\right], \tag{72}
\end{align*}
$$

Loop Corrections

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$
\begin{aligned}
& V_{1 Z}(q, g, \bar{q})=\left[\frac{2 \operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}{\left|M_{1}^{0}\right|^{2}}\right]^{\mathrm{LC}}-\frac{\alpha_{s}}{\pi}-\frac{\alpha_{s}}{2 \pi}\left(\frac{11 N_{C}-2 n_{F}}{6}\right) \ln \left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) \\
& +\frac{\alpha_{s} C_{A}}{2 \pi}\left[-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{g \bar{q}}\right)+\frac{34}{3}\right] \\
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-2 I_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{g \bar{q}, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-1\right]
\end{aligned}
$$

$$
\begin{align*}
& \left.-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{\substack{\text { Resolution Scale } \\
s_{j}}} \begin{array}{c}
\text { ant } \\
\mathbf{O}_{\mathrm{Ej}}=\text { Gluon-Emission }
\end{array}\right) \\
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \begin{array}{c}
\text { Ordering Function } \\
\mathrm{d} \Phi_{\text {ant }}\left(1-O_{S j}\right) P_{A j} A_{\bar{q} / q g}^{\text {std }} \\
\mathbf{O}_{\text {sj }} \text { Gluon-Splitting }
\end{array}+\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{\bar{q} / q g}\right. \\
& \left.-\frac{1}{6} \frac{s_{q g}-s_{g \bar{q}}}{s_{q g}+s_{g \bar{q}}} \ln \left(\frac{s_{q g}}{s_{g \bar{q}}}\right)\right], \tag{72}
\end{align*}
$$

Loop Corrections

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$
\begin{aligned}
& V_{1 Z}(q, g, \bar{q})=\left[\frac{2 \operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}{\left|M_{1}^{0}\right|^{2}}\right]^{\mathrm{LC}}-\frac{\alpha_{s}}{\pi}-\frac{\alpha_{s}}{2 \pi}\left(\frac{11 N_{C}-2 n_{F}}{6}\right)^{\mu_{\mathrm{R}}} \ln \left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) \\
& +\frac{\alpha_{s} C_{A}}{2 \pi}\left[-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{g \bar{q}}\right)+\frac{34}{3}\right] \\
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-2 I_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{g \bar{q}, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-1\right]
\end{aligned}
$$

$$
\begin{align*}
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }}\left(1-O_{S j}\right) P_{A j} A_{\bar{q} q q g}^{\text {Order }} \begin{array}{l}
\text { Std } \\
\text { Osluon-Splitting }
\end{array}\right)+\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{\bar{q} / q g} \\
& \left.-\frac{1}{6} \frac{s_{q g}-s_{g \bar{q}}}{s_{q g}+s_{g \bar{q}}} \ln \left(\frac{s_{q g}}{s_{g \bar{q}}}\right)\right], \tag{72}
\end{align*}
$$

Loop Corrections

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$
V_{1 Z}(q, g, \bar{q})=\left[\frac{2 \operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}{\left|M_{1}^{0}\right|^{2}}\right]^{\mathrm{LC}}-\frac{\alpha_{s}}{\pi}-\frac{\alpha_{s}}{2 \pi}\left(\frac{11 N_{C}-2 n_{F}}{6}\right)^{\frac{\mu_{\mathrm{R}}}{\ln }\left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) .}
$$

Gluon Emission IR Singularity (std antenna integral)

$$
\begin{aligned}
& +\frac{\alpha_{s} C_{A}}{2 \pi}\left[-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{g \bar{q}}\right)+\frac{34}{3}\right] \\
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-2 I_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{g \bar{q}, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-1\right]
\end{aligned}
$$

Gluon Splitting IR Singularity
(std antenna integral)

$$
+\frac{\alpha_{s} C_{A}}{2 \pi}\left[8 \pi^{2} \int_{\substack{Q_{1}^{2} \\ m_{Z}^{2}=33 \text { parton } \\ \text { Resolution Scale }}}^{\mathrm{d} \Phi_{\text {ant }} A^{\text {std }}{ }^{\text {std }}}+8 \pi^{2} \int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{g / q \bar{q}}\right.
$$

$$
\begin{equation*}
\left.-\frac{1}{6} \frac{s_{q g}-s_{g \bar{q}}}{s_{q g}+s_{g \bar{q}}} \ln \left(\frac{s_{q g}}{s_{g \bar{q}}}\right)\right], \tag{72}
\end{equation*}
$$

Loop Corrections

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$
V_{1 Z}(q, g, \bar{q})=\left[\frac{2 \operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}{\left|M_{1}^{0}\right|^{2}}\right]^{\mathrm{LC}}-\frac{\alpha_{s}}{\pi}-\frac{\alpha_{s}}{2 \pi}\left(\frac{11 N_{C}-2 n_{F}}{6}\right)^{\frac{\mu_{\mathrm{R}}}{\ln }\left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) .}
$$

Gluon Emission IR Singularity (std antenna integral)

$$
+\frac{\alpha_{s} C_{A}}{2 \pi}\left[-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{g \bar{q}}\right)+\frac{34}{3}\right]
$$

Gluon Splitting IR Singularity
(std antenna integral)

$$
+\frac{\alpha_{s} n_{F}}{2 \pi}\left[-2 I_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{g \bar{q}, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-1\right]
$$

Standard (universal)
$2 \rightarrow 3$ Sudakov Logs

$$
\begin{align*}
& +\frac{\alpha_{s} C_{A}}{2 \pi}\left[8 \pi^{2} \int_{\substack{Q_{1}^{2} \\
m_{Z}^{2} \\
\text { Resolution Scale } \Phi_{\text {ant }} A_{g / q \bar{q}}^{\text {std }}}}^{\text {Respent }}+8 \pi^{2} \int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{g / q \bar{q}}\right. \\
& \left.\left.-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{\substack{\text { Resolution Scale } \\
s_{j}}} \begin{array}{c}
\text { ant } \\
\mathbf{O}_{\text {Ej }}=\text { Gluon-Emission }
\end{array}\right) \sum_{j=1}^{\text {std }}\left(1-O_{E j}\right) \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{g / q g}\right] \\
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }}\left(1-O_{S j}\right) P_{A j} A_{\bar{q} / q g}^{\text {Order }} \begin{array}{l}
\text { Sluon-Splitting } \\
\text { Osporing }
\end{array}+\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{\bar{q} / q g}\right. \\
& \left.-\frac{1}{6} \frac{s_{q g}-s_{g \bar{q}}}{s_{q g}+s_{g \bar{q}}} \ln \left(\frac{s_{q g}}{s_{g \bar{q}}}\right)\right], \tag{72}
\end{align*}
$$

Loop Corrections

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$
V_{1 Z}(q, g, \bar{q})=\left[\frac{2 \operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}{\left|M_{1}^{0}\right|^{2}}\right]^{\mathrm{LC}}-\frac{\alpha_{s}}{\pi}-\frac{\alpha_{s}}{2 \pi}\left(\frac{11 N_{C}-2 n_{F}}{6}\right)^{\frac{\mu_{\mathrm{R}}}{\ln }\left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) .}
$$

Gluon Emission IR Singularity (std antenna integral)

$$
+\frac{\alpha_{s} C_{A}}{2 \pi}\left[-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{g \bar{q}}\right)+\frac{34}{3}\right]
$$

Gluon Splitting IR Singularity (std antenna integral)

$$
+\frac{\alpha_{s} n_{F}}{2 \pi}\left[-2 I_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{g \bar{q}, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-1\right]
$$

Standard (universal)
$2 \rightarrow 3$ Sudakov Logs

$$
+\frac{\alpha_{s} C_{A}}{2 \pi}\left[8 \pi^{2} \int_{\substack{Q_{1}^{2} \\ \text { Resolution Scale }}}^{m_{Z}^{2}} \mathrm{~d} \Phi_{\text {ant }} A_{g / q \bar{q}}^{\text {std }}+3 \pi^{2} \int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{g / q \bar{q}}\right.
$$

Standard (universal) 3 3
Sudakov Logs: CA

$$
\begin{align*}
& \text { Ordering Function } \\
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }}\left(1-O_{S j}\right) P_{A j} A_{\bar{q} / q g}^{\text {Osj }} \text { Sluon-Splitting }\right)+\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{\bar{q} / q g} \\
& \left.-\frac{1}{6} \frac{s_{q g}-s_{g \bar{q}}}{s_{q g}+s_{g \bar{q}}} \ln \left(\frac{s_{q g}}{s_{g \bar{q}}}\right)\right], \tag{72}
\end{align*}
$$

Loop Corrections

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$
V_{1 Z}(q, g, \bar{q})=\left[\frac{2 \operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}{\left|M_{1}^{0}\right|^{2}}\right]^{\mathrm{LC}}-\frac{\alpha_{s}}{\pi}-\frac{\alpha_{s}}{2 \pi}\left(\frac{11 N_{C}-2 n_{F}}{6}\right)^{\frac{\mu_{\mathrm{R}}}{\ln }\left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) .}
$$

Gluon Emission IR Singularity (std antenna integral)

$$
+\frac{\alpha_{s} C_{A}}{2 \pi}\left[-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{g \bar{q}}\right)+\frac{34}{3}\right]
$$

Gluon Splitting IR Singularity
(std antenna integral)

$$
+\frac{\alpha_{s} n_{F}}{2 \pi}\left[-2 I_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{g \bar{q}, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-1\right]
$$

Standard (universal)
$2 \rightarrow 3$ Sudakov Logs

$$
+\frac{\alpha_{s} C_{A}}{2 \pi}\left[8 \pi^{2} \int_{\substack{Q_{1}^{2} \\ \mathbf{Q}_{1}=3 \text {-parton } \\ \text { Resolution Scale }}}^{\mathrm{d}_{\text {ant }}^{2} A_{g / \mathrm{q}}^{\text {std }}}+8 \pi^{2} \int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{g / q \bar{q}}\right.
$$

Standard (universal) 3 3
Sudakov Logs: CA

$$
\begin{aligned}
& \text { Ordering Function }
\end{aligned}
$$

Standard (universal) 3 3 Sudakov Logs: n_{F}

$$
\left.\begin{array}{l}
+\frac{\alpha_{s} n_{F}}{2 \pi}\left[-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }}\left(1-O_{S j}\right) P_{A j} A_{\bar{q} / q g}^{\text {std }}\right. \\
\text { Osj}=\text { Gluon-Splitting } \tag{72}
\end{array}+\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{\bar{q} / q g}\right] \text { (72) }
$$

Loop Corrections

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$
V_{1 Z}(q, g, \bar{q})=\left[\frac{2 \operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}{\left|M_{1}^{0}\right|^{2}}\right]^{\mathrm{LC}}-\frac{\alpha_{s}}{\pi}-\frac{\alpha_{s}}{2 \pi}\left(\frac{11 N_{C}-2 n_{F}}{6}\right)^{\frac{\mu_{\mathrm{R}}}{\ln }\left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) .}
$$

Gluon Emission IR Singularity (std antenna integral)

$$
+\frac{\alpha_{s} C_{A}}{2 \pi}\left[-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{g \bar{q}}\right)+\frac{34}{3}\right]
$$

Gluon Splitting IR Singularity
(std antenna integral)

$$
+\frac{\alpha_{s} n_{F}}{2 \pi}\left[-2 I_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{g q, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-1\right]
$$

Standard (universal)
$2 \rightarrow 3$ Sudakov Logs

$$
+\frac{\alpha_{s} C_{A}}{2 \pi}\left[8 \pi^{2} \int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{~d} \Phi_{\text {ant }} A_{g / q \bar{q}}^{\text {Qtd }} \text { s-parton }\right) ~+8 \pi^{2} \int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{g / q \bar{q}}
$$

Standard (universal) 3 3
Sudakov Logs: CA

$$
\left.-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\substack{\text { ant } \\ \mathbf{O}_{\mathrm{Ej}}=\text { Gluon-Emission }}}\left(1-O_{E j}\right) A_{j=1}^{\mathrm{std}}+\sum_{j}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\mathrm{ant}} \delta A_{g / q g}\right]
$$

Ordering Function
Standard (universal) 3 $\rightarrow 4$ Sudakov Logs: n_{F}

$$
+\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\mathrm{ant}} \delta A_{\bar{q} / q g}
$$

$$
\begin{array}{r}
+\frac{\alpha_{s} n_{F}}{2 \pi}\left[-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }}(1-\right. \tag{72}\\
\left.-\frac{1}{6} \frac{s_{q g}-s_{g \bar{q}}}{s_{q g}+s_{g \bar{q}}} \ln \left(\frac{s_{q g}}{s_{g \bar{q}}}\right)\right],
\end{array}
$$

Ordering Function

Sudakov Integrals

$$
\begin{aligned}
& 2 \rightarrow 3: a_{3}^{0} \\
&=\frac{1}{s}\left(\frac{2 y_{i k}}{y_{i j} y_{j k}}+\frac{y_{i j}}{y_{j k}}+\frac{y_{j k}}{y_{i j}}\right) \\
& g_{s}^{2} C_{A} \int_{Q_{3}^{2}}^{s} a_{3}^{0} \mathrm{~d} \Phi_{\text {ant }}=\frac{\alpha_{s} C_{A}}{2 \pi}\left(\sum_{i=1}^{5} K_{i} I_{i}\left(s, Q_{3}^{2}\right)\right)
\end{aligned}
$$

$$
K_{1}=1, \quad K_{2}=-2 \quad K_{3}=2, \quad K_{4}=-\delta_{I g}-\delta_{K g}, \quad K_{5}=1 .
$$

$$
I_{1}=\left[-\mathrm{Li}_{2}\left(\frac{1}{2}\left(1+\sqrt{1-y_{3}^{2}}\right)\right)+\mathrm{Li}_{2}\left(\frac{1}{2}\left(1-\sqrt{1-y_{3}^{2}}\right)\right)-\frac{1}{2} \ln \left(\frac{4}{y_{3}^{2}}\right) \ln \left(\frac{1-\sqrt{1-y_{3}^{2}}}{1+\sqrt{1-y_{3}^{2}}}\right)\right]
$$

$3 \rightarrow 4$: CA piece (for strong ordering)

$$
I_{5}=\frac{1}{24}\left[2\left(3 C_{010}-\left(C_{01}+C_{10}\right)\left(-1+y_{3}^{2}\right) \sqrt{1-y_{3}^{2}}-3 C_{C_{00} v_{3}^{2} \ln }\left(\frac{1+\sqrt{1-v_{5}^{2}}}{1-\sqrt{1-v_{5}^{2}}}\right)\right)\right] .
$$

$$
-g_{s}^{2} \sum_{j=1}^{2} C_{A} \int_{0}^{s_{j}}\left(1-O_{E_{j}}\right) d_{3}^{0} \mathrm{~d} \Phi_{\mathrm{ant}}=-\frac{\alpha_{s} C_{A}}{2 \pi}\left(\sum_{i=1}^{5} K_{i} I_{i}\left(s_{q g}, Q_{3}^{2}\right)\right)-\frac{\alpha_{s} C_{A}}{2 \pi}\left(\sum_{i=1}^{5} K_{i} I_{i}\left(s_{g \bar{q}}, Q_{3}^{2}\right)\right) .
$$

The ठА Terms - Speed

Hartgring, Laenen, Skands, arXiv:1303.4974

Figure 14: Distribution of the size of the δA terms (normalized so the LO result is unity) in actual VINCIA runs. Left: linear scale, default settings. Right: logarithmic scale, with variations on the minimum number of MC points used for the integrations (default is 100).

		LO level $Z \rightarrow$	NLO level $Z \rightarrow$	Time / Event [milliseconds]	Speed relative to PYTHIA $\frac{1}{\text { Time }}$ / PYTHIA 8
Speed:	PYTHIA 8	2,3	2	0.4	1
	VINCIA (NLO off)	2, $3,4,5$	2	2.2	$\sim 1 / 5$
	VINCIA (NLO on)	$2,3,4,5$	2, 3	3.0	$\sim 1 / 7 \lessdot$

1) IR Limits

Pole-subtracted one-loop matrix element

$$
\begin{aligned}
\text { SVirtual }= & {\left[\frac{2 \operatorname{Re}\left[M_{3}^{0} M_{3}^{1 *}\right]}{\left|M_{3}^{0}\right|^{2}}\right]^{\mathrm{LC}}+\frac{\alpha_{s} C_{A}}{2 \pi}\left[-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{g \bar{q}}\right)+\frac{34}{3}\right] } \\
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-2 I_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{g \bar{q}, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-1\right]
\end{aligned}
$$

SVirtual	soft	$\left(-L^{2}-\frac{10}{3} L-\frac{\pi^{2}}{6}\right) C_{A}+\frac{1}{3} n_{F} L$	$\begin{aligned} & s_{q g}=s_{g \bar{q}}=y \rightarrow 0 \\ & s_{q g}=y \rightarrow 0, s_{g \bar{q}} \rightarrow s \end{aligned}$
	hard collinear	$-\frac{5}{3} L C_{A}+\frac{1}{6} n_{F} L$	

Second-Order Antenna Shower Expansion:

		strong	smooth	$V_{3 Z}$
p_{\perp}	soft	$\left(L^{2}-\frac{1}{3} L+\frac{\pi^{2}}{6}\right) C_{A}+\frac{1}{3} n_{F} L$	$\left(L^{2}-\frac{1}{3} L-\frac{\pi^{2}}{6}\right) C_{A}+\frac{1}{3} n_{F} L$	$-\beta_{0} L$
	hard collinear	$-\frac{1}{6} L C_{A}+\frac{1}{6} n_{F} L$	$\left(-\frac{1}{6} L-\frac{\pi^{2}}{6}\right) C_{A}+\frac{1}{6} n_{F} L$	$-\frac{1}{2} \beta_{0} L$
m_{D}	soft	$\left(L^{2}+\frac{3}{2} L-\frac{\pi^{2}}{6}\right) C_{A}$	$\left(L^{2}+\frac{3}{2} L-\frac{\pi^{2}}{6}\right) C_{A}$	$-\frac{1}{2} \beta_{0} L$
	hard collinear	$-\frac{1}{6} L C_{A}+\frac{1}{6} n_{F} L$	$\left(-\frac{1}{6} L-\frac{\pi^{2}}{3}\right) C_{A}+\frac{1}{6} n_{F} L$	$-\frac{1}{2} \beta_{0} L$

2) NLO Evolution

Hartgring, Laenen, Skands, arXiv:1303.4974

Vincia : NLO Z $\rightarrow 2 \rightarrow 3$ Jets + Markov Shower

Size of NLO Correction: over 3-parton Phase Space

Markov Evolution in: Transverse Momentum

Parameters:

$$
\begin{aligned}
\mathrm{a}_{\mathrm{S}}\left(\mathrm{M}_{\mathrm{z}}\right) & =0.12 \\
\mu_{\mathrm{R}} & =\mathrm{m}_{\mathrm{Z}} \\
\Lambda_{\mathrm{QCD}} & =\Lambda_{\mathrm{MS}}
\end{aligned}
$$

Choice of μ_{R}

Renormalization: 1) Choose $\mu_{\mathrm{R}} \sim \mathrm{p}_{\mathrm{Tj} \text { jet }}$ (absorbs universal β-dependent terms)
2) Translate from MSbar to CMW scheme ($\Lambda_{\mathrm{cmw}} \sim 1.6 \Lambda_{\text {msbar }}$ for coherent showers)

Markov Evolution in: Transverse Momentum, $\mathrm{as}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{z}}\right)=0.12$

Loop Corrections

Hartgring, Laenen, Skands, arXiv:1303.4974

The choice of evolution variable (Q)

The proof of the pudding

Hartgring, Laenen, Skands, arXiv:1303.4974

LO Tunes

(both VINCIA and PYTHIA) $\alpha_{s}\left(M_{z}\right)^{\text {MSbar }} \sim 0.139$
(LO matrix elements give similar values, and also LO PDFs)

New VINCIA NLO Tune
$\alpha_{s}\left(M_{z}\right)^{C M W}=0.122$
with 2-loop running (new)

$\left\langle\chi^{2}\right\rangle$ Shapes	T	C	D	B_{W}	B_{T}
PYTHIA 8	0.4	0.4	0.6	0.3	0.2
VINCIA (LO)	0.2	0.4	0.4	0.3	0.3
VINCIA (NLO)	0.2	0.2	0.6	0.3	0.2

$\left\langle\chi^{2}\right\rangle$ Jets	$r_{1 j}^{\text {exc }}$	$\ln \left(y_{12}\right)$	$r_{2 j}^{\text {exc }}$	$\ln \left(y_{23}\right)$	$r_{3 j}^{\text {exc }}$	$\ln \left(y_{34}\right)$	$r_{4 j}^{\text {exc }}$	$\ln \left(y_{45}\right)$	$r_{5 j}^{\text {exc }}$	$\ln \left(y_{56}\right)$	$r_{6 j}^{\text {inc }}$
PYTHIA 8	0.1	0.2	0.1	0.2	0.1	0.3	0.2	0.3	0.2	0.4	0.3
VINCIA (LO)	0.1	0.2	0.1	0.2	0.0	0.2	0.3	0.1	0.1	0.0	0.0
VINCIA (NLO)	0.2	0.4	0.1	0.3	0.1	0.3	0.2	0.2	0.1	0.2	0.1

Beyond Perturbation Theory

Better pQCD \rightarrow Better non-perturbative constraints

Soft QCD \& Hadronization:

Less perturbative ambiguity \rightarrow improved clarity

ALICE/RHIC:

pp as reference for AA
Collective (soft) effects in pp

Beyond Colliders?

Other uses for a high-precision fragmentation model

Dark-matter annihilation:

 Photon \& particle spectra
Cosmic Rays:

Extrapolations to ultra-high energies

Outlook

Thank You

Outlook

Thank You

Fixed Order: Recap

Improve by computing quantum corrections, order by order
(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)

Leading Order

Next-to-Leading Order

Fixed Order: Recap

Improve by computing quantum

 corrections, order by order(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)

Leading Order

Next-to-Leading Order

Fixed Order: Recap

Improve by computing quantum

 corrections, order by order
Leading Order

Next-to-Leading Order

The Subtraction

Idea

$$
=\sigma^{\text {Born }}+\int \mathrm{d} \Phi_{F+1} \underbrace{\left(\left|\mathcal{M}_{F+1}^{(0)}\right|^{2}-\mathrm{d} \sigma_{S}^{\mathrm{NLO}}\right)}_{\text {Finite by Universality }}
$$

$$
+\underbrace{\int \mathrm{d} \Phi_{F} 2 \operatorname{Re}\left[\mathcal{M}_{F}^{(1)} \mathcal{M}_{F}^{(0) *}\right]+\int \mathrm{d} \Phi_{F+1} \mathrm{~d} \sigma_{S}^{\mathrm{NLO}}}_{\text {Finite by KLN }}
$$

 (will return to later)

Shower Types

Traditional vs Coherent vs Global vs Sector vs Dipole

Parton Shower (DGLAP)

$\operatorname{Coll}(I)$	$\operatorname{Soft}(I K)$
a_{I}	$a_{I}+a_{K}$
$\Theta_{I} a_{I}$	$\Theta_{I} a_{I}+\Theta_{K} a_{K}$
$a_{I K}+a_{H I}$	$a_{I K}$
$\Theta_{I K} a_{I K}+\Theta_{H I} a_{H I}$	$a_{I K}$
$a_{I, K}+a_{I, H}$	$a_{I, K}+a_{K, I}$

Partitioned-Dipole Shower (SK [23], NS [42], DTW [24], Pythia8 [38], Sherpa)

Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity of the $I K$ pair, respectively, originate in different shower types. (Θ_{I} and Θ_{K} represent angular vetos with respect to partons I and K, respectively, and $\Theta_{I K}$ represents a sector phase-space veto, see text.)

Global Antennae

\times	$\frac{1}{y_{i j} y_{j k}}$	$\frac{1}{y_{i j}}$	$\frac{1}{y_{j k}}$	$\frac{y_{j k}}{y_{i j}}$	$\frac{y_{i j}}{y_{j k}}$	$\frac{y_{j k}^{2}}{y_{i j}}$	$\frac{y_{i j}^{2}}{y_{j k}}$	1	$y_{i j}$	$y_{j k}$
$q \bar{q} \rightarrow q q \bar{q}$										
$++\rightarrow+++$	1	0	0	0	0	0	0	0	0	0
$++\rightarrow+-+$	1	-2	-2	1	1	0	0	2	0	0
$+-\rightarrow++-$	1	0	-2	0	1	0	0	0	0	0
$+-\rightarrow+--$	1	-2	0	1	0	0	0	0	0	0
$q g \rightarrow q g g$										
$++\rightarrow+++$	1	0	$-\alpha+1$	0	$2 \alpha-2$	0	0	0	0	0
$++\rightarrow+-+$	1	-2	-3	1	3	0	-1	3	0	0
$+-\rightarrow++-$	1	0	-3	0	3	0	-1	0	0	0
$+-\rightarrow+--$	1	-2	$-\alpha+1$	1	$2 \alpha-2$	0	0	0	0	0
$g g \rightarrow g g g$										
$++\rightarrow+++$	1	$-\alpha+1$	$-\alpha+1$	$2 \alpha-2$	$2 \alpha-2$	0	0	0	0	0
$++\rightarrow+-+$	1	-3	-3	3	3	-1	-1	3	1	1
$+-\rightarrow++-$	1	$-\alpha+1$	-3	$2 \alpha-2$	3	0	-1	0	0	0
$+-\rightarrow+--$	1	-3	$-\alpha+1$	3	$2 \alpha-2$	-1	0	0	0	0
$q g \rightarrow q \bar{q}^{\prime} q^{\prime}$										
$++\rightarrow++-$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0
$++\rightarrow+-+$	0	0	$\frac{1}{2}$	0	-1	0	$\overline{2}$	0	0	0
$+-\rightarrow++-$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{1}{2}$	0	0	0
$+-\rightarrow+--$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0
$g g \rightarrow g \bar{q} q$										
$++\rightarrow++-$	0	0	0	0	0	0		0	0	0
$++\rightarrow+-+$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{1}{2}$	0	0	0
$+-\rightarrow++-$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{1}{2}$	0	0	0
	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0

Sector Antennae

Global $\quad \bar{a}_{g / q g}^{\mathrm{gl}}\left(p_{i}, p_{j}, p_{k}\right) \xrightarrow{s_{j k} \rightarrow 0} \frac{1}{s_{j k}}\left(P_{g g \rightarrow G}(z)-\frac{2 z}{1-z}-z(1-z)\right)$
$\rightarrow \mathrm{P}(z)=$ Sum over two neigboring antennae

Sector

Only a single term in each phase space point

Sector = Global +

 additional collinear terms (from "neighboring" antenna)\rightarrow Full $\mathrm{P}(\mathrm{z})$ must be contained in every antenna

The Denominator the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to $\mathrm{n}^{\text {th }}$ branching $\propto \mathbf{2}^{\mathbf{n}} \mathbf{n}$!

$$
(K \sim M+K) \substack{i=1 \\ \rightarrow 2 \text { terms }} \substack{i=1}
$$

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms
(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

$$
\mathbf{2}^{\mathrm{n}} \mathrm{n}!\rightarrow \mathrm{n}!
$$

Giele, Kosower, Skands, PRD 84 (20II) 054003

(+ generic Lorentz-
invariant and on-shell
phase-space factorization)

+ Change "shower restart" to Markov criterion:
Given an n-parton configuration,"ordering" scale is

$$
Q_{\text {ord }}=\min \left(Q_{E I}, Q_{E 2}, \ldots, Q_{E n}\right)
$$

Unique restart scale, independently of how it was produced

+ Matching: $\mathbf{n !} \rightarrow \mathbf{n}$
Given an n-parton configuration, its phase space weight is:
$\left|M_{n}\right|^{2}$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms After 4 branchings: 384 terms

+ Sector antennae Larkosi, Peskin,Phys.Rev.D8I (20I0) 054010
\rightarrow I term at any order Lopez-Villarejo, Skands, JHEP IIII (201I) I50

Approximations

Q: How well do showers do?

Exp: Compare to data. Difficult to interpret; all-orders cocktail including hadronization, tuning, uncertainties, etc
Th: Compare products of splitting functions to full tree-level matrix elements
Plot distribution of Logıo(PS/ME)
Dead Zone: I-2\% of phase space have no strongly ordered paths leading there*
*fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

Generate Branchings without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space
Overcounting removed by matching

+ smooth ordering beyond matched multiplicities

$$
\frac{\hat{p}_{\perp}^{2}}{\hat{p}_{\perp}^{2}+p_{\perp}^{2}} P_{\mathrm{LL}} \quad \begin{array}{lll}
\hat{p}_{\perp}^{2} \text { last branching } \\
p_{\perp}^{2} & \text { current branching }
\end{array}
$$

Better Approximations

Distribution of Logı(PSLo/MELo) (inverse ~ matching coefficient)

Leading Order, Leading Color, Flat phase-space scan, over all of phase space (no matching scale)

+ Matching (+ full colour)

IR Singularity Operators

Gehrmann, Gehrmann-de Ridder, Glover, JHEP 0509 (2005) 056
$q \bar{q} \rightarrow q g \bar{q}$ antenna function

$$
X_{i j k}^{0}=S_{i j k, I K} \frac{\left|\mathcal{M}_{i j k}^{0}\right|^{2}}{\left|\mathcal{M}_{I K}^{0}\right|^{2}}
$$

$$
A_{3}^{0}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right)=\frac{1}{s_{123}}\left(\frac{s_{13}}{s_{23}}+\frac{s_{23}}{s_{13}}+2 \frac{s_{12} s_{123}}{s_{13} s_{23}}\right)
$$

Integrated antenna

$$
\begin{aligned}
\mathcal{P o l e s}\left(\mathcal{A}_{3}^{0}\left(s_{123}\right)\right) & =-2 \mathbf{I}_{q \bar{q}}^{(1)}\left(\epsilon, s_{123}\right) \\
\mathcal{F} \text { inite }\left(\mathcal{A}_{3}^{0}\left(s_{123}\right)\right) & =\frac{19}{4} . \quad \mathcal{X}_{i j k}^{0}\left(s_{i j k}\right)=\left(8 \pi^{2}(4 \pi)^{-\epsilon} e^{\epsilon \gamma}\right) \int \mathrm{d} \Phi_{X_{i j k}} X_{i j k}^{0} .
\end{aligned}
$$

Singularity Operators

$$
\begin{array}{rlrl}
\mathbf{I}_{q \bar{q}}^{(1)}\left(\epsilon, \mu^{2} / s_{q \bar{q}}\right) & =-\frac{e^{\epsilon \gamma}}{2 \Gamma(1-\epsilon)}\left[\frac{1}{\epsilon^{2}}+\frac{3}{2 \epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q \bar{q}}}\right)^{\epsilon} \\
\mathbf{I}_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right) & =-\frac{e^{\epsilon}}{2 \Gamma(1-\epsilon)}\left[\frac{1}{\epsilon^{2}}+\frac{5}{3 \epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q g}}\right)^{\epsilon} & \text { for } \mathrm{qg} \rightarrow \mathrm{qgg} \\
\mathbf{I}_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right) & =\frac{e^{\epsilon \gamma}}{2 \Gamma(1-\epsilon)} \frac{1}{6 \epsilon} \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q g}}\right)^{\epsilon} & \text { for } \mathbf{q g} \rightarrow \mathrm{qq}^{\prime} \mathbf{q}^{\prime}
\end{array}
$$

Uncertainties

No calculation is more precise than the reliability of its uncertainty estimate \rightarrow aim for full assessment of TH uncertainties.

Doing Variations

Giele, Kosower, Skands, PRD 84 (2011) 054003

Traditional Approach:

Run calculation $1_{\text {central }}+2$ Nvariations $=$ slow

Another use for simple analytical expansions?

$\begin{aligned} & \text { For each event, can compute probability this event } \\ & \text { would have resulted under alternative conditions }\end{aligned} P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

+ Unitarity: also recompute no-evolution probabilities

$$
P_{2 ; \text { no }}=1-P_{2}=1-\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}
$$

Doing Variations

Giele, Kosower, Skands, PRD 84 (2011) 054003

Traditional Approach:

Run calculation $1_{\text {central }}+2 \mathrm{~N}_{\text {variations }}=$ slow

Another use for simple analytical expansions?

$\begin{aligned} & \text { For each event, can compute probability this event } \\ & \text { would have resulted under alternative conditions }\end{aligned} P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

+ Unitarity: also recompute no-evolution probabilities

$$
P_{2 ; \mathrm{no}}=1-P_{2}=1-\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}
$$

VINCIA:

= fast, automatic
Central weights $=1$
+N sets of alternative weights = variations (all with $<\mathrm{w}>=1$)
\rightarrow For every configuration/event, calculation tells how sure it is
Bonus: events only have to be hadronized \& detector-simulated ONCE!

Quantifying Precision

Example of Physical Observable: Before (left) and After (right) Matching

Jet Broadening = LEP event-shape variable, measures "fatness" of jets

Example: Non-Singular Terms

Giele, Kosower, Skands, PRD 84 (2011) 054003

Thrust $=$ LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)

Example: μ_{R}

Giele, Kosower, Skands, PRD 84 (2011) 054003

Thrust $=$ LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)

