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Now entering era of  
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Why?

Precision = Clarity, in our vision of the Terascale
Searching towards lower cross sections, the game gets harder 

+ Intense scrutiny (after discovery): precision = information

Theory task: invest in precision

(+ lots of interesting structures in QFT, can compare to data, …) 

This talk: a new formalism for highly accurate collider-physics 
calculations + some future perspectives

+ huge amount of other 
physics studies:  

# of journal papers so far:
225 ATLAS, 195 CMS, 83 LHCb, 
62 ALICE

Some of these are already, or will 
ultimately be, theory limited

Now entering era of  
precision studies
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How?

Fixed Order Perturbation Theory:
Problem: limited orders 

Parton Showers:
Problem: limited precision

“Matching”: Best of both Worlds?
Problem: stitched together, slow, limited orders

Interleaved pQCD 
→ Infinite orders, high precision, fast
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The Problem of Bremsstrahlung
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The Problem of Bremsstrahlung

4

Accelerated 
Charges

Associated field 
(fluctuations) continues

RadiationRadiation

The harder they get kicked, the harder the 
fluctations that continue to become strahlung
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Jets  =  F racta l s

5

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Most bremsstrahlung is 
driven by divergent 
propagators → simple structure 

Amplitudes factorize in 
singular limits (→ universal 
“conformal” or “fractal” structure)

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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b

Partons ab → 
“collinear”:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

P(z) = Altarelli-Parisi splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

/ 1

2(pa · pb)

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Most bremsstrahlung is 
driven by divergent 
propagators → simple structure 

Amplitudes factorize in 
singular limits (→ universal 
“conformal” or “fractal” structure)
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|MF (. . . , a+ b, . . . )|2

P(z) = Altarelli-Parisi splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

/ 1

2(pa · pb)

+ scaling violation: gs2 → 4παs(Q2)

Gluon j 
→ “soft”: |MF+1(. . . , i, j, k. . . )|2

jg!0! g2sC
(pi · pk)

(pi · pj)(pj · pk)
|MF (. . . , i, k, . . . )|2

Coherence → Parton j really emitted by (i,k) “colour 
antenna” 

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Most bremsstrahlung is 
driven by divergent 
propagators → simple structure 

Amplitudes factorize in 
singular limits (→ universal 
“conformal” or “fractal” structure)
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|MF (. . . , a+ b, . . . )|2

P(z) = Altarelli-Parisi splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

/ 1

2(pa · pb)

+ scaling violation: gs2 → 4παs(Q2)

Gluon j 
→ “soft”: |MF+1(. . . , i, j, k. . . )|2

jg!0! g2sC
(pi · pk)

(pi · pj)(pj · pk)
|MF (. . . , i, k, . . . )|2

Coherence → Parton j really emitted by (i,k) “colour 
antenna” 

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times
→ nested factorizations 

Most bremsstrahlung is 
driven by divergent 
propagators → simple structure 

Amplitudes factorize in 
singular limits (→ universal 
“conformal” or “fractal” structure)

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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Divide and Conquer → Event Generators

Factorization → Split the problem into many (nested) pieces

6

Pevent = Phard ⌦ Pdec ⌦ PISR ⌦ PFSR ⌦ PMPI ⌦ PHad ⌦ . . .

Hard Process & Decays: 
Use (N)LO matrix elements
→ Sets “hard” resolution scale for process: QMAX

ISR & FSR (Initial & Final-State Radiation): 
Altarelli-Parisi equations → differential evolution, dP/dQ2, as function of 
resolution scale; run from QMAX to ~ 1 GeV (More later) 

MPI (Multi-Parton Interactions)
Additional (soft) parton-parton interactions: LO matrix elements
→ Additional (soft) “Underlying-Event” activity (Not the topic for today)

Hadronization
Non-perturbative model of color-singlet parton systems → hadrons

+ Quantum mechanics → Probabilities → Random Numbers
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Last Ingredient: Loops

P. Skands Introduction to QCD
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Figure 20: Coefficients of the perturbative series covered by LO + LL calculations, impos-
ing unitarity order by order for each n = k + `. Green (darker) shading represents the full
perturbative coefficient at the respective k and `. Yellow (lighter) shading represents an LL
approximation to it.

calculation, the constraint of unitarity must also be explicitly imposed, which furnishes an
approximation to all-orders loop corrections as well. Let us therefore emphasize that figure 19
is included for pedagogical purposes only; all resummation calculations, whether analytical
or parton-shower based, include virtual corrections as well and consequently yield finite total
cross sections, as will now be described.

3.2.2 Step Two: Infinite Loops

Order-by-order unitarity, such as used in the KLN theorem, implies that the singularities caused
by integration over unresolved radiation in the tree-level matrix elements must be canceled,
order by order, by equal but opposite-sign singularities in the virtual corrections at the same
order. That is, from equation (52), we immediately know that the 1-loop correction to d�F

must contain a term,

2Re[M(0)
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F ] � �g2s NC
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Z
dsij dsjk
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✓
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+ less singular terms

◆
, (56)

that cancels the divergence coming from equation (52) itself. Further, since this is universally
true, we may apply equation (56) again to get an approximation to the corrections generated
by equation (52) at the next order and so on. By adding such terms explicitly, order by order,
we may now bootstrap our way around the entire perturbative series, using equation (52) to
move horizontally and equation (56) to move along diagonals of constant n = k + `. Since
real-virtual cancellations are now explicitly restored, we may finally extend the integrations
over all of phase space, resulting in the picture shown in figure 20.

The picture shown in figure 20, not the one in figure 19, corresponds to what is actually
done in resummation calculations, both of the analytic and parton-shower types17. Physically,
there is a significant and intuitive meaning to the imposition of unitarity, as follows.

Take a jet algorithm, with some measure of jet resolution, Q, and apply it to an arbitrary
sample of events, say dijets. At a very crude resolution scale, corresponding to a high value

17In the way these calculations are formulated in practice, they in fact rely on one additional property, called
exponentiation, that allows us to move along straight vertical lines in the loops-and-legs diagrams. However, since
the two different directions furnished by equations (52) and (56) are already sufficient to move freely in the full
2D coefficient space, we shall use exponentiation without extensively justifying it here.

— 38 —

=

→ Virtual (loop) correction:

Loop = - Int(Tree) + F
Neglect F → Leading-Logarithmic (LL) 

Approximation

PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Unitarity (KLN):

Singular structure at loop level must 
be equal and opposite to tree level

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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 Realized by Event evolution in Q = fractal scale (virtuality, pT, formation time, …) 

Resolution scale
t = ln(Q2)

Probability to remain 
“unbranched” from t0 to t
→ The “Sudakov Factor”

= Approximation to Real Emissions

= Approximation to Loop Corrections

NF (t)

NF (t0)
= �F (t0, t) = exp

✓
�
Z

d�F+1

d�F

◆

dNF (t)

dt
= �d�F+1

d�F
NF (t)
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that cancels the divergence coming from equation (52) itself. Further, since this is universally
true, we may apply equation (56) again to get an approximation to the corrections generated
by equation (52) at the next order and so on. By adding such terms explicitly, order by order,
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Bootstrapped Perturbation Theory

8

Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the 
perturbative series (yellow = fractal with scaling violation)
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Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the 
perturbative series (yellow = fractal with scaling violation)
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But ≠ full QCD! Only LL Approximation.



P. Skands

→ Jack of All Orders, Master of None?

“Good” Shower(s) → Dominant all-orders structures

But what about all these unphysical choices?

Renormalization Scales (for each power of αs)

The choice of shower evolution “time” ~ Factorization Scale(s)

The radiation/antenna/splitting functions (hard jets are non-singular)

Recoils (kinematics maps, dΦn+1/dΦn )

The infrared cutoff contour (hadronization cutoff)

9

1. Systematic Variations
→ Comprehensive Theory 
Uncertainty Estimates

Nature does not depend on them → vary to estimate uncertainties
Problem: existing approaches vary only one or two of these choices

2. Higher-Order Corrections 
→ Systematic Reduction of 
Uncertainties
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Including LO Matrix Elements

10

Conceptual Example of Current Approaches: MLM-like “Slicing”: 
Use ME for pT > pTmatch ; Use PS for pT < pTmatch

Born

Compute inclusive σB

Generate dσB Phase Space

Shower

Reject if jet(s) > pTmatch 

→ retain Sudakov fraction

→ Exclusive σB(pTmatch)

Unweight (incl PDFs, αs)

Born + 1

Compute incl σB+1(pTmatch)

Generate dσB+1 Phase Space

Shower

Reject if jet(s) > pTmatch 

→ retain Sudakov fraction

→ Exclusive σB+1(pTmatch)

Unweight (incl PDFs, αs)

Born + 2

Compute incl σB+2(pTmatch)

Generate dσB+2
 Phase Space

Shower

Reject if jet(s) > pT2 

→ retain Sudakov fraction

→ Inclusive σB+2

Unweight (incl PDFs, αs)

Fixed Order is starting point. Treats each multiplicity as a separate calculation. 
Inefficiencies can enter in PS generation, Rejection, and Unweighting Steps 
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?
Changing Paradigm

11

Ask:

Is it possible to interpret the all-orders structure that a shower 
generates as a trial distribution for a more precise evolution? 

Would essentially amount to using a QCD shower as your (only) 
phase space generator, on top of which fixed-order amplitudes 
are imprinted as (unitary and finite) multiplicative corrections

Start not from fixed order, 
but from what fixed order is an expansion of
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?
Changing Paradigm

11

Ask:

Is it possible to interpret the all-orders structure that a shower 
generates as a trial distribution for a more precise evolution? 

Would essentially amount to using a QCD shower as your (only) 
phase space generator, on top of which fixed-order amplitudes 
are imprinted as (unitary and finite) multiplicative corrections

Answer:

Used to be no. 

First order worked out in the eighties (Sjöstrand, also used in 
POWHEG), but higher-order expansions rapidly became too 
complicated

Start not from fixed order, 
but from what fixed order is an expansion of
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Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003
Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Virtual Numerical Collider with 
Interleaved Antennae

Written as a Plug-in to PYTHIA 8
C++ (~20,000 lines)

Based on antenna factorization
- of Amplitudes (exact in both soft and collinear limits)

- of Phase Space (LIPS : 2 on-shell → 3 on-shell partons, with (E,p) cons)

pT

mD

Eg
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Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003
Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Virtual Numerical Collider with 
Interleaved Antennae

Written as a Plug-in to PYTHIA 8
C++ (~20,000 lines)

Based on antenna factorization
- of Amplitudes (exact in both soft and collinear limits)

- of Phase Space (LIPS : 2 on-shell → 3 on-shell partons, with (E,p) cons)

Resolution Time
Infinite family of continuously deformable QE

Special cases: transverse momentum, dipole mass, energy

Radiation functions
Arbitrary non-singular coefficients, anti 

+ Massive antenna functions for massive fermions (c,b,t)

Kinematics maps
Formalism derived for arbitrary 2→3 recoil maps, κ3→2

Default: massive generalization of Kosower’s antenna maps
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y

ij

, y
jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
ij

> y
jk

. For the other
branch, y

ij

and y
jk

should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y

ij

, y
jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
ij

> y
jk

. For the other
branch, y

ij

and y
jk

should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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P.  S k a n d s

Idea: 
Start from quasi-conformal all-orders structure (approximate)
Impose exact higher orders as finite multiplicative corrections 
Truncate at fixed scale (rather than fixed order)
Bonus: low-scale partonic events → can be hadronized

Problems: 
Traditional parton showers are history-dependent (non-Markovian)
→ Number of generated terms grows like 2N N!
+ Dead zones and complicated expansions

Solution: (MC)2 : Monte-Carlo Markov Chain
Markovian Antenna Showers (VINCIA)
→ Number of generated terms grows like N
+ exact phase space & simple expansions

Interleaved ME Corrections

13

Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

LO: Giele, Kosower, Skands, PRD 84 (2011) 054003
NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

http://arxiv.org/abs/arXiv:1303.4974
http://arxiv.org/abs/arXiv:1303.4974
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P.  S k a n d s

Hel ic i t ies

Traditional parton showers use the standard Altarelli-Parisi 
kernels, P(z) = helicity sums/averages over:

15

Larkoski, Peskin, PRD 81 (2010) 054010 
Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

++ �+ +� ��
g+ ! gg : 1/z(1� z) (1� z)3/z z3/(1� z) 0
g+ ! qq̄ : - (1� z)2 z2 -
q+ ! qg : 1/(1� z) - z2/(1� z) -
q+ ! gq : 1/z (1� z)2/z - -

Table 1: Helicity-dependent Altarelli-Parisi splitting functions P (z) for splittings a ! bc, with z defined as
the energy fraction taken by parton b. The labels in the top row denote the helicities of the two final particles in
the order they appear: (hb, hc). The empty columns are forbidden by quark chiral symmetry. By the P and C
invariance of QCD, the same expressions apply after exchanging � $ + or q $ q̄.

The VINCIA Monte Carlo is a dipole-antenna shower [13] based on nested 2 ! 3 splitting
processes. This splitting can be represented as IK ! ijk, for initial partons I , K and final partons i,
j, k. As VINCIA works in the color-ordered limit of QCD, the initial and final partons are assumed
to be in color order, as well. We will also assume that all partons are massless, unless otherwise
specified. The phase space for emission is defined by the dimensionless variables yij and yjk where

yij =
2pi · pj

s
, yij =

2pj · pk
s

, (2)

and s ⌘ (pi + pj + pk)
2
= (pI + pK)

2 is the invariant mass of the dipole antenna system. The phase
space of the emission is defined by the triangle yij , yjk � 0, yij + yjk  1.

The probability of emission is governed by the antenna function which is a function of all relevant
momenta, quantum numbers and the formulation of the shower. For the splitting IK ! ijk, the
antenna function can be expressed in the form

a
type(order)
j/IK (pi, pj , pk) , (3)

where type refers to global or sector antennae and order is the order in ↵s to which the antennae
are computed. When obvious from context, the superscripts will be omitted. In this paper, we will
consider exclusively the lowest order antenna functions and so we can define the color- and coupling-
stripped antenna

aj/IK(pi, pj , pk) = g2sCj/IK āj/IK(pi, pj , pk) . (4)

For simplicity, we will work with the color- and coupling-stripped antenna in the following. For
massless partons, āj/IK(pi, pj , pk) is a function of the kinematic invariants yij and yjk only.

The unpolarized global and sector antennae used in VINCIA were defined in [7, 9, 13]. We wish
to extend the global and sector antennae to include full helicity dependence of all partons in the an-
tenna. Our discussion will only include antennae in which all particles are massless. Antenna splitting
functions including helicity dependence were defined in [10] as ratios of matrix elements, but here,
we will present a general treatment of the form of the antennae. There are many constraints that must
be imposed on the antennae to determine the singular terms; most importantly, the helicity-dependent
antenna functions must appropriately reproduce the helicity-dependent Altarelli-Parisi splitting func-
tions in the collinear limits. Note that this only constrains the singular terms of the antenna; the non-
singular terms are unconstrained and can be interpreted as uncertainties in higher log-order terms.
Also, when summed over final parton helicities, the antenna functions should reproduce the unpo-
larized antennae functions, up to terms that are non-singular. In the following subsections, we will
discuss the construction of global and sector helicity-dependent antennae.

Generalize these objects to dipole-antennae

MHV

NMHV

P-wave

P-wave
→ Can match to individual helicity 

amplitudes rather than helicity sum
→ Fast! (gets rid of another factor 2N)

→ Can trace helicities through shower

→ Eliminates contribution from 
unphysical helicity configurations

P(z)

a

b c
1-z

z

a→bc

E.g.,⇥ 1
yijyjk

1
yij

1
yjk

yjk
yij

yij
yjk

y2jk
yij

y2ij
yjk

1
yjk(1�yij)

1
yij(1�yjk)

1 yij yjk

qq̄ ! qgq̄
++ ! +++ 1 0 0 0 0 0 0 0 0 0 0 0
++ ! +�+ 1 -2 -2 1 1 0 0 0 0 2 0 0
+� ! ++� 1 0 -2 0 1 0 0 0 0 0 0 0
+� ! +�� 1 -2 0 1 0 0 0 0 0 0 0 0
qg ! qgg
++ ! +++ 1 0 0 0 0 0 0 1 0 0 0 0
++ ! +�+ 1 -2 -3 1 3 0 -1 0 0 3 0 0
++ ! ++� 0 0 -1 0 -1 0 -1 1 0 0 0 0
+� ! ++� 1 0 -3 0 3 0 -1 0 0 0 0 0
+� ! +�� 1 -2 0 1 0 0 0 1 0 0 0 0
+� ! +�+ 0 0 -1 0 -1 0 -1 1 0 0 0 0
gg ! ggg
++ ! +++ 1 0 0 0 0 0 0 1 1 0 0 0
++ ! +�+ 1 -3 -3 3 3 -1 -1 0 0 3 1 1
++ ! ++� 0 0 -1 0 -1 0 -1 1 0 0 0 0
++ ! �++ 0 -1 0 -1 0 -1 0 0 1 0 0 0
+� ! ++� 1 0 -3 0 3 0 -1 0 1 0 0 0
+� ! +�� 1 -3 0 3 0 -1 0 1 0 0 0 0
+� ! +�+ 0 0 -1 0 -1 0 -1 1 0 0 0 0
+� ! �+� 0 -1 0 -1 0 -1 0 0 1 0 0 0
qg ! qq̄0q0

++ ! ++� 0 0 0 0 0 0 1 0 0 0 0 0
++ ! +�+ 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! ++� 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! +�� 0 0 0 0 0 0 1 0 0 0 0 0
gg ! gq̄q
++ ! ++� 0 0 0 0 0 0 1 0 0 0 0 0
++ ! +�+ 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! ++� 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! +�+ 0 0 0 0 0 0 1 0 0 0 0 0

Table 4: Table of coefficients for helicity-dependent sector antenna functions. By the C and P invariance of
QCD, the same expressions apply with + $ �, q $ q̄. All other antennae are zero. These are the default
assignments in VINCIA. The finite terms are chosen so that the antennae are positive on all of final state phase
space.

↵s

2⇡
P (z)
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Figure 2: Relative weight of some specific helicity configurations in the global shower approximation to LO
matrix elements for H ! qq̄+ gluons (above) and Z ! qq̄+ gluons (below). The sector shower displays
basically the same structure, in particular the same hierarchy MHV, NMHV, NNMHV. The sum

P
xi runs over

all helicity configurations with the same helicities for qq̄ and includes, in some cases, configurations that are
not being plotted. Distributions of log10(PS/ME) in a flat phase-space scan, normalized to unity.

Flat phase-space scan. H0 → qq + ng. Size of helicity contributions.
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Figure 2: Relative weight of some specific helicity configurations in the global shower approximation to LO
matrix elements for H ! qq̄+ gluons (above) and Z ! qq̄+ gluons (below). The sector shower displays
basically the same structure, in particular the same hierarchy MHV, NMHV, NNMHV. The sum
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xi runs over

all helicity configurations with the same helicities for qq̄ and includes, in some cases, configurations that are
not being plotted. Distributions of log10(PS/ME) in a flat phase-space scan, normalized to unity.

Flat phase-space scan. H0 → qq + ng. Size of helicity contributions.
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Figure 5: Central, MIN and MAX variations of the antennae for the global and sector shower approximations
to LO matrix elements for H ! qq̄+ gluons and Z ! qq̄+ gluons. Distributions of log10(PS/ME) in a flat
phase-space scan, normalized to unity.

be obtained with a continuous distribution of scales, from hard to soft. To illustrate the distribution of
correction factors in actual VINCIA runs, without any phase-space cuts (apart from the hadronization
scale), we make use of the fact that VINCIA stores several internal diagnostics histograms during
running, when the verbosity parameter Vincia:verbose is set to values � 2. These make use
of PYTHIA’s simple histogramming utility and can be printed at the end of a run by invoking the
command VinciaShower::printHistos(). Part of these diagnostics histograms contain the
ME/PS weight ratios for both trial and accepted branchings. The latter accurately reflects the distri-
bution of ME/PS correction factors for each physical branching that occurs in the evolution. Note,
though, that the ratio is here inverted, from PS/ME to ME/PS; above, we were interested to know
whether the shower over- or under-counted the matrix element. For GKS matching, we are interested
in the size of the correction factor, which is proportional to ME/PS.

Fig. 6 shows a compilation of such plots, for Z ! 4, 5, and 6 partons, using the default global
helicity-dependent showers. The left-hand pane shows gluon-emission distributions, the three curves
representing Z ! qq̄gg, Z ! qq̄ggg, and Z ! qq̄gggg, respectively. The central dashed line
represents perfect agreement (the matrix-element correction factor is unity), while the two solid lines
represent a factor two deviation in each direction. Despite the fact that we are now including hard as
well as soft branchings and that the matching factors now also include components designed to absorb
the subleading-color corrections [9], the distributions are still quite narrow. Importantly, we do not
observe any substantial degradation of the correction factor with multiplicity, suggesting that the GKS
matching strategy is quite stable.
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Figure 2: Relative weight of some specific helicity configurations in the global shower approximation to LO
matrix elements for H ! qq̄+ gluons (above) and Z ! qq̄+ gluons (below). The sector shower displays
basically the same structure, in particular the same hierarchy MHV, NMHV, NNMHV. The sum

P
xi runs over

all helicity configurations with the same helicities for qq̄ and includes, in some cases, configurations that are
not being plotted. Distributions of log10(PS/ME) in a flat phase-space scan, normalized to unity.

Flat phase-space scan. H0 → qq + ng. Size of helicity contributions.

1g

Fi
xe

d 
O

rd
er

2g 3g

(PS/ME)
10

log
-2 -1 0 1

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

10
q q g g →H

Vincia 1.029

Finite terms variation
 3→global, matched to H 

CENTRAL
MAX
MIN

(PS/ME)
10

log
-2 -1 0 1

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

10
q q g g →H

Vincia 1.029

Finite terms variation
 3→sector, matched to H 

CENTRAL
MAX
MIN

(PS/ME)
10

log
-2 -1 0 1

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

10
q q g g →H

Vincia 1.029

Finite terms variation
 3→sector, matched to H 

CENTRAL
MAX
MIN

(PS/ME)
10

log
-2 -1 0 1

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

10
q q g g →Z

Vincia 1.029

Finite terms variation
 3→global, matched to Z 

CENTRAL
MAX
MIN

(PS/ME)
10

log
-2 -1 0 1

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

10
q q g g →Z

Vincia 1.029

Finite terms variation
 3→sector, matched to Z 

CENTRAL
MAX
MIN

(PS/ME)
10

log
-2 -1 0 1

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

10
q q g g →Z

Vincia 1.029

Finite terms variation
 3→sector, matched to Z 

CENTRAL
MAX
MIN

Figure 5: Central, MIN and MAX variations of the antennae for the global and sector shower approximations
to LO matrix elements for H ! qq̄+ gluons and Z ! qq̄+ gluons. Distributions of log10(PS/ME) in a flat
phase-space scan, normalized to unity.

be obtained with a continuous distribution of scales, from hard to soft. To illustrate the distribution of
correction factors in actual VINCIA runs, without any phase-space cuts (apart from the hadronization
scale), we make use of the fact that VINCIA stores several internal diagnostics histograms during
running, when the verbosity parameter Vincia:verbose is set to values � 2. These make use
of PYTHIA’s simple histogramming utility and can be printed at the end of a run by invoking the
command VinciaShower::printHistos(). Part of these diagnostics histograms contain the
ME/PS weight ratios for both trial and accepted branchings. The latter accurately reflects the distri-
bution of ME/PS correction factors for each physical branching that occurs in the evolution. Note,
though, that the ratio is here inverted, from PS/ME to ME/PS; above, we were interested to know
whether the shower over- or under-counted the matrix element. For GKS matching, we are interested
in the size of the correction factor, which is proportional to ME/PS.

Fig. 6 shows a compilation of such plots, for Z ! 4, 5, and 6 partons, using the default global
helicity-dependent showers. The left-hand pane shows gluon-emission distributions, the three curves
representing Z ! qq̄gg, Z ! qq̄ggg, and Z ! qq̄gggg, respectively. The central dashed line
represents perfect agreement (the matrix-element correction factor is unity), while the two solid lines
represent a factor two deviation in each direction. Despite the fact that we are now including hard as
well as soft branchings and that the matching factors now also include components designed to absorb
the subleading-color corrections [9], the distributions are still quite narrow. Importantly, we do not
observe any substantial degradation of the correction factor with multiplicity, suggesting that the GKS
matching strategy is quite stable.
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Figure 3: Global showers. Spin-summed helicity-dependent and unpolarized shower approximations com-
pared to LO matrix elements for H ! qq̄+ gluons (above) and Z ! qq̄+ gluons (below). Distributions of
log10(PS/ME) in a flat phase-space scan, normalized to unity, with hard configurations excluded.
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Figure 4: Sector showers. Spin-summed helicity-dependent and unpolarized shower approximations com-
pared to LO matrix elements for H ! qq̄+ gluons (above) and Z ! qq̄+ gluons (below). Distributions of
log10(PS/ME) in a flat phase-space scan, normalized to unity, with hard configurations excluded.
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
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Figure 7: Comparison of computation speeds between SHERPA version 1.4.0 [27] and VINCIA 1.029 +
PYTHIA 8.171, as a function of the number of legs that are matched to matrix elements, for hadronic Z
decays. Left: initialization time (to precompute cross sections, warm up phase-space grids, etc, before event
generation). Right: time to generate 1000 parton-level showered events (not including hadronization), with
VINCIA’s global and sector showers shown separately, with and without (“old”) helicity dependence. For
comparison, the average time it takes to hadronize such events with PYTHIA’s string hadronization model [28]
is shown as a dashed horizontal line. Further details on the setup used for these runs are given in the text.

complicated structures in phase space. This means that even fairly clever multi-channel strate-
gies have a hard time achieving high efficiency over all of it. In GKS, this problem is circum-
vented by generating the phase space by a (trial) shower algorithm, which is both algorithmi-
cally fast and is guaranteed to get at least the leading QCD singularity structures right1. Since
those structures give the largest contributions, the fact that the trials are less efficient for hard
radiation has relatively little impact on the overall efficiency2. Combining this with the clean
properties of the antenna phase-space factorization and with matching at the preceding orders,
the trial phase-space population at any given parton multiplicity is already very close to the
correct one, and identical to it in the leading singular limits, producing the equivalent of very
high matching-and-unweighting efficiencies.

• Finally, the addition of helicity dependence to the trial generation in this paper allows us to
match to only a single helicity amplitude at a time, at each multiplicity. This gives a further
speed gain relative to the older approach [9] in which one had to sum over all helicity con-
figurations at each order. In addition, the MHV-type helicity configurations tend to give the
dominant contribution to the spin-summed matrix element. MHV amplitudes are also those
best described by the shower because they contain the maximum number of soft and collinear
singularities.

The speed of the old (helicity-independent) VINCIA algorithm was examined in [7], for the pro-
cess of Z decay to quarks plus showers, and was there compared to SHERPA [27], as an example of a
slicing-based multileg matching implementation. In fig. 7, we repeat this comparison, including now

1A related type of phase-space generator is embodied by the SARGE algorithm [25], and there are also similarities with
the forward-branching scheme proposed in [26].

2As long as all of phase-space is covered and the trials remain overestimates over all of it, something which we have
paid particular attention to in VINCIA, see [9].
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Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at Q = Qhad

where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is

C
g/qq̄

= 2C
F

, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,
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The matching equations can also be derived in the limit Qhad ! 0, in which case the expression
becomes
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is
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with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
s

/⇡ ⇥ |M0
0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
As a cross-check, we now repeat the derivation, reinstating the hadronization scale. The fixed-order

side is then
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is
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matched to it, using LO matching. That is,
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is
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with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is

C
g/qq̄

= 2C
F

, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
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with the function I
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used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is
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and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
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LO Vincia: Exclusive 2-jet rate (2 and only 2 jets), at Q = Qhad

with Q the resolution scale of whatever (IR safe5) algorithm is used to define the jets.

3.2.1 Inclusive Born

The total inclusive rate produced by the tree-level matched shower is just the Born-level matrix element,

Approximate ! |M0
0 |2 , (42)

where the subscript indicates the parton multiplicity beyond Born level (i.e., zero indicates the Born
level) and the superscript indicates the loop order beyond the Born level (i.e., zero indicates the Born
loop order). Since cancellation of real and virtual corrections is exact in both the unmatched shower as
well as in the tree-level matching scheme described above, there are no further corrections to consider
for the inclusive rate. I.e., the total integrated cross section produced by the shower is obtained merely
by integrating eq. (42) over all of the Born-level phase space (or by integrating it over a restricted range
if phase-space cuts are imposed). We now seek a correction term, V0, such that

Matched ! (1 + V0) |M0
0 |2 (43)

gives the correct inclusive NLO rate. From eq. (40), we know that the correction term for Z decay is

V0 =

↵
s

⇡
. (44)

We now turn to the prescription for systematically deriving the corresponding term for any process.
On the fixed-order side, the inclusive cross section at NLO, differentially in the Born-level phase

space, is given by an expression of the form
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where the integral in the last term runs over clusterings of the additional parton back to the Born level.
At the inclusive level, the fully differential Born-level cross section is therefore only well-defined in the
context of a specific prescription for which bins in the Born-level phase space are populated by each
(Born+1)-parton phase-space point. Although a natural such relation is furnished by the “inverse” of
the shower algorithm, a simpler path is obtained by instead considering the cross section at the exclusive
level.

3.2.2 Exclusive Born

The shower expression for the exclusive Z ! qq̄ rate (defined at the hadronization cutoff, which is the
lowest meaningful resolution scale in the perturbative shower) is
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5We use infrared (IR) safety to refer to the combination of soft and collinear safety.
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is
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and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is
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with the function I
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used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
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and, not surprisingly, the difference comes out to be exactly ↵
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
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with the function I
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used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]

Z
s

0
d�ant 2CF

g2
s

A
g/qq̄

=

↵
s

2⇡
2C

F

✓
�2I

qq̄

(✏, µ2/m2
Z

) +

19

4

◆
, (52)

and, not surprisingly, the difference comes out to be exactly ↵
s

/⇡ ⇥ |M0
0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
As a cross-check, we now repeat the derivation, reinstating the hadronization scale. The fixed-order

side is then

|M0
0 |2 + 2Re[M0

0M
1
0
⇤
] = |M0

0 |2
 
1 +

2Re[M0
0M

1
0
⇤
]

|M0
0 |2

+

Z
Q

2

had

0
d�ant g

2
s

C A
g/qq̄

!
, (53)

19

LO Vincia: Exclusive 2-jet rate (2 and only 2 jets), at Q = Qhad

with Q the resolution scale of whatever (IR safe5) algorithm is used to define the jets.

3.2.1 Inclusive Born

The total inclusive rate produced by the tree-level matched shower is just the Born-level matrix element,
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where the subscript indicates the parton multiplicity beyond Born level (i.e., zero indicates the Born
level) and the superscript indicates the loop order beyond the Born level (i.e., zero indicates the Born
loop order). Since cancellation of real and virtual corrections is exact in both the unmatched shower as
well as in the tree-level matching scheme described above, there are no further corrections to consider
for the inclusive rate. I.e., the total integrated cross section produced by the shower is obtained merely
by integrating eq. (42) over all of the Born-level phase space (or by integrating it over a restricted range
if phase-space cuts are imposed). We now seek a correction term, V0, such that
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gives the correct inclusive NLO rate. From eq. (40), we know that the correction term for Z decay is
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We now turn to the prescription for systematically deriving the corresponding term for any process.
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where the integral in the last term runs over clusterings of the additional parton back to the Born level.
At the inclusive level, the fully differential Born-level cross section is therefore only well-defined in the
context of a specific prescription for which bins in the Born-level phase space are populated by each
(Born+1)-parton phase-space point. Although a natural such relation is furnished by the “inverse” of
the shower algorithm, a simpler path is obtained by instead considering the cross section at the exclusive
level.

3.2.2 Exclusive Born

The shower expression for the exclusive Z ! qq̄ rate (defined at the hadronization cutoff, which is the
lowest meaningful resolution scale in the perturbative shower) is
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5We use infrared (IR) safety to refer to the combination of soft and collinear safety.
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is
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and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
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with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
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with the function I
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used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
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Figure 6: Illustration of the evolution scales and Sudakov factors appearing in the exclusive 3-jet cross
section, eq. (55).

Sudakov and matrix-element expressions, hence from now on we replace 2C
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The 3-parton Sudakov factor, �3, imposes exclusivity and is given by
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where the index j runs over the qg and gq̄ antennae, each of which contains two terms, for gluon emission
and gluon splitting, respectively. We have implicitly assumed smooth ordering here, which implies that
the upper boundaries on the integrals are given by the respective dipole invariant masses (squared), s

j

.
Note also that we must take into account all modifications that are applied to the LL antenna functions,
including Pimp, PAri, and LO matrix-element matching factors. (We do not write out these factors here,
to avoid clutter.) I.e., the antenna functions appearing in the above expression must be the ones that
are actually generated by the shower algorithm, including in particular the effect of any modifications
imposed by vetos.

For strong ordering, there are no Pimp factors, and the upper integral boundary is instead min(Q2
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However, since strong ordering is not able to fill the entire 4-parton phase space [?,?], full NLO matching
can only be obtained for the smoothly ordered variant. It is nonetheless interesting to examine both types
of shower algorithms, since even in the strongly ordered case, we may compare the Sudakov logarithms
arising at O(↵2

s

) to those present in the fixed-order calculation.
On the fixed-order side, the expression for the 3-parton exclusive rate is simply
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where the integral that has been added corresponds to unresolved 3-parton configurations, with A again
given by eq. (48). Though eq. (46) is now defined entirely in 4 dimensions, we still need dimensional
regularization to regulate the two last terms in the fixed-order expression. In principle, the integral in
the last term could be carried out explicitly, but it is simpler to rewrite it as
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where the first term is just the full antenna integral, which was given in eq. (52), and the second term is
identical to the one appearing in eq. (46), with which it cancels completely, cf. the definition of the tree-
level matching, eq. (48). The final correction term derived by this procedure is therefore again exactly
equal to ↵

s

/⇡ ⇥ |M0
0 |2.

Note that the scale and scheme dependence of the ↵
s

/⇡ correction is not specified since its ambiguity
is formally of order ↵2

s

. For definiteness we take the renormalization scale for this correction to be
proportional to the invariant mass of the system, µ
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= kinc
µ

p
ŝ (so that µ

R
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µ

m
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at the Z pole),
with kinc

µ

thus representing the free parameter that governs the choice of renormalization scale for the
total inclusive rate for Z ! hadrons. We shall consider both one-loop and two-loop running options.
The value of ↵

s

(m
Z

) will be determined from LEP data in section ??.

3.3 One-Loop Matching for Born + 1 Parton

sPS: Emphasize choice between full and partial unitarity, similarly to at LO level? We choose to stick
to full unitarity, at least for the time being.

The approximation to the 3-parton exclusive rate produced by a shower matched to (at least) NLO
for the 2-parton inclusive rate and to LO for the 3-parton one, is
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where M0
1 is the tree-level Z ! qgq̄ matrix element and Q

R1 denotes the “restart scale”. For strong
ordering, Q

R1 is equal to Q1, while, for smooth ordering, it is given by the nested antenna phase spaces.
The subscripts on the two Sudakov factors �2 and �3 make it explicit that they refer to the event as a
whole, see the illustration in fig. 6. Again, we have the choice whether we wish to work in 4 dimensions,
with a non-zero hadronization scale, Qhad, or in d dimensions with the hadronization scale taken to zero.
For correctness, we have maintained the hadronization scale in eq. (55), though we shall see below that
the dependence on it does indeed cancel in the final result.

The 2-parton Sudakov factor, �2, is generated by the (matched) evolution from 2 to 3 partons,
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with A
g/qq̄

again defined by eq. (48) (we have added explicit subscripts now to differentiate it from the
qg and gq̄ antenna functions that will presently be introduced). Notice that the integral only runs from
the starting scale, m2

Z

, to the 3-parton resolution scale, Q2
1, hence this integral is IR finite, though it does

contain logarithms. In the remainder of this paper, we shall work only with the leading-color part of the
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Figure 6: Illustration of the evolution scales and Sudakov factors appearing in the exclusive 3-jet cross
section, eq. (55).
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where the index j runs over the qg and gq̄ antennae, each of which contains two terms, for gluon emission
and gluon splitting, respectively. We have implicitly assumed smooth ordering here, which implies that
the upper boundaries on the integrals are given by the respective dipole invariant masses (squared), s

j

.
Note also that we must take into account all modifications that are applied to the LL antenna functions,
including Pimp, PAri, and LO matrix-element matching factors. (We do not write out these factors here,
to avoid clutter.) I.e., the antenna functions appearing in the above expression must be the ones that
are actually generated by the shower algorithm, including in particular the effect of any modifications
imposed by vetos.
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However, since strong ordering is not able to fill the entire 4-parton phase space [?,?], full NLO matching
can only be obtained for the smoothly ordered variant. It is nonetheless interesting to examine both types
of shower algorithms, since even in the strongly ordered case, we may compare the Sudakov logarithms
arising at O(↵2
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) to those present in the fixed-order calculation.
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for Z ! 3 Jets,
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where:

• the first line contains the full (leading-colour) one-loop matrix element, the V0Z correction from
one-loop matching at the preceding order, and the V1µ term from the choice of shower renormal-
ization scale;

• the second line contains the standardized subtraction term arising from the qg ! qgg and gq̄ !
ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg ! qq̄0q0 and gq̄ !
¯q0q0q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the (matched) shower
evolution and the standardized subtraction terms, including the consequences of ordering choices
and modification factors such as those arising from the Ariadne factor and from matching to the
LO matrix elements.

In section 4, we compute the analytical integrals corresponding to each of the shower-generated terms,
for different choices of evolution variable, ordering criterion, and antenna functions.

With the one-loop matrix element expressed as in appendix B.2, we may cancel the infrared singu-
larity operators in eq. (72), leaving only explicitly finite remainders (which may still contain logarithms
of resolved scales). Choosing the arbitrary scale µME =

p
s as the renormalization point for the fixed-

order calculation and separating the calculation into two pieces, one proportional to N
C

and another
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where:

• the first line contains the full (leading-colour) one-loop matrix element, the V0Z correction from
one-loop matching at the preceding order, and the V1µ term from the choice of shower renormal-
ization scale;

• the second line contains the standardized subtraction term arising from the qg ! qgg and gq̄ !
ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg ! qq̄0q0 and gq̄ !
¯q0q0q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the (matched) shower
evolution and the standardized subtraction terms, including the consequences of ordering choices
and modification factors such as those arising from the Ariadne factor and from matching to the
LO matrix elements.

In section 4, we compute the analytical integrals corresponding to each of the shower-generated terms,
for different choices of evolution variable, ordering criterion, and antenna functions.

With the one-loop matrix element expressed as in appendix B.2, we may cancel the infrared singu-
larity operators in eq. (72), leaving only explicitly finite remainders (which may still contain logarithms
of resolved scales). Choosing the arbitrary scale µME =
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where:

• the first line contains the full (leading-colour) one-loop matrix element, the V0Z correction from
one-loop matching at the preceding order, and the V1µ term from the choice of shower renormal-
ization scale;

• the second line contains the standardized subtraction term arising from the qg ! qgg and gq̄ !
ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg ! qq̄0q0 and gq̄ !
¯q0q0q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the (matched) shower
evolution and the standardized subtraction terms, including the consequences of ordering choices
and modification factors such as those arising from the Ariadne factor and from matching to the
LO matrix elements.

In section 4, we compute the analytical integrals corresponding to each of the shower-generated terms,
for different choices of evolution variable, ordering criterion, and antenna functions.

With the one-loop matrix element expressed as in appendix B.2, we may cancel the infrared singu-
larity operators in eq. (72), leaving only explicitly finite remainders (which may still contain logarithms
of resolved scales). Choosing the arbitrary scale µME =
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where:

• the first line contains the full (leading-colour) one-loop matrix element, the V0Z correction from
one-loop matching at the preceding order, and the V1µ term from the choice of shower renormal-
ization scale;

• the second line contains the standardized subtraction term arising from the qg ! qgg and gq̄ !
ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg ! qq̄0q0 and gq̄ !
¯q0q0q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the (matched) shower
evolution and the standardized subtraction terms, including the consequences of ordering choices
and modification factors such as those arising from the Ariadne factor and from matching to the
LO matrix elements.

In section 4, we compute the analytical integrals corresponding to each of the shower-generated terms,
for different choices of evolution variable, ordering criterion, and antenna functions.

With the one-loop matrix element expressed as in appendix B.2, we may cancel the infrared singu-
larity operators in eq. (72), leaving only explicitly finite remainders (which may still contain logarithms
of resolved scales). Choosing the arbitrary scale µME =
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s as the renormalization point for the fixed-

order calculation and separating the calculation into two pieces, one proportional to N
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where:

• the first line contains the full (leading-colour) one-loop matrix element, the V0Z correction from
one-loop matching at the preceding order, and the V1µ term from the choice of shower renormal-
ization scale;

• the second line contains the standardized subtraction term arising from the qg ! qgg and gq̄ !
ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg ! qq̄0q0 and gq̄ !
¯q0q0q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the (matched) shower
evolution and the standardized subtraction terms, including the consequences of ordering choices
and modification factors such as those arising from the Ariadne factor and from matching to the
LO matrix elements.

In section 4, we compute the analytical integrals corresponding to each of the shower-generated terms,
for different choices of evolution variable, ordering criterion, and antenna functions.

With the one-loop matrix element expressed as in appendix B.2, we may cancel the infrared singu-
larity operators in eq. (72), leaving only explicitly finite remainders (which may still contain logarithms
of resolved scales). Choosing the arbitrary scale µME =
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s as the renormalization point for the fixed-

order calculation and separating the calculation into two pieces, one proportional to N
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where:

• the first line contains the full (leading-colour) one-loop matrix element, the V0Z correction from
one-loop matching at the preceding order, and the V1µ term from the choice of shower renormal-
ization scale;

• the second line contains the standardized subtraction term arising from the qg ! qgg and gq̄ !
ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg ! qq̄0q0 and gq̄ !
¯q0q0q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the (matched) shower
evolution and the standardized subtraction terms, including the consequences of ordering choices
and modification factors such as those arising from the Ariadne factor and from matching to the
LO matrix elements.

In section 4, we compute the analytical integrals corresponding to each of the shower-generated terms,
for different choices of evolution variable, ordering criterion, and antenna functions.
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larity operators in eq. (72), leaving only explicitly finite remainders (which may still contain logarithms
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where:

• the first line contains the full (leading-colour) one-loop matrix element, the V0Z correction from
one-loop matching at the preceding order, and the V1µ term from the choice of shower renormal-
ization scale;

• the second line contains the standardized subtraction term arising from the qg ! qgg and gq̄ !
ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg ! qq̄0q0 and gq̄ !
¯q0q0q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the (matched) shower
evolution and the standardized subtraction terms, including the consequences of ordering choices
and modification factors such as those arising from the Ariadne factor and from matching to the
LO matrix elements.

In section 4, we compute the analytical integrals corresponding to each of the shower-generated terms,
for different choices of evolution variable, ordering criterion, and antenna functions.

With the one-loop matrix element expressed as in appendix B.2, we may cancel the infrared singu-
larity operators in eq. (72), leaving only explicitly finite remainders (which may still contain logarithms
of resolved scales). Choosing the arbitrary scale µME =

p
s as the renormalization point for the fixed-

order calculation and separating the calculation into two pieces, one proportional to N
C

and another
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where:

• the first line contains the full (leading-colour) one-loop matrix element, the V0Z correction from
one-loop matching at the preceding order, and the V1µ term from the choice of shower renormal-
ization scale;

• the second line contains the standardized subtraction term arising from the qg ! qgg and gq̄ !
ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg ! qq̄0q0 and gq̄ !
¯q0q0q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the (matched) shower
evolution and the standardized subtraction terms, including the consequences of ordering choices
and modification factors such as those arising from the Ariadne factor and from matching to the
LO matrix elements.

In section 4, we compute the analytical integrals corresponding to each of the shower-generated terms,
for different choices of evolution variable, ordering criterion, and antenna functions.

With the one-loop matrix element expressed as in appendix B.2, we may cancel the infrared singu-
larity operators in eq. (72), leaving only explicitly finite remainders (which may still contain logarithms
of resolved scales). Choosing the arbitrary scale µME =

p
s as the renormalization point for the fixed-

order calculation and separating the calculation into two pieces, one proportional to N
C

and another
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y

ij

, y
jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
ij

> y
jk

. For the other
branch, y

ij

and y
jk

should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to

9

Q2
E = 4p2? =

4sijsjk
sijk

integrals and compare them to those of the one-loop matrix element. This provides an explicit check of
whether the first-order expansion of the Sudakov factors generates the correct logarithms present in the
fixed-order calculation.

Given our choice of the GGG antenna functions as our standard ones, the relevant terms are
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The general form of the first term, which originates from the 2 ! 3 branching step, is
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where the definitions for the K
i

and the I
i

functions are given in appendix C, for each type of antenna
function and ordering variable. Their derivation and soft/collinear structure will be discussed more
closely below, for each choice of ordering and evolution variable. The form of the 3 ! 4 integrals
depends on whether we work in the context of strong or smooth ordering. We shall now consider each
of those cases in turn, beginning with strong ordering.

4.1 Strong Ordering

For strong ordering, the inverted ordering conditions in eq. (68), (1�O
Ej/Sj

), reduce to step functions
expressing integration over the unordered region. The integration surface is thus limited from below by
the phase-space contour defined by the evolution scale of the first branching, Q2, and from above by the
edge defined by the invariant mass of the antenna.

The expression generated by the 3 ! 4 splitting case for gluon emission is
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where K

i

and I
i

are the same as those for the 2 ! 3 term above, though they here appear with different
arguments. The remaining case is the 3 ! 4 gluon splitting defined by
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with H defined in appendix C and P
Aj as defined in eq. (20). We will discuss the derivation of these

terms in more detail in the following three subsections, for strong m
D

-, p?, and energy-ordering, re-
spectively.

4.1.1 Dipole Virtuality

We begin with dipole virtuality as evolution variable, which is perhaps the simplest case. We start by
repeating the integrals of eq. (68) with the one-particle phase space defined as in eq. (8). In the case of
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We now turn to specific cases.
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integrals and compare them to those of the one-loop matrix element. This provides an explicit check of
whether the first-order expansion of the Sudakov factors generates the correct logarithms present in the
fixed-order calculation.

Given our choice of the GGG antenna functions as our standard ones, the relevant terms are
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The general form of the first term, which originates from the 2 ! 3 branching step, is
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where the definitions for the K
i

and the I
i

functions are given in appendix C, for each type of antenna
function and ordering variable. Their derivation and soft/collinear structure will be discussed more
closely below, for each choice of ordering and evolution variable. The form of the 3 ! 4 integrals
depends on whether we work in the context of strong or smooth ordering. We shall now consider each
of those cases in turn, beginning with strong ordering.

4.1 Strong Ordering

For strong ordering, the inverted ordering conditions in eq. (68), (1�O
Ej/Sj

), reduce to step functions
expressing integration over the unordered region. The integration surface is thus limited from below by
the phase-space contour defined by the evolution scale of the first branching, Q2, and from above by the
edge defined by the invariant mass of the antenna.

The expression generated by the 3 ! 4 splitting case for gluon emission is
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where K

i

and I
i

are the same as those for the 2 ! 3 term above, though they here appear with different
arguments. The remaining case is the 3 ! 4 gluon splitting defined by
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with H defined in appendix C and P
Aj as defined in eq. (20). We will discuss the derivation of these

terms in more detail in the following three subsections, for strong m
D

-, p?, and energy-ordering, re-
spectively.

4.1.1 Dipole Virtuality

We begin with dipole virtuality as evolution variable, which is perhaps the simplest case. We start by
repeating the integrals of eq. (68) with the one-particle phase space defined as in eq. (8). In the case of
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Figure 13: Size of �A terms differences between GGG and VINCIA default antennae.
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Figure 14: Distribution of the size of the �A terms (normalized so the LO result is unity) in actual VIN-
CIA runs. Left: linear scale, default settings. Right: logarithmic scale, with variations on the minimum
number of MC points used for the integrations (default is 100).

the left-hand pane, the �A distribution with default settings is shown on a linear scale, while the right-
hand pane shows the same result on a logarithmic scale, including variations with higher numerical
accuracy.

As mentioned above, the integration is done by a uniform Monte Carlo sampling of the �A inte-
grands. We require a numerical precision better than 1% on the estimated size of the term (relative to
LO) and, by default, always sample at least 100 MC points for each antenna integral. In the left-hand
pane of fig. 14, we see that, even with the full 4-parton LO matrix-element corrections included, the size
of the �A terms remains below one percent for the vast majority of 3-parton phase-space points.

On the logarithmic scale in the right-hand pane of fig. 14, however, it is evident that there is also
a tail of quite rare phase-space points which are associated with larger �A corrections. Numerical
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LO level NLO level Time / Event Speed relative to PYTHIA
Z ! Z ! [milliseconds] 1

Time / PYTHIA 8

PYTHIA 8 2, 3 2 0.4 1
VINCIA (NLO off) 2, 3, 4, 5 2 2.2 ⇠ 1/5
VINCIA (NLO on) 2, 3, 4, 5 2, 3 3.0 ⇠ 1/7

Table 6: Event-generation time in VINCIA 1.0.30 compared to PYTHIA 8.176.

• The parameter variations described in section 5.3 can be performed together with the matching
corrections to provide a set of uncertainty bands in which each variation benefits from the full
corrections up to the matched orders. These are provided in the form of a vector of alternative
weights for each event [18], at a cost in CPU time which is only a fraction of that of a comparable
number of independent runs.

These attributes, in combination with helicity dependence in the case of the leading-order formal-
ism [25], allow VINCIA to run comfortably on a single machine even with full-fledged matching and
uncertainty variations switched on.

The inclusion of NLO corrections will necessarily slow down the calculation. The relative increase
in running time relative to PYTHIA 8, is given in tab. 6, including the default level of tree-level match-
ing, with and without the NLO 3-jet correction14. Without it (but still including the default tree-level
corrections which go up to Z ! 5 partons), VINCIA is 5 times slower than PYTHIA. With the NLO 3-jet
correction switched on, this increases only slightly, to a factor 7. For a fully showered and hadronized
calculation which includes second-order virtual and third-order tree-level corrections, we consider that
to still be acceptably fast. Importantly, an event-generation time of a few milliseconds per event implies
that serious studies can still be performed on an ordinary laptop computer.

6 Outlook and Conclusions

In this work, we have investigated the expansion of a Markov-chain QCD shower algorithm to second or-
der in the strong coupling, for e+e� ! 3 partons, and made systematic comparisons to matrix-element
results obtained at the same order. Using these results, we have subjected the subleading properties
of shower algorithms with different evolution/ordering variables and different renormalization-scale
choices to a rigorous examination. At the analytical level, we have compared the logarithmic struc-
tures at the edge of phase space, and at the numerical level we have illustrated the difference between
the expanded shower algorithm and the one-loop matrix element.

We find that the choice of p?-ordering, with a renormalization scale proportional to p? yields the
best agreement with the one-loop matrix element, over all of phase space. This elaborates on, and is con-
sistent with, earlier findings [28, 29]. Using the antenna invariant mass, m

D

, for the evolution variable
still gives reasonable results in the hard regions of phase space, but leads to logarithmically divergent
corrections for soft emissions, the exact form of which depends on the choice of renormalization vari-

14The numbers include both showering and hadronziation and were obtained on a single 3.05 GHz CPU, with gcc 4.7 -O2,
using default settings for PYTHIA 8 and the “Nikhef” NLO tune for VINCIA.
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the plots, the NLO corrections become larger, which further motivates the choice of keeping the Ariadne
factor switched on by default in VINCIA.

The overall result is that the infrared limits are generally well-behaved for p? evolution with µPS /
p?. Remaining differences amount to small finite shifts of order 10%-20% away from unity. At that
level, the effective finite terms of the antenna functions also play a role, hence it is too early to draw
definite conclusions just based on the plots presented here. The impact of finite terms will be studied in
section 5 in the context of matching to the LO matrix elements for Z ! 4 partons, which effectively
fixes the finite terms with respect to the pure-shower answers studied here.

4.3 Tables of Infrared Limits

The results of the preceding subsections on the infrared limits of the pole-subtracted matrix elements
and of the Sudakov integrals generated by the various evolution-scale choices are collected here, in
parametric form, for easy reference. The renormalization terms, V3µ, are not included. Tab. 3 expresses
the limits of SVirtual , while tab. 4 contains the Sudakov-integral limits.
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Table 4: Limits of strong and smooth p? and m
D

ordering, with L denoting ln(y), with s
qg

= s
gq̄

=

y ! 0. Non divergent terms, such as ⇡2 have been omitted in the calculation of V3Z , and the renormal-
ization term in V3Z is set to zero. An overall factor of ↵

s

/2⇡ is suppressed.

5 Results including both LO and NLO corrections

In the preceding section, we focussed on deriving the analytic forms of the shower integrals and compar-
ing their infrared limits to the matrix-element expressions. It is now time to include also the finite terms
arising from matching to the 4-parton tree-level matrix element, expressed by the �A terms in eq. (90).
Our ultimate aim in this section is to include the full leading-colour one-loop corrections through second
order in ↵

s

(i.e., up to and including Z ! 3 partons) and combine these with the full-colour tree-level
corrections through third order in ↵

s

(i.e., up to and including Z ! 5 partons, the default in VINCIA).
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Pole-subtracted one-loop matrix element
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In section 4, we compute the analytical integrals corresponding to each of the shower-generated
terms, for different choices of evolution variable, ordering criterion, and antenna functions.

With the one-loop matrix element expressed as in appendix B.2, it is easy to see that the infrared
singularity operators in eq. (91) cancel, leaving only explicitly finite remainders (which may still contain
logarithms of resolved scales). This then constitutes the description of the one-loop matching for Z ! 3

jets, having already discussed the case for two jets. In the context of eq. (46) we have now corrected the
first two terms on the rhs to NLO accuracy.

3.6 One-Loop Correction for Born + 2 Partons

To illustrate how the formalism presented here generalizes to higher multiplicities, we take the case of
the NLO correction to Z ! 4 partons. For simplicity, however, we continue to restrict our analysis of
the correction factor to the leading-colour level. At NLO, the exclusive Z ! 4 partons rate at “infinite”
perturbative resolution (similarly to above) is

Exact ! |M0
4 |2 + 2Re[M0

4M
1⇤
4 ] . (92)

Labeling the 4 partons by Z ! i, j, k, `, there are two possible antenna-shower histories leading to
each 4-parton configuration, with j and k the last emitted parton, respectively. Those two contributions
both enter in the definition of the tree-level 4-parton matching factor,

R4 =
|M0

4 (i, j, k, `)|2
A

j/IK

|M0
3 (I,K, `)|2 +A

k/JL

|M0
3 (i, J, L)|2

, (93)

such that their sum reproduces the full 4-parton matrix element. Note that a separate such factor is
applied to Z ! qggq̄ and Z ! qq̄0q0q̄, and that we have suppressed colour and coupling factors here,
for compactness (we ignore the small, non-singular extra interference terms for the special case where all
four quarks have the same flavour). The antenna functions, A, are understood to include all such factors,
as well as any Pimp and Pari factors appropriate to the branchings at hand. For a general n-parton matrix
element, the denominator contains one term for each possible clustering.

Labeling the IK ! ijk history by A and the JL ! jk` one by B, the sum over the two histories
yields
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(1 + V ↵

m

) , (94)

where it is understood that ↵ is an index, not a power, and the last product factor takes into account the
NLO matching at the preceding multiplicities. Expanding the Sudakov factors to first order and using
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the plots, the NLO corrections become larger, which further motivates the choice of keeping the Ariadne
factor switched on by default in VINCIA.
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5 Results including both LO and NLO corrections

In the preceding section, we focussed on deriving the analytic forms of the shower integrals and compar-
ing their infrared limits to the matrix-element expressions. It is now time to include also the finite terms
arising from matching to the 4-parton tree-level matrix element, expressed by the �A terms in eq. (90).
Our ultimate aim in this section is to include the full leading-colour one-loop corrections through second
order in ↵

s

(i.e., up to and including Z ! 3 partons) and combine these with the full-colour tree-level
corrections through third order in ↵
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(i.e., up to and including Z ! 5 partons, the default in VINCIA).
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Second-Order Antenna Shower Expansion:

4.2.2 Transverse momentum

Again we only need to recompute the contributions from the 3 ! 4 Sudakov terms, as the 2 ! 3 ones
are the same as in the strongly ordered case. The 3 ! 4 Sudakov integrals are
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As before we focus on explicitly calculating the transcendentality-2 contribution arising from the eikonal
part of the antenna in the first term in the first line of eq. (148),
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where we have transformed y
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and y23 = 4
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. In the limit smin/s, smax/s = y ! 0 so that
y23 ! 0, this yields

↵
s

C
A

2⇡


�1

2

ln

2
(y)

�
. (150)

Adding the contributions from the 2 ! 3 splitting and transcendentality-1 terms, we find the following
result for the soft limit
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as in the strongly ordered case. The double logarithm matches with SVirtual and the single logarithm
can be absorbed by choosing a renormalization scale that is quadratic in the vanishing invariants, such
as µPS / p?.

In the hard collinear limit, the shower integrals behave as
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the same as in all the other cases. This completes the argument that indeed µPS / p? is the appropriate
choice also for smooth p?-ordering.

In fig. 10, we show the NLO correction factors, (1 + V3Z), for smooth p?-ordering. The top row
shows the correction factors without using the CMW rescaling of ⇤QCD, and the plots in the bottom
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as in the strongly ordered case. The double logarithm matches with SVirtual and the single logarithm
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the same as in all the other cases. This completes the argument that indeed µPS / p? is the appropriate
choice also for smooth p?-ordering.

In fig. 10, we show the NLO correction factors, (1 + V3Z), for smooth p?-ordering. The top row
shows the correction factors without using the CMW rescaling of ⇤QCD, and the plots in the bottom
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Vincia : NLO Z → 2 → 3 Jets + Markov Shower
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Renormalization: 1) Choose µR ~ pTjet (absorbs universal β-dependent terms)

2) Translate from MSbar to CMW scheme (ΛCMW ~  1.6 ΛMSbar for coherent showers)

Choice of µR
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Figure 6: NLO correction factor for strong m
D

-ordering, with GGG antennae. Top row: µ
R

=

p
s

(left), µ
R

= p? (middle), and µ
R

= m
D

(right). Bottom row: using the CMW ⇤MC, with µ
R

=

1
2mD

(left) and µ
R

= m
D

(right). For all plots, ↵
s

= 0.12, n
F

= 5, and gluon splittings were evolved in m
qq

.

Again, the combination (ME � PS) relevant for computing the correction factor is proportional to the
QCD � function, and in fact has exactly the same form as eq. (121). The conclusion is therefore that,
also in this limit, all logarithms through ↵2

s

ln(y) can be absorbed by choosing a renormalization scale
which is linear in the vanishing invariant. The particular choice which is linear in both the soft and
collinear limits is µPS / m

D

. To illustrate this, we show the full NLO Z ! 3 jets correction factors,
(1 + V3Z), for m

D

-ordering with a few different choices of renormalization scale and scheme, in fig. 6.
Note that axes are logarithmic, in ln(y

ij

) = ln(s
ij

/s), to make the infrared limits clearly visible.
Without the V3µ term, the correction factor looks as depicted in the top left-hand plot in fig. 6. The

increasing contours towards the axes indicate uncanceled logarithms in the correction factor. The middle
pane shows the correction factor derived for µPS = p?. As discussed above, there is an uncanceled
logarithm in the soft limit (lower left-hand corner of the plot), since p? is quadratic in the vanishing
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Loop Corrections

The choice of evolution variable (Q)
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y

ij

, y
jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
ij

> y
jk

. For the other
branch, y

ij

and y
jk

should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y
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, y
jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
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> y
jk

. For the other
branch, y
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and y
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should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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⌦
�2

↵
Shapes T C D BW BT

PYTHIA 8 0.4 0.4 0.6 0.3 0.2
VINCIA (LO) 0.2 0.4 0.4 0.3 0.3
VINCIA (NLO) 0.2 0.2 0.6 0.3 0.2

⌦
�2

↵
Frag N

ch

x Mesons Baryons

PYTHIA 8 0.8 0.4 0.9 1.2
VINCIA (LO) 0.0 0.5 0.3 0.6
VINCIA (NLO) 0.1 0.7 0.2 0.6

⌦
�2

↵
Jets rexc

1j ln(y
12

) rexc
2j ln(y

23

) rexc
3j ln(y

34

) rexc
4j ln(y

45

) rexc
5j ln(y

56

) rinc
6j

PYTHIA 8 0.1 0.2 0.1 0.2 0.1 0.3 0.2 0.3 0.2 0.4 0.3
VINCIA (LO) 0.1 0.2 0.1 0.2 0.0 0.2 0.3 0.1 0.1 0.0 0.0
VINCIA (NLO) 0.2 0.4 0.1 0.3 0.1 0.3 0.2 0.2 0.1 0.2 0.1

Table 5:
⌦
�2

↵
values for: Top: L3 light-flavour event shapes and fragmentation variables [55], and LEP

average meson and baryon fractions [61, 62]. Bottom: Durham k
T

n-jet rates, r
nj

, and jet resolutions,
y
ij

, measured by the ALEPH experiment [56]. For the latter, the
⌦
�2

↵
calculation was restricted to the

perturbative region, ln(y) > �8. A flat 5% theory uncertainty was included on the MC numbers. Both
default PYTHIA and the VINCIA (LO) tune use ↵

s

(m
Z

) = 0.139 while the VINCIA (NLO) tune uses
↵
s

(m
Z

) = 0.122.

ALEPH experiment [56] (now without the benefit of light-flavour tagging), using the standard Durham
k
T

algorithm for e+e� collisions [57], as implemented in the FASTJET code [58]. We also compared to
default PYTHIA 8 and, for completeness, checked that the relative production fractions of various meson
and baryon species were indeed unchanged relative to the old VINCIA default.

Rather than presenting all of this information in the form of many additional plots, tab. 5 instead
provides a condensed summary of all the validations we have carried out, via

⌦
�2

↵
values for each of

the models with respect to each of the LEP distributions, including a flat 5% “theory uncertainty” on the
MC numbers. Already from this simple set of �2 values, it is clear that the LO models/tunes are already
doing very well11. This agreement, however, comes at the price of using a very large (“LO”) value for
↵
s

, which is not guaranteed to be universally applicable.
The main point of the overview in tab. 5 is that an equally good agreement can be obtained with an

↵
s

(m
Z

) value that is consistent with other NLO determinations [63], specifically

↵
s

(m
Z

) = 0.122 , (156)

once the NLO 3-jet corrections are included. This should carry over to other NLO-corrected pro-
cesses, and hence the fragmentation parameters we have settled on should be applicable to future NLO-
corrected studies with VINCIA, and can also serve as a starting point for NLO-level matching studies
with PYTHIA 8. In the latter context, the 2-loop running in particular could be retained, while the
soft fragmentation parameters would presumably have to be somewhat readjusted to absorb differences
between VINCIA and PYTHIA 8 near the hadronization scale12.

11Both VINCIA and PYTHIA are known to give quite good fits to LEP data [18, 25, 59, 60]. For comparisons including other
generators and tunes, see mcplots.cern.ch.

12The differences in soft fragmentation parameters between existing LO VINCIA and PYTHIA-8 tunes could be used as an
initial guideline for such an effort, see, e.g., appendix D.
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Figure 15: L3 light-flavour event shapes: Thrust, C, and D.

For a pedagogical description of the variables, see [55]. Pencil-like 2-jet configurations are to the left
(near zero) for all three observables. This region is particularly sensitive to non-perturbative hadroniza-
tion corrections. More spherical events, with several hard perturbative emissions, are towards the right
(near 0.5 for Thrust and 1.0 for C and D). The maximal ⌧ = 1 � T for a 3-particle configuration
is ⌧ = 1/3 (corresponding to the Mercedes configuration), beyond which only 4-particle (and higher)
states can contribute. This causes a noticeable change in slope in the distribution at that point, see
fig. 15a. The same thing happens for the C parameter at C = 3/4, in fig. 15b. The D parameter is
sensitive to the smallest of the eigenvalues of the sphericity tensor, and is therefore zero for any purely
planar event, causing it to be sensitive only to 4- and higher-particle configurations over its entire range.

Both the new NLO tune (solid blue line with filled-dot symbols) and the old LO one (dashed magenta
line with open-triangle symbols) reproduce all three event shapes very well. With the NLO corrections
switched off (solid red line with open-circle symbols), the new tune produces a somewhat too soft
spectrum, consistent with its low value of ↵

s

(M
Z

) not being able to describe the data without the
benefit of the NLO 3-jet corrections.

As a further cross check, we show two further event-shape variables that were included in the L3
study in fig. 16: the Wide and Total Jet Broadening parameters, B

W

and B
T

, respectively. These have
a somewhat different and complementary sensitivity to the perturbative corrections, compared to the
variables above, picking out mainly the transverse component of jet structure. They are equal at O(↵

s

),
but B

T

receives somewhat larger O(↵2
s

) corrections than B
W

. Again, we see that both the old (LO) and
new (NLO) defaults are able to describe the data, and that the spectrum with the new default value for
↵
s

(M
Z

) is too soft if the NLO corrections are switched off.
Finally, as an aid to constraining the Lund fragmentation-function parameters, the L3 study also

included two infrared-sensitive observables: the charged-particle multiplicity and momentum distribu-
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values, and also LO PDFs)
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αs(MZ)CMW = 0.122

with 2-loop running (new)
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Figure 12: Coefficients of the perturbative series covered by LO calculations. Left: F pro-
duction at lowest order. Right: F + 2 jets at LO, with the half-shaded box illustrating the
restriction to the region of phase space with exactly 2 resolved jets. The total power of ↵s for
each coefficient is n = k + `. (Photo of Max Born from nobelprize.org).

enhancements of the type

↵n
s ln

m2n

✓
Q2

F

Q2
k

◆
(36)

will generate progressively larger corrections, order by order, which will spoil any fixed-order
truncation of the perturbative series. Here, QF is the hard scale associated with the process
under consideration, while Qk is the scale associated with an additional parton, k.

A good rule of thumb is that if �k+1 ⇡ �k (at whatever order you are calculating), then the
perturbative series is converging too slowly for a fixed-order truncation of it to be reliable. For
fixed-order perturbation theory to be applicable, you must place your cuts on the hard process
such that �k+1 ⌧ �k. In the discussion of parton showers in Section 3.2, we shall see how the
region of applicability of perturbation theory can be extended.

The virtual amplitudes, for ` � 1, are divergent for any point in phase space. However,
as encapsulated by the famous KLN theorem [47, 48], unitarity (which essentially expresses
probability conservation) puts a powerful constraint on the IR divergences13, forcing them to
cancel exactly against those coming from the unresolved real emissions that we had to cut out
above, order by order, making the complete answer for fixed k+` = n finite. Nonetheless, since
this cancellation happens between contributions that formally live in different phase spaces,
a main aspect of loop-level higher-order calculations is how to arrange for this cancellation
in practice, either analytically or numerically, with many different methods currently on the
market. We shall discuss the idea behind subtraction approaches in section 2.4.

A convenient way of illustrating the terms of the perturbative series that a given matrix-
element-based calculation includes is given in figure 12. In the left-hand pane, the shaded
box corresponds to the lowest-order “Born-level” matrix element squared. This coefficient
is non-singular and hence can be integrated over all of phase space, which we illustrate by
letting the shaded area fill all of the relevant box. A different kind of leading-order calculation
is illustrated in the right-hand pane of figure 12, where the shaded box corresponds to the
lowest-order matrix element squared for F + 2 jets. This coefficient diverges in the part of
phase space where one or both of the jets are unresolved (i.e., soft or collinear), and hence

13The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
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Figure 13: Coefficients of the perturbative series covered by NLO calculations. Left: F produc-
tion at NLO. Right: F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the
region of phase space with exactly 1 resolved jet. The total power of ↵s for each coefficient is
n = k + `.

integrations can only cover the hard part of phase space, which we reflect by only shading the
upper half of the relevant box.

Figure 13 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a
point on notation: by �

(1)
0 , we intend

�
(1)
0 =

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ] , (37)

which is of order ↵s relative to the Born level. Compare, e.g., with the expansion of equa-
tion (35) to order k + ` = 1. In particular, �

(1)
0 should not be confused with the integral over

the 1-loop matrix element squared (which would be of relative order ↵2
s and hence forms part

of the NNLO coefficient �
(2)
0 ). Returning to figure 13, the unitary cancellations between real

and virtual singularities imply that we can now extend the integration of the real correction in
the left-hand pane over all of phase space, while retaining a finite total cross section,

�NLO
0 =

Z
d�0 |M(0)

0 |2 +

Z
d�1 |M(0)

1 |2 +

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ]

= �
(0)
0 + �

(0)
1 + �

(1)
0 ,

(38)

with �
(0)
0 the finite Born-level cross section, and the positive divergence caused by integrating

the second term over all of phase space is canceled by a negative one coming from the inte-
gration over loop momenta in the third term. One method for arranging the cancellation of
singularities — subtraction — is discussed in section 2.4.

However, if our starting point for the NLO calculation is a process which already has a
non-zero number of hard jets, we must continue to impose that at least that number of jets
must still be resolved in the final-state integrations,

�NLO
1 (p?min) =

Z

p?>p?min

d�1 |M(0)
1 |2 +

Z

p?1

>p?min

d�2 |M(0)
2 |2 +

Z

p?>p?min

d�1 2Re[M(1)
1 M(0)⇤

1 ]

= �
(0)
1 (p? > p?min) + �

(0)
2 (p?1 > p?min) + �

(1)
1 (p? > p?min) ,

(39)
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each coefficient is n = k + `. (Photo of Max Born from nobelprize.org).
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will generate progressively larger corrections, order by order, which will spoil any fixed-order
truncation of the perturbative series. Here, QF is the hard scale associated with the process
under consideration, while Qk is the scale associated with an additional parton, k.

A good rule of thumb is that if �k+1 ⇡ �k (at whatever order you are calculating), then the
perturbative series is converging too slowly for a fixed-order truncation of it to be reliable. For
fixed-order perturbation theory to be applicable, you must place your cuts on the hard process
such that �k+1 ⌧ �k. In the discussion of parton showers in Section 3.2, we shall see how the
region of applicability of perturbation theory can be extended.

The virtual amplitudes, for ` � 1, are divergent for any point in phase space. However,
as encapsulated by the famous KLN theorem [47, 48], unitarity (which essentially expresses
probability conservation) puts a powerful constraint on the IR divergences13, forcing them to
cancel exactly against those coming from the unresolved real emissions that we had to cut out
above, order by order, making the complete answer for fixed k+` = n finite. Nonetheless, since
this cancellation happens between contributions that formally live in different phase spaces,
a main aspect of loop-level higher-order calculations is how to arrange for this cancellation
in practice, either analytically or numerically, with many different methods currently on the
market. We shall discuss the idea behind subtraction approaches in section 2.4.

A convenient way of illustrating the terms of the perturbative series that a given matrix-
element-based calculation includes is given in figure 12. In the left-hand pane, the shaded
box corresponds to the lowest-order “Born-level” matrix element squared. This coefficient
is non-singular and hence can be integrated over all of phase space, which we illustrate by
letting the shaded area fill all of the relevant box. A different kind of leading-order calculation
is illustrated in the right-hand pane of figure 12, where the shaded box corresponds to the
lowest-order matrix element squared for F + 2 jets. This coefficient diverges in the part of
phase space where one or both of the jets are unresolved (i.e., soft or collinear), and hence

13The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
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Figure 13: Coefficients of the perturbative series covered by NLO calculations. Left: F produc-
tion at NLO. Right: F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the
region of phase space with exactly 1 resolved jet. The total power of ↵s for each coefficient is
n = k + `.

integrations can only cover the hard part of phase space, which we reflect by only shading the
upper half of the relevant box.

Figure 13 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a
point on notation: by �

(1)
0 , we intend

�
(1)
0 =

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ] , (37)

which is of order ↵s relative to the Born level. Compare, e.g., with the expansion of equa-
tion (35) to order k + ` = 1. In particular, �

(1)
0 should not be confused with the integral over

the 1-loop matrix element squared (which would be of relative order ↵2
s and hence forms part

of the NNLO coefficient �
(2)
0 ). Returning to figure 13, the unitary cancellations between real

and virtual singularities imply that we can now extend the integration of the real correction in
the left-hand pane over all of phase space, while retaining a finite total cross section,

�NLO
0 =

Z
d�0 |M(0)

0 |2 +

Z
d�1 |M(0)

1 |2 +

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ]

= �
(0)
0 + �

(0)
1 + �

(1)
0 ,

(38)

with �
(0)
0 the finite Born-level cross section, and the positive divergence caused by integrating

the second term over all of phase space is canceled by a negative one coming from the inte-
gration over loop momenta in the third term. One method for arranging the cancellation of
singularities — subtraction — is discussed in section 2.4.

However, if our starting point for the NLO calculation is a process which already has a
non-zero number of hard jets, we must continue to impose that at least that number of jets
must still be resolved in the final-state integrations,

�NLO
1 (p?min) =

Z

p?>p?min

d�1 |M(0)
1 |2 +

Z

p?1

>p?min

d�2 |M(0)
2 |2 +

Z

p?>p?min

d�1 2Re[M(1)
1 M(0)⇤

1 ]

= �
(0)
1 (p? > p?min) + �

(0)
2 (p?1 > p?min) + �

(1)
1 (p? > p?min) ,

(39)
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Figure 12: Coefficients of the perturbative series covered by LO calculations. Left: F pro-
duction at lowest order. Right: F + 2 jets at LO, with the half-shaded box illustrating the
restriction to the region of phase space with exactly 2 resolved jets. The total power of ↵s for
each coefficient is n = k + `. (Photo of Max Born from nobelprize.org).

enhancements of the type

↵n
s ln

m2n

✓
Q2

F

Q2
k

◆
(36)

will generate progressively larger corrections, order by order, which will spoil any fixed-order
truncation of the perturbative series. Here, QF is the hard scale associated with the process
under consideration, while Qk is the scale associated with an additional parton, k.

A good rule of thumb is that if �k+1 ⇡ �k (at whatever order you are calculating), then the
perturbative series is converging too slowly for a fixed-order truncation of it to be reliable. For
fixed-order perturbation theory to be applicable, you must place your cuts on the hard process
such that �k+1 ⌧ �k. In the discussion of parton showers in Section 3.2, we shall see how the
region of applicability of perturbation theory can be extended.

The virtual amplitudes, for ` � 1, are divergent for any point in phase space. However,
as encapsulated by the famous KLN theorem [47, 48], unitarity (which essentially expresses
probability conservation) puts a powerful constraint on the IR divergences13, forcing them to
cancel exactly against those coming from the unresolved real emissions that we had to cut out
above, order by order, making the complete answer for fixed k+` = n finite. Nonetheless, since
this cancellation happens between contributions that formally live in different phase spaces,
a main aspect of loop-level higher-order calculations is how to arrange for this cancellation
in practice, either analytically or numerically, with many different methods currently on the
market. We shall discuss the idea behind subtraction approaches in section 2.4.

A convenient way of illustrating the terms of the perturbative series that a given matrix-
element-based calculation includes is given in figure 12. In the left-hand pane, the shaded
box corresponds to the lowest-order “Born-level” matrix element squared. This coefficient
is non-singular and hence can be integrated over all of phase space, which we illustrate by
letting the shaded area fill all of the relevant box. A different kind of leading-order calculation
is illustrated in the right-hand pane of figure 12, where the shaded box corresponds to the
lowest-order matrix element squared for F + 2 jets. This coefficient diverges in the part of
phase space where one or both of the jets are unresolved (i.e., soft or collinear), and hence

13The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
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Figure 13: Coefficients of the perturbative series covered by NLO calculations. Left: F produc-
tion at NLO. Right: F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the
region of phase space with exactly 1 resolved jet. The total power of ↵s for each coefficient is
n = k + `.

integrations can only cover the hard part of phase space, which we reflect by only shading the
upper half of the relevant box.

Figure 13 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a
point on notation: by �

(1)
0 , we intend

�
(1)
0 =

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ] , (37)

which is of order ↵s relative to the Born level. Compare, e.g., with the expansion of equa-
tion (35) to order k + ` = 1. In particular, �

(1)
0 should not be confused with the integral over

the 1-loop matrix element squared (which would be of relative order ↵2
s and hence forms part

of the NNLO coefficient �
(2)
0 ). Returning to figure 13, the unitary cancellations between real

and virtual singularities imply that we can now extend the integration of the real correction in
the left-hand pane over all of phase space, while retaining a finite total cross section,

�NLO
0 =

Z
d�0 |M(0)

0 |2 +

Z
d�1 |M(0)

1 |2 +

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ]

= �
(0)
0 + �

(0)
1 + �

(1)
0 ,

(38)

with �
(0)
0 the finite Born-level cross section, and the positive divergence caused by integrating

the second term over all of phase space is canceled by a negative one coming from the inte-
gration over loop momenta in the third term. One method for arranging the cancellation of
singularities — subtraction — is discussed in section 2.4.

However, if our starting point for the NLO calculation is a process which already has a
non-zero number of hard jets, we must continue to impose that at least that number of jets
must still be resolved in the final-state integrations,

�NLO
1 (p?min) =

Z

p?>p?min

d�1 |M(0)
1 |2 +

Z

p?1

>p?min

d�2 |M(0)
2 |2 +

Z

p?>p?min

d�1 2Re[M(1)
1 M(0)⇤

1 ]

= �
(0)
1 (p? > p?min) + �

(0)
2 (p?1 > p?min) + �

(1)
1 (p? > p?min) ,

(39)
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made up of two dipole “ends”, hence the antenna formalism tends to generate somewhat fewer
terms. At NLO, however, there is no fundamental incompatibility — the antennae we use here
can always be partitioned into two dipole ends, if so desired. (Note: only the antenna method
has been successfully generalized to NNLO [57, 58]. Other NNLO techniques, not covered
here, are sector decomposition, see [59, 60], and the generic formalism for hadroproduction of
colorless states presented in [61].)

At NLO, the idea with subtraction is thus to rewrite the NLO cross section by adding and
subtracting a simple function, d�S , that encapsulates all the IR limits,

�NLO
= �Born

+

Z
d�F+1

⇣
|M(0)

F+1|2 � d�NLO
S

⌘

| {z }
Finite by Universality

+

Z
d�F 2Re[M(1)

F M(0)⇤
F ] +

Z
d�F+1 d�NLO

S

| {z }
Finite by KLN

. (42)

The task now is to construct a suitable form for d�S . A main requirement is that it should be
sufficiently simple that the integral in the last term can be done analytically, in dimensional
regularization, so that the IR poles it generates can be canceled against those from the loop
term.

To build a set of universal terms that parametrize the IR singularities of any amplitude, we
start from the observation that gauge theory amplitudes factorize in the soft limit, as follows:

|MF+1(. . . , i, j, k, . . .)|2 jg!0! g2s NC

 
2sik

sijsjk
� 2m2

i

s2ij
� 2m2

k

s2jk

!
|MF (. . . , i, k, . . .)|2 ,(43)

where parton j is a soft gluon, partons i, j, and k form a chain of color-space index contractions
(we say they are color-connected), gs is the strong coupling, and the terms in parenthesis are
called the soft eikonal factor. We here show it including mass corrections, which appear if i
and k have non-zero rest masses, with the invariants sab then defined as

sab ⌘ 2pa · pb = (pa + pb)
2 � m2

a � m2
b . (44)

The color factor, NC , is valid for the leading-color contribution, regardless of whether the
i and k partons are quarks or gluons. At subleading color, an additional soft-eikonal factor
identical to the one above but with a color factor proportional to �1/NC arises for each qq̄
pair combination. This, e.g., modifies the effective color factor for qq̄ ! qgq̄ from NC to
NC(1� 1/NC) = 2CF , in agreement with the color factor for quarks being CF rather than CA.

Similarly, amplitudes also factorize in the collinear limit (partons i and j parallel, so
sij ! 0), in which the eikonal factor above is replaced by the famous Altarelli-Parisi splitting
kernels [34], which were already mentioned in section 2.2, in the context of PDF evolution.
They are also the basis of conventional parton-shower models, such as those in PYTHIA [62].
We return to parton showers in section 3.2.

Essentially, what antenna functions, CS dipoles, and the like, all do, is to combine the soft
(eikonal) and collinear (Altarelli-Parisi) limits into one universal set of functions that achieve
the correct limiting behavior for both soft and collinear radiation. To give an explicit example,
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HI IK KL

H I K L

Coll(I) Soft(IK)

Parton Shower (DGLAP) aI aI + aK

Coherent Parton Shower (HERWIG [12, 40], PYTHIA6 [11]) ΘIaI ΘIaI +ΘKaK

Global Dipole-Antenna (ARIADNE [17], GGG [36], WK [32],
VINCIA)

aIK + aHI aIK

Sector Dipole-Antenna (LP [41], VINCIA) ΘIKaIK +ΘHIaHI aIK

Partitioned-Dipole Shower (SK [23], NS [42], DTW [24],
PYTHIA8 [38], SHERPA)

aI,K + aI,H aI,K + aK,I

Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity
of the IK pair, respectively, originate in different shower types. (ΘI and ΘK represent angular vetos
with respect to partons I andK , respectively, and ΘIK represents a sector phase-space veto, see text.)

where the gluon radiation function has absorbed a factor of 2 on the r.h.s. of the last line, due to the
normalization choice. We note that, although these expressions look quite different from the dipole
formula, eq. (19), they lead to identical singularities. This was shown in ref. [29] by identifying z as
the Lorentz invariant energy fraction taken by the quark, z = xi/(xi + xk), and adding the radiation
from the antiquark, q̄K → gj q̄k.

Shared Singularities: This examination of the different presentations of singularities brings us to
the issue of “shared singularities”. In traditional parton showers, as we have just seen, the full leading-
log radiation pattern can only be obtained after summing over pairs of partons (which each radiate as
independent monopoles), and care must be taken in the construction of the shower to make this sum
approximately coherent to reproduce the correct singular behavior for soft wide-angle radiation. This
dipole singularity is the simplest case of what we shall generally refer to as a shared — or multipole
— singularity below; radiation whose full singularity structure (in a particular phase-space limit) can
only be recovered after summing over two or more radiators.

A chain of such uniquely labeled and color ordered gluons, which could, e.g., represent a shower
“event record” at a given point during its evolution, is illustrated in fig. 2. Below the schematic drawing
we give an overview of how the full collinear singularity of parton I , and the full soft singularity of
the IK pair, would be obtained for five different kinds of parton shower models, as follows.

In a traditional parton shower, the full collinear singularity of each parton is contained in the
DGLAP splitting kernel, P (z), that generates radiation off that parton. Since no other radiators share
that collinear direction, there is no double counting at the LL level. (The kernel P (z) constitutes
a complete subtraction term for the collinear singularities in real-emission contributions to an NLO
calculation.) However, in this approach, the soft (eikonal) singularity between the IK pair must be
obtained by summing the radiation functions of partons I andK together, and therefore it is essential
in this type of approach that both the radiation functions and the shower phase-space factorization
represent a correct partitioning of the soft region, with no so-called dead or double-counted zones.

In the early eighties it was shown [40] that additional coherence effects can also be taken into
account in this language, albeit approximately, by imposing angular ordering during shower evolu-

9
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⇥ 1
yijyjk

1
yij

1
yjk

yjk
yij

yij
yjk

y2jk
yij

y2ij
yjk

1 yij yjk

qq̄ ! qgq̄
++ ! +++ 1 0 0 0 0 0 0 0 0 0
++ ! +�+ 1 �2 �2 1 1 0 0 2 0 0
+� ! ++� 1 0 �2 0 1 0 0 0 0 0
+� ! +�� 1 �2 0 1 0 0 0 0 0 0
qg ! qgg
++ ! +++ 1 0 �↵+ 1 0 2↵� 2 0 0 0 0 0
++ ! +�+ 1 �2 �3 1 3 0 �1 3 0 0
+� ! ++� 1 0 �3 0 3 0 �1 0 0 0
+� ! +�� 1 �2 �↵+ 1 1 2↵� 2 0 0 0 0 0
gg ! ggg
++ ! +++ 1 �↵+ 1 �↵+ 1 2↵� 2 2↵� 2 0 0 0 0 0
++ ! +�+ 1 �3 �3 3 3 �1 �1 3 1 1
+� ! ++� 1 �↵+ 1 �3 2↵� 2 3 0 �1 0 0 0
+� ! +�� 1 �3 �↵+ 1 3 2↵� 2 �1 0 0 0 0
qg ! qq̄0q0

++ ! ++� 0 0 0 0 0 0 1
2 0 0 0

++ ! +�+ 0 0 1
2 0 �1 0 1

2 0 0 0
+� ! ++� 0 0 1

2 0 �1 0 1
2 0 0 0

+� ! +�� 0 0 0 0 0 0 1
2 0 0 0

gg ! gq̄q
++ ! ++� 0 0 0 0 0 0 1

2 0 0 0
++ ! +�+ 0 0 1

2 0 �1 0 1
2 0 0 0

+� ! ++� 0 0 1
2 0 �1 0 1

2 0 0 0
+� ! +�+ 0 0 0 0 0 0 1

2 0 0 0

Table 2: Table of coefficients for helicity-dependent global antenna functions. By the C and P invariance
of QCD, the same expressions apply with + $ �, q $ q̄. All other antennae are zero. The parameter ↵
determines the form of the spin-summed global antennae. The default choice in VINCIA is ↵ = 0 which
corresponds to the GGG spin-summed antennae. The finite terms are chosen so that the antennae are positive
on all of final state phase space.
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prescription for the choice of non-singular terms for the sector antennae is to add only the minimal
terms necessary. For antennae whose singular terms are positive on all of phase space, we choose
to set the non-singular terms to 0. For those antennae which require the addition of non-singular
terms for positivity, we choose to add constants where possible and only include higher order terms
in yij and yjk if necessary for simplicity. An example of the construction of sector antennae from its
collinear limits and positivity is given in appendix C and the coefficients of the terms in the sector
antennae are given in tab. 4.

To estimate shower uncertainties due to the ambiguous choice of non-singular terms, we define a
set of MIN and MAX antenna functions, as in the global shower case. The procedure for defining the
sector MIN and MAX antennae is the same as that in the global case. We choose to set the MIN and
MAX antennae for the same helicity configuration to have the same non-singular terms in the sector
case as in the global case.

In the VINCIA code, the sector antennae are derived from the global antennae. Note from tab. 2
and tab. 4 that much of the structure of the sector antennae is captured by the global antennae if ↵ = 1.
To construct a sector antenna, the corresponding global antenna with the same helicity and flavor
structure is evaluated with ↵ = 1 and the missing terms added to recover the full sector antenna. The
precise relationship between the sector (āsct) and global (āgl) antennae for ↵ = 1 for gluon emission
is:

āsct
j/IK(yij , yjk) = ā

gl
j/IK(yij , yjk) + �Ig�HKHk

(
�HIHi�HIHj

 
1 + yjk + y2jk

yij

!

+ �HIHj

 
1

yij(1� yjk)
� 1 + yjk + y2jk

yij

!)

+ �Kg�HIHi

(
�HIHj�HKHk

 
1 + yij + y2ij

yjk

!

+ �HKHj

 
1

yjk(1� yij)
� 1 + yij + y2ij

yjk

!)
.

Here, �Ig is one if I is a gluon and zero otherwise and �HiHj is one if the helicity of particles i and j
are the same and zero otherwise. For antennae with gluons splitting to quarks, the sector antennae are
twice the global antennae.

3 The Shower and Matching Algorithm

PS: Not many changes here. We need to explain how VINCIA has been expanded, with new structures
encapsulating helicity-dependent functions. In the trial-and-veto algorithm itself, not much changes,
but we should of course make clear which trial functions are used for which antennae.

JJ: introduced plot fig. 1

• Trial generation: unchanged (using unpolarized trial functions), for both sector and global,
respectively.

• Find spin-summed physical antenna. Given mother helicities, you sum over daughter helicities.
In sector case, this is the full (three-term) sector antenna, and the accept probability is the full
sector antenna / sum over trial pieces. Use this to determine kinematics (branching invariants +
phase space mapping).
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Figure 4: Illustration of the three phase-space sectors in a color-singlet gigjgk configuration, using transverse
momentum to discriminate between sectors [17].

functions must necessarily reflect this reorganization. The double pole, located at the origin of the
plots in fig. 4, is contained entirely within the IK ! ijk antenna, and can therefore be carried over
from the global case without modification. The single-pole terms, however, change to account for
collinear radiation now being produced by a single antenna rather than two overlapping ones.

In section 3.1, we discuss how the singularity structure of the individual antennae is modified
and derive a complete set of sector antenna functions. In section 3.2, we compare these functions to
fixed-order matrix elements for Z ! 4, 5, and 6 partons. In section 3.3, we discuss the ambiguities
remaining concerning non-singular (and non-universal) terms. Finally, in section 3.4, we compare
various options for how to partition phase-space into sectors.

3.1 Singularity Structure

In the so-called “planar” (leading-color) limit, which is used to represent color flow in parton-shower
event generators, gluons are viewed as composed of a triplet and an antitriplet color charge, which are
part of two separate color dipoles. For instance, in a qgq̄ configuration, there will be one color dipole
stretched between the qg pair and one stretched between the gq̄ pair. The full collinear singularity of
the gluon is obtained by summing over the two. In the global antenna approach, radiation from both
pairs is allowed to contribute over all of phase-space. In the sector approach, either the qg pair or the
gq̄ one contributes to each qggq̄ phase-space point. In order for the two approaches to reproduce the
same collinear limit, the sector antennae must include those collinear terms that would be generated
by their neighbors in the global case.

As our starting point, we take the GGG global antennae [39]. The qq̄ ! qgq̄ antenna is the same
for global and sector decompositions, since there are no neighboring antennae in this case. In the
terminology of our conventions,
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In the qg ! qgg (or gq̄ ! ggq̄) case, there is the collinear limit on the edge of the parent gluon to
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Figure 4: Illustration of the three phase-space sectors in a color-singlet gigjgk configuration, using transverse
momentum to discriminate between sectors [17].

functions must necessarily reflect this reorganization. The double pole, located at the origin of the
plots in fig. 4, is contained entirely within the IK ! ijk antenna, and can therefore be carried over
from the global case without modification. The single-pole terms, however, change to account for
collinear radiation now being produced by a single antenna rather than two overlapping ones.

In section 3.1, we discuss how the singularity structure of the individual antennae is modified
and derive a complete set of sector antenna functions. In section 3.2, we compare these functions to
fixed-order matrix elements for Z ! 4, 5, and 6 partons. In section 3.3, we discuss the ambiguities
remaining concerning non-singular (and non-universal) terms. Finally, in section 3.4, we compare
various options for how to partition phase-space into sectors.
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same collinear limit, the sector antennae must include those collinear terms that would be generated
by their neighbors in the global case.

As our starting point, we take the GGG global antennae [39]. The qq̄ ! qgq̄ antenna is the same
for global and sector decompositions, since there are no neighboring antennae in this case. In the
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be dealt with. In this limit there is a mapping z ! 1 � z between the antenna and its neighboring
antenna. A single global antenna thus compares to the full g ! gg splitting function in the collinear
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In a traditional parton shower, you would face 
the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last → 
proliferation of terms 

Number of histories contributing to nth branching ∝ 2nn!

~ + + + j = 2
→ 4 terms

j = 1
→ 2 terms( ~ +

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

ai !
|MF+1|2P
ai|MF |2

1

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)
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Matched Markovian Antenna Showers

+ Change “shower restart” to Markov criterion:

Given an n-parton configuration, “ordering” scale is 

Qord = min(QE1,QE2,...,QEn)

Unique restart scale, independently of how it was produced

+ Matching: n! → n
Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was produced

36

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

+ Sector antennae 
→ 1 term at any order

(+ generic Lorentz-
invariant and on-shell 
phase-space factorization)

Antenna showers: one term per parton pair 2nn! → n!

Larkosi, Peskin,Phys.Rev. D81 (2010) 054010
Lopez-Villarejo, Skands, JHEP 1111 (2011) 150

Giele, Kosower, Skands, PRD 84 (2011) 054003 
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ⌅PS p�-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ⌅AR kinematics map.

• ARI: p�-ordering using our best imitation of the what the real ARIADNE program does. It uses
p�-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ⌅AR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including �⇤, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p�-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ⌅PS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer

29

S T RO N G  O R D E R I N G

Q: How well do showers do?
Exp: Compare to data. Difficult to interpret; all-orders cocktail including 

hadronization, tuning, uncertainties, etc
Th: Compare products of splitting functions to full tree-level matrix elements

Plot distribution of Log10(PS/ME)
(fourth order)(third order)(second order)

Dead Zone: 1-2% of phase space have no strongly ordered paths leading there*

*fine from strict LL point of view: those points correspond to “unordered” non-log-enhanced configurations
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2→4

Generate Branchings without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space
Overcounting removed by matching

+ smooth ordering beyond matched multiplicities
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p� and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z � 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).

68

Transverse-Momentum-Ordering (ARIADNE)
p2
� =

sijsjk

s

2
Z/m2

T1
4pln

-5 -4 -3 -2 -1 0

2 T1
/p

2 T2p
ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg→Z
VINCIA 1.025

ANT = DEF

ARψ   KIN = 

 (strong)T
2   ORD = p

>4<R

→
 O

rd
er

ed
   

|  
 2

nd
   

|  
 U

no
rd

er
ed

 
←

→ Soft   |   1st Branching   |   Hard ← 

2
Z/m2

T1
4pln

-5 -4 -3 -2 -1 0

2 T1
/p

2 T2p
ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg→Z
VINCIA 1.025

ANT = DEF

ARψ   KIN = 

 (strong)T
2   ORD = p

)
4

RMS(R

→
 O

rd
er

ed
   

|  
 2

nd
   

|  
 U

no
rd

er
ed

 
←

→ Soft   |   1st Branching   |   Hard ← 

2
Z/m2

T1
4pln

-5 -4 -3 -2 -1 0

2 T1
/4

p
2 gg

m
ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg→Z
VINCIA 1.025

ANT = DEF

ARψ   KIN = 

 (strong)T
2   ORD = p

>4<R

2
Z/m2

D1mln
-5 -4 -3 -2 -1 0

2 D1
/m

2 D2
m

ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg→Z
VINCIA 1.025

ANT = DEF

ARψ   KIN = 

 (strong)T
2   ORD = p

>4<R

→
 O

rd
er

ed
   

|  
 2

nd
   

|  
 U

no
rd

er
ed

 
←

→ Soft   |   1st Branching   |   Hard ← 

Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p�, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : ⌃ord PLL ⇤ PimpPLL =

p̂2
�

p̂2
� + p2

�
PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : ⌃ord PLL ⇤ PimpPLL =

p̂2
�

p̂2
� + p2

�
PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : ⌃ord PLL ⇤ PimpPLL =

p̂2
�

p̂2
� + p2

�
PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ⇥AR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : ⌅ord PLL � ⌅ordPariPLL = ⌅ord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ⌅PS p�-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ⌅AR kinematics map.

• ARI: p�-ordering using our best imitation of the what the real ARIADNE program does. It uses
p�-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ⌅AR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including �⇤, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p�-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ⌅PS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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Figure 16: Smoothly ordered matched parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], full color (summed over color permutations). Compare to
the unmatched shower distributions in figs. 10, 14, and 15.

In fig. 16, we show the weight ratios discussed earlier (which are essentially just the inverses of
PME

n ), for Z ⇥ 5 and Z ⇥ 6 partons, now including matching at each preceding order. For the shower
approximations, we use the default smoothly ordered NLC-improved GGG antennæ, with three different
kinematics maps (solid histogram, thin solid line, and dashed lines, respectively). We also compare to
the same settings as the solid histogram but using the ARIADNE radiation functions instead of the GGG
ones (thick solid lines). Comparing these distributions to those in fig. 14, we see that the differences
between the shower models are largely canceled by the matching to the preceding orders, as expected. At
each order, now only a relatively well-controlled and stable matching correction remains, which does not
appear to exhibit any significant deterioration order by order. Note that we have not applied any phase
space cuts here, and hence we find no evidence for any remaining subleading divergences in the matrix
elements leading to problems in this approach. This is in sharp contrast to slicing- or subtraction-based
approaches, where a non-zero matching scale is obligatory beyond the first matched order.

A note on color factor normalizations. Obviously, if the leading-color pieces are not normalized
the same way in two different approaches, the subleading terms must likewise appear different. This,
e.g., leads to some apparent differences between MADGRAPH and the GGG antennæ. With color and
coupling factors, the MADGRAPH-GGG correspondence for the Z ⇥ qggq̄ antenna is:

g4
sAGGG

4 (0, 1, 2, 3) =
2|M4LC(0, 1, 2, 3)|2

Ĉ2
F |M2(s)|2

, (116)

where the factor 2 on the MADGRAPH matrix element cancels the color averaging factor which is
already present in |M4LC|2, which represents a MADGRAPH matrix element with only one element
non-zero in the color matrix, the one corresponding to the (0, 1, 2, 3) color flow squared. In particular,
note that the LC coefficient in MADGRAPH comes with Ĉ2

F , whereas, in order to construct the full
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ⇥AR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : ⌅ord PLL � ⌅ordPariPLL = ⌅ord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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addition, a few other minor points will need to be clarified. Notably, power-correction ambiguities aris-
ing from perturbative differences in the hadronization region (always present in any perturbative calcu-
lation, but important if one wants to retrieve “exactly” the matrix-element answer, for instance for cross-
check purposes), the impact of unordered sequences of radiation that can occur for the smooth-ordering
case (one possibility may be to adopt a strategy similar to the truncated showers of the MC@NLO
approach), and the mutually related issues of total normalization and how much of the (hard) correc-
tions are exponentiated (similar to the differences between the POWHEG and MC@NLO formalisms,
but here occurring at one additional order, where the total normalization that would be relevant is the
NNLO one). Obviously, the extension of the formalism to hadron collisions is also a necessary prereq-
uisite for it to be interesting for LHC phenomenology. We look forward to following up on these issues
in the near future.
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B One-Loop Amplitudes

B.1 Renormalization

Since a detailed derivation of the calculation of Z ! 3 jets can be found in [10] we restrict ourselves
to listing the result in a, for our purpose, convenient form. Divergences are regulated using dimensional
regularization with d = 4 � 2✏. Our results, before ultraviolet renormalization, are cross-checked
with [10] where one must undo the renormalization in their case. Now in order to cancel the ultraviolet
poles we need to renormalize the coupling according to
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the collinear coefficient K. In a colour-ordered decomposition, these are

β0 = b0N + b0,F NF with b0 =
11

6
, b0,F = −1

3
(4.21)

and

K = k0N + k0,F NF with k0 =
67

18
− π2

6
, k0,F = −5

9
. (4.22)

5. Quark-antiquark antennae

The quark-antiquark antenna functions are derived by appropriately normalising the colour-

ordered QCD real radiation corrections to γ∗ → qq̄, described to NNLO accuracy in [44].

The overall normalisation is given by defining the tree-level two-parton quark-antiquark

antenna function

A0
2(s12) ≡ 1 . (5.1)

The one-loop two-parton quark-antiquark antenna is then:
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5.1 Three-parton tree-level antenna functions

The tree-level three-parton quark-antiquark antenna is:
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operators. To extract the remaining finite contribution, we introduce

Finite(X ) ≡ X − Poles(X ) .

Generally,

X = Poles(X ) + Finite(X ) + O(ε). (3.1)

The one-loop antenna functions contain explicit poles from the loop integration. There-

fore, the operators Poles and Finite can also be applied to their unintegrated forms X.

The action of these operators is again to decompose the unintegrated antenna in terms of

infrared singularity operators describing the pole terms and a finite remainder.

All antenna functions are derived from physical matrix elements: the quark-antiquark

antenna functions from γ∗ → qq̄ + (partons) [44], the quark-gluon antenna functions from

χ̃ → g̃ + (partons) [46] and the gluon-gluon antenna functions from H → (partons) [47].

The tree-level antenna functions are obtained by normalising the colour-ordered three- and

four-parton tree-level squared matrix elements to the squared matrix element for the basic

two-parton process,

X0
ijk = Sijk,IK

|M0
ijk|2

|M0
IK |2

,

X0
ijl = Sijkl,IL

|M0
ijkl|2

|M0
IL|2

, (3.2)

where S denotes the symmetry factor associated to the antenna, which accounts both for

potential identical particle symmetries and for the presence of more than one antenna

in the basic two-parton process. The one-loop antenna functions are obtained from the

colour-ordered renormalised one-loop three-parton matrix elements as

X1
ijk = Sijk,IK

|M1
ijk|2

|M0
IK |2

− X0
ijk

|M1
IK |2

|M0
IK |2

. (3.3)

The numerical implementation of the three- and four-parton antenna phase space [25]

requires the partonic emissions to be ordered. Ordering of emissions means that the two

hard radiator partons defining the antenna are identified, and that each unresolved par-

ton can become singular only with the two particles which are adjacent to it, i.e. with

the two radiators for three-parton antenna functions and with one radiator and with the

other unresolved parton for the four-parton antenna functions. For the sake of numeri-

cal implementation, this implies two requirements: (1) the separation of multiple antenna

configurations present in a single antenna function for three- and four-parton antenna func-

tions and (2) the separation of non-ordered emissions (present only at subleading colour

in the four-parton antenna functions) into terms that can be identified with a particular

ordering of the momenta.

In the colour-ordered quark-gluon and gluon-gluon antenna functions derived from

physical matrix elements for neutralino decay [46] and Higgs boson decay [47], it is in

general not possible to identify the hard radiators and the unresolved partons in a unique

manner. The reason for this ambiguity is in the cyclic nature of the colour orderings, which

– 25 –

For the analytic integration, we can use (2.8) to rewrite each of the subtraction terms

in the form,

|Mm|2 J (m)
m dΦm

∫
dΦXijk

X0
ijk,

where |Mm|2, J (m)
m and dΦm depend only on p1, , . . . , p̃I , p̃K , . . . , pm+1 and dΦXijk

and X0
ijk

depend only on pi, pj , pk. The analytic integral of the subtraction term is therefore defined

as the antenna function integrated over the fully inclusive antenna phase space, normalised

appropriately,

X 0
ijk(sijk) =

(
8π2 (4π)−ε eεγ

) ∫
dΦXijk

X0
ijk. (2.11)

This integration is performed analytically in d dimensions to make the infrared singu-

larities explicit and added directly to the one-loop m-particle contributions. The factor(
8π2 (4π)−ε eεγ

)
in the above equation is related to the normalisation of the renormalised

coupling constant, and its relation to the bare coupling parameter g =
√

4πα0 appearing

in the QCD Lagrangian density:

α0µ
2ε
0 Sε = αsµ

2ε

[
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ε
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2π
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2π
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+ O(α3

s)

]
, (2.12)

where

Sε = (4π)εe−εγ with Euler constant γ = 0.5772 . . .

and µ2
0 is the mass parameter introduced in dimensional regularisation to maintain a di-

mensionless coupling in the bare QCD Lagrangian density; β0 and β1 are the first two

coefficients of the QCD β-function:

β0 =
11N − 2NF

6
, β1 =

34N3 − 13N2NF + 3NF

12N
, (2.13)

with N = 3 colours and NF massless quark flavours.

2.2 NNLO infrared subtraction terms

At NNLO, the m-jet production is induced by final states containing up to (m+2) partons,

including the one-loop virtual corrections to (m + 1)-parton final states. As at NLO, one

has to introduce subtraction terms for the (m + 1)- and (m + 2)-parton contributions.

Schematically the NNLO m-jet cross section reads,

dσNNLO =

∫

dΦm+2

(
dσR

NNLO − dσS
NNLO

)
+

∫

dΦm+2

dσS
NNLO

+

∫

dΦm+1

(
dσV,1

NNLO − dσV S,1
NNLO

)
+

∫

dΦm+1

dσV S,1
NNLO

+

∫

dΦm

dσV,2
NNLO , (2.14)

where dσS
NNLO denotes the real radiation subtraction term coinciding with the (m + 2)-

parton tree level cross section dσR
NNLO in all singular limits. Likewise, dσV S,1

NNLO is the

one-loop virtual subtraction term coinciding with the one-loop (m+1)-parton cross section

dσV,1
NNLO in all singular limits. Finally, the two-loop correction to the m-parton cross section

is denoted by dσV,2
NNLO.

– 9 –
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6 Uncertainty Bands

A calculation is only as good as the trustworthiness of its uncertainty bands. Traditional methods
for evaluating shower uncertainties range from simple comparisons between different models to more
elaborate variations of salient model parameters within some theoretically or phenomenologically
justified ranges.

The former kind is, at best, indicative, but can also be grossly misleading. As a classic example,
consider two different parton showers with a cutoff at some factorization scale. They would both agree
there are no jets above that scale, even though a matrix-element-based calculation would certainly
produce jets in that phase-space region. Comparisons of the HERWIG − PYTHIA kind are therefore
of little value when pursuing rigorous uncertainty estimates.

Systematic variation of salient model parameters obviously gives a more trustworthy idea of the
overall uncertainty, and can also give information about which particular sources dominate. However,
it requires more careful preparation and more expert input to set up: which parameters to vary, within
what ranges, and how to make sure the variations are done consistently when combining many tools
in a long chain of event generation. It also requires substantially more time and resources: for each
variation, a new set of events must be generated, matched, unweighted, and possibly passed through
detector simulation. Finally, the ability of a single model to span all possible variations is often limited
— similarly to above, you still cannot use a strongly ordered shower to estimate what the uncertainty
associated with the strong-ordering condition itself might be. There is also no way that, for instance,
PYTHIA’s shower model could be varied to obtain an estimate of what an angular-ordered shower
would give.

Here, we propose to combine the flexibility of the VINCIA formalism to take into account different
ordering variables, radiation functions, etc., with a treatment of uncertainties that only involves the
generation of a single event sample, with a time requirement that is not greatly increased compared
to the case without uncertainty variations. We shall also automate the expert input to some extent,
reducing the number of choices the user must make.

The key question to ask is: if we use (matched) parton shower model A to generate a set of
unweighted events, what would the weight of each of those events have been if we had instead used
parton shower model B to generate them? By answering this question, we can essentially use any
parton shower model as a “phase space primer”, provided it is still reasonably physical and that it
does not have any dead zones, and then compute alternative weights for the same events for any other
set of assumptions.

The most trivial part is to note that, if a particular shower model uses αs1a1 as its radiation function
for a particular branching, the same branching would have happened with the relative probability

P2 =
αs2a2
αs1a1

P1 , (123)

in a different model that uses αs2 as its coupling (e.g., with a different renormalization scale or
scheme) and a2 as its radiation function (e.g., with different finite terms, different partitioning of
shared poles, different subleading or higher-order corrections, or even a different ordering criterion).

This, however, is not quite sufficient. Effectively, only the tree-level expansion of the shower
would be affected by keeping track of such relative probabilities down along the shower chain; the
Sudakov factors would remain unmodified. Such a procedure would therefore explicitly break the
unitarity that is essential to resummation applications, leading to possibly exponentially different
weights between the sets, which would be hard to interpret7. More intuitively, a big uncertainty

7For example, two models that differ systematically by only a small amount on each branching, say 25%, would, after
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on a very soft branching happening late in the shower should not be able to significantly change the
entire event weight, jets and all. In the normal shower approach, it is the property of unitarity which
keeps such things from happening; as soon as any correction grows large, its associated Sudakov
factor must necessarily become small soon thereafter, keeping the total size of any correction inside a
unit-probability integral.

The main part of our proposal therefore concerns a simple way to restore unitarity explicitly also
for the uncertainty variations, as follows. For each accepted branching, a number of trial branchings
have usually first been generated and discarded, to eliminate the overcounting done by the trial func-
tion. In VINCIA, we have so far not been particularly careful to optimize the choice of trial function
(see sec. 3.2), and hence we have quite many failed trials. These are relatively cheap to generate, how-
ever, so the code is not significantly slowed by this inefficiency. Moreover, these failed trials actually
turn out to be useful, even essential, in the present context.

Just as eq. (123) expresses the relative probability for a branching to be accepted under two differ-
ent sets of model parameters, 1 and 2, with 1 playing the role of phase-space generator and 2 the role
of uncertainty variation, it is also possible to ask what the probability of a failed trial to have failed
under different circumstances would have been. Thus each failed trial can actually be used to compute
variations on the no-emission probability, i.e., the Sudakov factors.

Specifically, for each trial, the no-emission probability for the model we use as our phase-space
generator (which corresponds to the settings chosen by the user in VINCIA, including matching, sub-
leading corrections, etc.) is

P1;no = 1− P1 , (124)

whereas the one for the alternative model should be

P2;no = 1− P2 = 1−
αs2a2
αs1a1

P1 . (125)

Thus, by multiplying the relative event weight w2/w1 by P2/P1 for each accepted branching and
by P2;no/P1;no for each failed one, we explicitly restore the unitarity of the set of weights {w2}. In
order to prevent extreme outliers from substantially degrading the statistical precision of the variation
samples, however, we limit the resulting weight adjustments to at most a factor of 2 per branching in
the code (in either direction). The adjustment of the weights for the failed branchings takes the place
of ‘unfailing’ those which should have succeeded with model 2.

The accuracy of the approach obviously depends on the abundance of failed branchings. If the trial
function is completely exact, and no branching ever fails, then the tree-level problem above will still
occur. However, since VINCIA typically generates significantly higher numbers of failed branchings
than accepted ones, its effective numerical mapping of the changes in the Sudakov factors during the
no-branching evolution periods should be reasonably accurate.

To test whether the uncertainty bands produced in this way really reproduce what the shower
model would have generated with different settings, we show a few distributions in Figs. 17 and 18,
with default VINCIA (thin blue line) plus an uncertainty variation (light blue band) on the left-hand
side, and VINCIA run with the actual settings corresponding to that variation on the right, for variations
of the renormalization scale (Fig. 17) and of the antenna function finite terms (Fig.18). In order to
maximize the result of the variations, all matching is switched off, and hence the uncertainty bands
are rather larger than would be the case for default VINCIA settings. The L3 data (black points) [61]
are included mostly to provide a constant reference across the plots; we postpone the discussion of the

20 such branchings, differ by a factor 1.2520 = 100. If they differ by a factor of 2 instead, the result would be a million,
clearly not a reasonable correction to the total event rate.
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6 Uncertainty Bands

A calculation is only as good as the trustworthiness of its uncertainty bands. Traditional methods
for evaluating shower uncertainties range from simple comparisons between different models to more
elaborate variations of salient model parameters within some theoretically or phenomenologically
justified ranges.

The former kind is, at best, indicative, but can also be grossly misleading. As a classic example,
consider two different parton showers with a cutoff at some factorization scale. They would both agree
there are no jets above that scale, even though a matrix-element-based calculation would certainly
produce jets in that phase-space region. Comparisons of the HERWIG − PYTHIA kind are therefore
of little value when pursuing rigorous uncertainty estimates.

Systematic variation of salient model parameters obviously gives a more trustworthy idea of the
overall uncertainty, and can also give information about which particular sources dominate. However,
it requires more careful preparation and more expert input to set up: which parameters to vary, within
what ranges, and how to make sure the variations are done consistently when combining many tools
in a long chain of event generation. It also requires substantially more time and resources: for each
variation, a new set of events must be generated, matched, unweighted, and possibly passed through
detector simulation. Finally, the ability of a single model to span all possible variations is often limited
— similarly to above, you still cannot use a strongly ordered shower to estimate what the uncertainty
associated with the strong-ordering condition itself might be. There is also no way that, for instance,
PYTHIA’s shower model could be varied to obtain an estimate of what an angular-ordered shower
would give.

Here, we propose to combine the flexibility of the VINCIA formalism to take into account different
ordering variables, radiation functions, etc., with a treatment of uncertainties that only involves the
generation of a single event sample, with a time requirement that is not greatly increased compared
to the case without uncertainty variations. We shall also automate the expert input to some extent,
reducing the number of choices the user must make.

The key question to ask is: if we use (matched) parton shower model A to generate a set of
unweighted events, what would the weight of each of those events have been if we had instead used
parton shower model B to generate them? By answering this question, we can essentially use any
parton shower model as a “phase space primer”, provided it is still reasonably physical and that it
does not have any dead zones, and then compute alternative weights for the same events for any other
set of assumptions.

The most trivial part is to note that, if a particular shower model uses αs1a1 as its radiation function
for a particular branching, the same branching would have happened with the relative probability

P2 =
αs2a2
αs1a1

P1 , (123)

in a different model that uses αs2 as its coupling (e.g., with a different renormalization scale or
scheme) and a2 as its radiation function (e.g., with different finite terms, different partitioning of
shared poles, different subleading or higher-order corrections, or even a different ordering criterion).

This, however, is not quite sufficient. Effectively, only the tree-level expansion of the shower
would be affected by keeping track of such relative probabilities down along the shower chain; the
Sudakov factors would remain unmodified. Such a procedure would therefore explicitly break the
unitarity that is essential to resummation applications, leading to possibly exponentially different
weights between the sets, which would be hard to interpret7. More intuitively, a big uncertainty

7For example, two models that differ systematically by only a small amount on each branching, say 25%, would, after
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on a very soft branching happening late in the shower should not be able to significantly change the
entire event weight, jets and all. In the normal shower approach, it is the property of unitarity which
keeps such things from happening; as soon as any correction grows large, its associated Sudakov
factor must necessarily become small soon thereafter, keeping the total size of any correction inside a
unit-probability integral.

The main part of our proposal therefore concerns a simple way to restore unitarity explicitly also
for the uncertainty variations, as follows. For each accepted branching, a number of trial branchings
have usually first been generated and discarded, to eliminate the overcounting done by the trial func-
tion. In VINCIA, we have so far not been particularly careful to optimize the choice of trial function
(see sec. 3.2), and hence we have quite many failed trials. These are relatively cheap to generate, how-
ever, so the code is not significantly slowed by this inefficiency. Moreover, these failed trials actually
turn out to be useful, even essential, in the present context.

Just as eq. (123) expresses the relative probability for a branching to be accepted under two differ-
ent sets of model parameters, 1 and 2, with 1 playing the role of phase-space generator and 2 the role
of uncertainty variation, it is also possible to ask what the probability of a failed trial to have failed
under different circumstances would have been. Thus each failed trial can actually be used to compute
variations on the no-emission probability, i.e., the Sudakov factors.

Specifically, for each trial, the no-emission probability for the model we use as our phase-space
generator (which corresponds to the settings chosen by the user in VINCIA, including matching, sub-
leading corrections, etc.) is

P1;no = 1− P1 , (124)

whereas the one for the alternative model should be

P2;no = 1− P2 = 1−
αs2a2
αs1a1

P1 . (125)

Thus, by multiplying the relative event weight w2/w1 by P2/P1 for each accepted branching and
by P2;no/P1;no for each failed one, we explicitly restore the unitarity of the set of weights {w2}. In
order to prevent extreme outliers from substantially degrading the statistical precision of the variation
samples, however, we limit the resulting weight adjustments to at most a factor of 2 per branching in
the code (in either direction). The adjustment of the weights for the failed branchings takes the place
of ‘unfailing’ those which should have succeeded with model 2.

The accuracy of the approach obviously depends on the abundance of failed branchings. If the trial
function is completely exact, and no branching ever fails, then the tree-level problem above will still
occur. However, since VINCIA typically generates significantly higher numbers of failed branchings
than accepted ones, its effective numerical mapping of the changes in the Sudakov factors during the
no-branching evolution periods should be reasonably accurate.

To test whether the uncertainty bands produced in this way really reproduce what the shower
model would have generated with different settings, we show a few distributions in Figs. 17 and 18,
with default VINCIA (thin blue line) plus an uncertainty variation (light blue band) on the left-hand
side, and VINCIA run with the actual settings corresponding to that variation on the right, for variations
of the renormalization scale (Fig. 17) and of the antenna function finite terms (Fig.18). In order to
maximize the result of the variations, all matching is switched off, and hence the uncertainty bands
are rather larger than would be the case for default VINCIA settings. The L3 data (black points) [61]
are included mostly to provide a constant reference across the plots; we postpone the discussion of the

20 such branchings, differ by a factor 1.2520 = 100. If they differ by a factor of 2 instead, the result would be a million,
clearly not a reasonable correction to the total event rate.
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Figure 18: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the antenna-
function finite terms. L3 data from ref. [55]. Unmatched.

• Two variations in the ordering variable, one being closer to strong ordering in p� and the other to
ordering in themD variable.

• MAX and MIN variations of the subleading color corrections. The specific nature of the variation
depends on whether subleading corrections are switched on in the shower or not. If not, the MAX
variation uses CA for all gluon emission antennae and the MIN one ĈF . If on, the correction
described in Section 4.4 is applied, but the correction itself is then modified by ±50% for the
MAX and MIN variations here.

These variations are provided as alternative weight sets for the generated events, which are available
through methods described in the program’s online manual. For more advanced users, some limited
user control over the variations is also included, such as the ability to change the factor of variation of
the renormalization scale.

When combining several variations to compute the total uncertainty, we advise to take just the largest
bin-by-bin deviations (in either direction) as representing the uncertainty. We believe this is better than
adding the individual terms together either linearly or quadratically, since the latter would have to be
supplemented by a treatment of correlations that we don’t know. With the maximal-deviation approach,
we are free to add as many uncertainty variations as we like, without the number of variations by itself
leading to an inflation of the error.

We should also note that, in the VINCIA code, matching coefficients etc. are calculated for each
uncertainty variation separately. The size of each band is therefore properly reduced, as expected, when
switching on corrections that impact that particular source of uncertainty.

Finally, we note that, though the speed of the calculation is typically not significantly affected by
adding uncertainty variations, the code does run slightly faster without them. We therefore advise to
keep them switched off whenever they are not going to be used.
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Figure 17: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the renormal-
ization scale. L3 data from ref. [55]. Unmatched.

the result of the variations, all matching is switched off, and hence the uncertainty bands are rather
larger than would be the case for default VINCIA settings. The L3 data (black points) [55] are included
mostly to provide a constant reference across the plots; we postpone discussion of them to the section on
LEP comparisons (Section 8). The top panels of each the plots shows MC compared to data, with both
normalized to unity. The bottom panels show the ratio MC/data, with the uncertainties on the data shown
as yellow bands, the inner (lighter) one corresponding to the statistical component only and the outer
(darker) shade corresponding to statistical plus systematic errors (added linearly, to be conservative).

Comparing Figs. 17 and 18, one observes that the two different variations lead to qualitatively dif-
ferent shapes on the uncertainty predictions. The renormalization scale uncertainty, Fig. 17, produces
an uncertainty band of relatively constant size over the whole range of Thrust, whereas the finite terms,
Fig. 18, only contribute to the uncertainty for large values of ⇤ = 1� T , as expected. Comparing left to
right in both figures, we conclude that both the features and the magnitude of the full uncertainty bands
on the right are well reproduced by the weight variations on the left.

Available Variations: So far, five types of automatic variations have been included in the VINCIA
code, starting from version 1.025, via a simple on/off switch. These uncertainty variations are:

• VINCIA’s default settings. This is obviously not a true uncertainty variation, but is provided as a
useful comparison reference when the user has changed one or more parameters.

• MAX and MIN variations of the renormalization scale. The default variation is by a factor of 2
around p�.

• MAX and MIN variations of the antenna function finite terms. The default variation corresponds
to an integrated ±2 gluons for gluon emission antennae, and an integrated 1

2 splitting, for gluon
splitting, uniformly distributed over the antenna phase space.
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