Event Generator Physics

Peter Skands (CERN Theoretical Physics Dept)

Ecole Joliot Curie
Frejus, France, September - October 2013

Scattering Experiments

LHC detector Cosmic-Ray detector
Neutrino detector
X-ray telescope
\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts = integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

In particle physics:

Integrate over all quantum histories (+ interferences)

General-Purpose Event Generators

Calculate Everything \approx solve QCD \rightarrow requires compromise!

Improve lowest-order perturbation theory, by including the 'most significant' corrections
\rightarrow complete events (can evaluate any observable you want)

The Workhorses

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String. HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering. SHERPA : Begun in 2000. Originated in "matching" of matrix elements to showers: CKKW-L. + MORE SPECIALIZED: ALPGEN, MADGRAPH, HELAC, ARIADNE, VINCIA, WHIZARD, (a)MC@NLO, POWHEG, HEJ, PHOJET, EPOS, QGSJET, SIBYLL, DPMJET, LDCMC, DIPSY, HIJING, CASCADE, GOSAM, BLACKHAT, ...

Factorization

Why is Fixed Order QCD not enough?

 : It requires all resolved scales >> @ QCD AND no large hierarchies
Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales
We want to consider high-scale processes \rightarrow large scale differences

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections

FFs: needed to compute (semi-)exclusive cross sections

Resummed pQCD: All resolved scales \gg ^QCD $^{\text {AND }} X$ Infrared Safe

Divide and Conquer

Factorization \rightarrow Split the problem into many (nested) pieces + Quantum mechanics \rightarrow Probabilities \rightarrow Random Numbers

$$
\mathcal{P}_{\text {event }}=\mathcal{P}_{\text {hard }} \otimes \mathcal{P}_{\text {dec }} \otimes \mathcal{P}_{\mathrm{ISR}} \otimes \mathcal{P}_{\mathrm{FSR}} \otimes \mathcal{P}_{\mathrm{MPI}} \otimes \mathcal{P}_{\mathrm{Had}} \otimes \ldots
$$

Hard Process \& Decays:
Use (N)LO matrix elements
\rightarrow Sets "hard" resolution scale for process: Qmax
Initial- \& Final-State Radiation (ISR \& FSR):
Altarelli-Parisi equations \rightarrow differential evolution, $d P /$ dQ 2, as function of resolution scale; run from Qmax to $\sim 1 \mathrm{GeV}$ (More later)

MPI (Multi-Parton Interactions)
Additional (soft) parton-parton interactions: LO matrix elements
\rightarrow Additional (soft) "Underlying-Event" activity
Hadronization
Non-perturbative model of color-singlet parton systems \rightarrow hadrons

(PYTHIA)

PYTHIA anno 1978

(then called JETSET)

```
LU TP 78-18
November, 1978
```


A Monte Carlo Program for Quark Jet Generation

T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is presented, that simulates the fragmentation of a fast parton into a jet of mesons. It uses an iterative scaling scheme and is compatible with the jet model of Field and Feynman.

Note:

Field-Feynman was an early fragmentation model Now superseded by the String (in PYTHIA) and Cluster (in HERWIG \& SHERPA) models.

GURROUTINE JETGEN(N)
COMMON /JET/ K(100,2), P(100,5)
COMMON /PAR/ PUD; PSI, SIGMA, CXZ, EBEG; WFIN, IFLEEG
COMMON /OATA1/ MESO(9,2), CMIX(6;2), PMAS(19)
IFLSGN=(10-IFLBEG)/5
$W=2 . * E B E G$
$I=0$
IPO=0
c. I FLAVOUR AND PT FOR FIRST QUARK

IFLI=IABS (IFLBEG)
PHI $1=6.2832 *$ PANF (0)
PY1 $=$ PT1*COS $(\mathrm{PHI} 1)$
YI PT $1 \times$ SIN(PHI 1)
$100 \quad I=I+1$
2 FIAVOUR ANO PT FOR NEXT ANTIOUARK
IFL $2=1+$ INT (RANF $(0) / P U D)$
PTZ=SIGMA*SORT (-ALOG (RANF (O)))
$\mathrm{PHI} 2=6.2832 *$ RANF (0)
P $\times 2=\mathrm{PT} 2 * \operatorname{Cos}(\mathrm{PHI} 2)$
PYZ $=$ PTZ*SIN (PHIZ) \quad SPIN ADDE ANO FLAVOUR MIXE
C 3 MESON FORMEO, SPIN ADOE $K(I, 1)=M E S O(3 *(I F L 1-1)+I F L 2, I F L S G N)$
$K(I, 1)=M E S O(3 *(I F L 1-1)$
$I S P I N=I N T(P S I+R A N F(O))$
K(I,2) $=1+9 * I S P I N+K(I, 1)$
IF (K (I, 1).LE. 6) GOTO 110
TMIX = RANF (0)
$K M=K(I, 1)-3+3 * I S P I N$
$K(I, 2)=8+9 * I S P I N+I N T(T M I X+C M I X(K M, 1))+I N T(T M I X+C M I X(K M, 2))$
C 4 MESON MASS FROM TABLE; PT FROM CONSTITUENTS
$110 \mathrm{P}(\mathrm{I}, 5)=$ PMAS (K(1;2))
$P(I, 1)=P X 1+P \times 2$
$P(I, 1)=P X 1+P X 2$
PMTS $=P(1,1) * * 2+P(I, 2) * * 2+P(1,5) * * 2$
C 5 RANDOM CHOICE OF $X=(E+P Z) M E S O N /(E+P Z) A V A I L A B L E$ GIVES E ANO PZ $X=$ RANF (0)
IF (RANF (O) $\left.1 T, x_{2}\right) \quad X=1,-X * *(1, / 3$.
$P(I, 3)=(X * W-P M T S /(X * W)) / 2$.
$P(I, 4)=(X * W+P M T S /(X * W)) / 2$.
C $\&$ IF UNSTABLE, DECAY
120 IPD=IPD+1
IF (K (IPD,2). GE.8) CALL DECAY(IPD,I)
IF (IPD.LT. I.AND. I.LE. 96) GOTO 120
7 FLAVOUR ANO PT OF GUARK FORMED IN PAIR WITH ANTIQUARK ABOVE
$I F L 1=I F L 2$
$P \times 1=-P \times 2$
$P Y 1=-P Y 2$
C 8 IF ENOUGH E+PZ LEFT, GO TO 2
$W=(1,-X) * W$
IF (W.GT.WFIN.AND.I.LE.75) GOTO 100
$\mathrm{N}=\mathrm{I}$
RETURN
END

(PYTHIA)

PYTHIA anno 2013

 (now called PYTHIA 8)~ 100,000 lines of C++
What a modern MC generator has inside:

```
LU TP 07-28 (CPC 178 (2008) 852)
October, 2007
A Brief Introduction to PYTHIA 8.1
T. Sjöstrand, S. Mrenna, P. Skands
The Pythia program is a standard tool
for the generation of high-energy
collisions, comprising a coherent set
of physics models for the evolution
from a few-body hard process to a
complex multihadronic final state. It
contains a library of hard processes
and models for initial- and final-state
parton showers, multiple parton-parton
interactions, beam remnants, string
fragmentation and particle decays. It
also has a set of utilities and
interfaces to external programs. [...]
```

- Hard Processes (internal, interfaced, or via Les Houches events)
- BSM (internal or via interfaces)
- PDFs (internal or via interfaces)
- Showers (internal or inherited)
- Multiple parton interactions
- Beam Remnants
- String Fragmentation
- Decays (internal or via interfaces)
- Examples and Tutorial
- Online HTML / PHP Manual
- Utilities and interfaces to external programs

(some) Physics

Charges Stopped or kicked

Radiation

The harder they stop, the harder the fluctations that continue to become radiation

Jets \approx Fractals

- Most bremsstrahlung is

 driven by divergent propagators \rightarrow simple structure- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

$$
\begin{aligned}
& \text { Partons } \mathrm{ab} \rightarrow \quad \mathrm{P}(\mathrm{z})=\text { DGLAP splitting kernels, with } \mathrm{z}=\text { energy fraction }=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right) \\
& \text { "collinear": } \\
& \qquad\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a| | b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{aligned}
$$

Gluon $j \rightarrow$ "soft":
Coherence \rightarrow Parton j really emitted by (i,k) "colour antenna"

$$
\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \stackrel{j_{g} \rightarrow 0}{\rightarrow} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

+ scaling violation: $g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(\mathrm{Q}^{2}\right)$
See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389
Can apply this many times
\rightarrow nested factorizations

Bremsstrahlung

$$
\text { For any basic process } d \sigma_{X}=\checkmark \text { (calculated process by process) }
$$

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \quad \checkmark \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \quad \ldots
\end{aligned}
$$

Factorization in Soft and Collinear Limits

$P(z)$: "DGLAP Splitting Functions"

$$
\begin{aligned}
& \left|M\left(\ldots, p_{i}, p_{j} \ldots\right)\right|^{2} \xrightarrow{i \| j} g_{s}^{2} \mathcal{C} \frac{P(z)}{s_{i j}}\left|M\left(\ldots, p_{i}+p_{j}, \ldots\right)\right|^{2} \\
& \left|M\left(\ldots, p_{i}, p_{j}, p_{k} \ldots\right)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{2 s_{i k}}{s_{i j} s_{j k}}\left|M\left(\ldots, p_{i}, p_{k}, \ldots\right)\right|^{2}
\end{aligned}
$$

"Soft Eikonal" : generalizes to Dipole/Antenna Functions (more later)

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \quad \checkmark \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \quad \ldots
\end{aligned}
$$

Singularities: mandated by gauge theory Non-singular terms: process-dependent
SOFT

COLLINEAR

$$
\begin{array}{r}
\frac{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right] \\
\frac{\left|\mathcal{M}\left(H^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(H^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}+2\right)\right] \\
\text { SOFT } \\
\text { COLLINEAR+F }
\end{array}
$$

Bremsstrahlung

Iterated factorization

Gives us a universal approximation to ∞-order tree-level cross sections. Exact in singular (strongly ordered) limit.
Finite terms (non-universal) \rightarrow Uncertainties for non-singular (hard) radiation

But something is not right ... Total σ would be infinite ...

Loops and Legs

Coefficients of the Perturbative Series

Evolution

Evolution

Evolution

P. Skands

Unitarity \rightarrow Evolution

Unitarity

Kinoshita-Lee-Nauenberg:
(sum over degenerate quantum states = finite)

Loop $=-\operatorname{Int}($ Tree $)+\mathrm{F}$

Parton Showers neglect F
\rightarrow Leading-Logarithmic (LL) Approximation

Imposed by Event evolution:

When (X) branches to $(X+1)$:
Gain one ($X+1$). Loose one (X).
\rightarrow evolution equation with kernel $\frac{d \sigma_{X+1}}{d \sigma_{X}}$
Evolve in some measure of resolution \sim hardness, $1 /$ time...\sim fractal scale
\rightarrow includes both real (tree) and virtual (loop) corrections

- Interpretation: the structure evolves! (example: $\mathrm{X}=2$-jets)
- Take a jet algorithm, with resolution measure " Q ", apply it to your events
- At a very crude resolution, you find that everything is 2 -jets

Evolution Equations

What we need is a differential equation

Boundary condition: a few partons defined at a high scale (Q_{F})
Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff $\sim 1 \mathrm{GeV}$) \rightarrow It's an evolution equation in Q_{F}

Close analogue: nuclear decay
Evolve an unstable nucleus. Check if it decays + follow chains of decays.

Decay constant

$$
\frac{\mathrm{d} P(t)}{\mathrm{d} t}=c_{N}
$$

Probability to remain undecayed in the time interval [t_{1}, t_{2}]

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

Decay probability per unit time

$$
=1-c_{N} \Delta t+\mathcal{O}\left(c_{N}^{2}\right)
$$

$$
\frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{~d} t}=c_{N} \Delta\left(t_{1}, t\right)
$$

(requires that the nucleus did not already decay)

$$
\Delta\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right): \text { "Sudakov Factor" }
$$

Nuclear Decay

$\underset{\text { after time } \mathbf{t}}{\text { Nuclei }} \boldsymbol{\text { remaining unded }}=\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} \mathrm{~d} t \frac{\mathrm{~d} \mathcal{P}}{\mathrm{~d} t}\right)$

The Sudakov Factor

In nuclear decay, the Sudakov factor counts:

 How many nuclei remain undecayed after a time tProbability to remain undecayed in the time interval [t_{1}, t_{2}]

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

The Sudakov factor for a parton system counts:
The probability that the parton system doesn't evolve (branch) when we run the factorization scale ($\sim 1 /$ time) from a high to a low scale

Evolution probability per unit "time"

$$
\frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{~d} t}=c_{N} \Delta\left(t_{1}, t\right)
$$

What's the evolution kernel?

DGLAP splitting functions

\rightarrow Yuri's lectures

Can be derived (in the collinear limit) from requiring invariance of the physical result with respect to $Q_{F} \rightarrow$ RGE

$$
\begin{aligned}
& \begin{array}{c}
\text { DGLAP } \\
\text { (E.g., PYTHIA) }
\end{array} \begin{aligned}
P_{\mathrm{q} \rightarrow \mathrm{qg}}(z) & =C_{F} \frac{1+z^{2}}{1-z}, \\
\mathrm{~d} \mathcal{P}_{a}=\sum_{b, c} \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} t \mathrm{~d} z . & P_{\mathrm{g} \rightarrow \mathrm{gg}}(z)
\end{aligned}=N_{C} \frac{(1-z(1-z))^{2}}{z(1-z)}, \\
& P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}(z)=T_{R}\left(z^{2}+(1-z)^{2}\right), \\
& P_{\mathrm{q} \rightarrow \mathrm{q} \mathrm{\gamma}}(z)=e_{\mathrm{q}}^{2} \frac{1+z^{2}}{1-z}, \\
& p_{b}=z p_{a} \\
& p_{c}=(1-z) p_{a}
\end{aligned} \quad \begin{array}{ll}
c
\end{array}
$$

$$
\mathrm{d} t=\frac{\mathrm{d} Q^{2}}{Q^{2}}=\mathrm{d} \ln Q^{2}
$$

... with Q ${ }^{2}$ some measure of "hardness"
= event/jet resolution measuring parton virtualities / formation time / ...

Note: there exist now also alternatives to AP kernels (with same collinear limits!): dipoles, antennae,

Coherence

QED: Chudakov effect (mid-fifties)

Illustration by T. Sjöstrand
emulsion plate
reduced ionization
normal ionization

Approximations to

 Coherence:Angular Ordering (HERWIG)
Angular Vetos (PYTHIA)
Coherent Dipoles/Antennae
(ARIADNE, Catani-Seymour, VINCIA)

QCD: colour coherence for soft gluon emission

\rightarrow an example of an interference effect that can be treated probabilistically
More interference effects can be included by matching to full matrix elements

Coherence at Work

Example: quark-quark scattering in hadron collisions

Consider one specific phase-space point (eg scattering at 45°)
2 possible colour flows: a and b

Figure 4: Angular distribution of the first gluon emission in $q q \rightarrow q q$ scattering at 45°, for the two different color flows. The light (red) histogram shows the emission density for the forward flow, and the dark (blue) histogram shows the emission density for the backward flow.

Bootstrapped Perturbation Theory

Start from an arbitrary lowest-order process (green = QFT amplitude squared)
Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (approximate infinite-order resummation)

Universality (scaling)
Jet-within-a-jet-within-a-jet-...

Cancellation of real \& virtual singularities
Exponentiation
fluctuations within fluctuations
But \neq full QCD! Only LL Approximation (\rightarrow matching)

The Shower Operator

$$
\text { Born }\left.\frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\text {Born }}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right) \mathrm{H}_{\{p\} \text { : partons }}
$$

But instead of evaluating O directly on the Born final state, first insert a showering operator

$$
\begin{aligned}
& \quad \text { Born } \\
& + \text { shower }\left.\frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\mathcal{S}}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right) \quad \mathrm{s}: \begin{array}{l}
\text { \{p\} : phewering operator }
\end{array}
\end{aligned}
$$

Unitarity: to first order, S does nothing

$$
\mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right)=\delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right)+\mathcal{O}\left(\alpha_{s}\right)
$$

The Shower Operator

To ALL Orders

$$
S\left(\{p\}_{X}, \mathcal{O}\right)=\underset{\substack{\text { "Nothing Happens" } \rightarrow \text { "Evaluate Observable" }}}{\Delta\left(t_{\text {start }}, t_{\text {had }}\right) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{X}\right)\right)}
$$

$$
-\int_{t_{\text {start }}}^{t_{\mathrm{had}}} \mathrm{~d} t \frac{\mathrm{~d} \Delta\left(t_{\text {start }}, t\right)}{\mathrm{d} t} S\left(\{p\}_{X+1}, \mathcal{O}\right)
$$

"Something Happens" \rightarrow "Continue Shower"

All-orders Probability that nothing happens

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} \mathrm{~d} t \frac{\mathrm{~d} \mathcal{P}}{\mathrm{~d} t}\right) \begin{gathered}
\text { (Exponentiation) } \\
\text { Analogous to nuclear decay } \\
\mathrm{N}(\mathrm{t}) \approx \mathrm{N}(0) \exp (-\mathrm{ct})
\end{gathered}
$$

A Shower Algorithm

Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details

1. Generate Random Number, $R \in[0,1]$

Solve equation $R=\Delta\left(t_{1}, t\right)$ for t (with starting scale $\left.t_{1}\right)$ Analytically for simple splitting kernels, else numerically (or by trial+veto)
\rightarrow t scale for next branching

2. Generate another Random Number, $\mathrm{R}_{\mathrm{z}} \in[0,1]$

To find second (linearly independent) phase-space invariant Solve equation $R_{z}=\frac{I_{z}(z, t)}{I_{z}\left(z_{\max }(t), t\right)} \quad$ for z (at scale t) With the "primitive function" $\quad I_{z}(z, t)=\left.\int_{z_{\min }(t)}^{z} \mathrm{~d} z \frac{\mathrm{~d} \Delta\left(t^{\prime}\right)}{\mathrm{d} t^{\prime}}\right|_{t^{\prime}=t}$
3. Generate a third Random Number, $\mathrm{R}_{\varphi} \in[0,1]$

Solve equation $R_{\varphi}=\varphi / 2 \pi$ for $\varphi \rightarrow$ Can now do 3D branching

Perturbative Ambiguities

The final states generated by a shower algorithm will depend on

1. The choice of perturbative evolution variable(s) $t^{[i]}$.
2. The choice of phase-space mapping $\mathrm{d} \Phi_{n+1}^{[i]} / \mathrm{d} \Phi_{n}$.
3. The choice of radiation functions a_{i}, as a function of the phase-space variables.
4. The choice of renormalization scale function μ_{R}.

Non-singular terms, Reparametrizations, Subleading Colour
5. Choices of starting and ending scales.

Phase-space limits / suppressions for hard radiation and choice of hadronization scale
\rightarrow gives us additional handles for uncertainty estimates, beyond just μ_{R} (+ ambiguities can be reduced by including more pQCD \rightarrow matching!)

Jack of All Orders, Master of None?

Nice to have all-orders solution
But it is only exact in the singular (soft \& collinear) limits
\rightarrow gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: visible, extra jets
... which is exactly where fixed-order calculations work!

So combine them!

F\&F+1@LO \times LL

Matching 1: Slicing

Examples: MLM, CKKW, CKKW-L

First emission: "the HERWIG correction"

Use the fact that the angular-ordered HERWIG parton shower has a "dead zone" for hard wide-angle radiation (Seymour, 1995)

F @ LO \times LL-Soft (Herwig Shower)

F+1@ LO $\times \mathbf{L L}$ (HERWIG Corrections)

$\mathbf{F} @ \mathbf{L O}_{1} \times \mathbf{L L}$ (Herwig Matched)

Many emissions: the MLM \& CKKW-L prescriptions

F+1 @ LO \times LL-Soft (excl)

$\mathbf{F + 2}$ @ $\mathbf{L O} \times \mathbf{L L}$ (incl)

F @ $\mathbf{L O}_{2} \times \mathbf{L L}($ MLM \& (L)-CKKW)

Slicing: The Cost

1. Initialization time (to pre-compute cross sections and warm up phase-space grids)
2. Time to generate 1000 events ($Z \rightarrow$ partons, fully showered $\&$ matched. No hadronization.)

1000 SHOWERS

$\mathrm{Z} \rightarrow \mathrm{n}$: Number of Matched Emissions

$$
\begin{gathered}
\mathrm{Z} \rightarrow \text { udscb } ; \text { Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE } ; \mathrm{E}_{\mathrm{cm}}=91.2 \mathrm{GeV} ; \mathrm{Q}_{\text {match }}=5 \mathrm{GeV} \\
\text { SHERPA I.4.0 (+COMIX) ; PYTHIA 8.I. } 65 ; \text { VINCIA I.0.29 (+MADGRAPH 4.4.26) ; } \\
\text { gcc/gfortran v 4.7.I -O2 ; single } 3.06 \mathrm{GHz} \text { core (4GB RAM) }
\end{gathered}
$$

Matching 2: Subtraction

Examples: MC@NLO, aMC@NLO

LO \times Shower

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

NLO

$X^{(2)} \quad X+I^{(2)}$
$\begin{array}{lllll}X^{(1)} & X+I^{(1)} & X+2^{(1)} & X+3^{(1)} & \ldots \\ \text { Born } & X+I^{(0)} & X+2^{(0)} & X+3^{(0)} & \ldots\end{array}$
\ldots Fixed-Order Matrix Element
\square Shower Approximation

Matching 2: Subtraction

Examples: MC@NLO, aMC@NLO

LO \times Shower

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element
...
Shower Approximation

NLO - Showernlo

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Expand shower approximation to NLO analytically, then subtract:

Matching 2: Subtraction

Examples: MC@NLO, aMC@NLO

LO \times Shower

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

| \ldots |
| :---: | Fixed-Order Matrix Element

(NLO - Showernlo)
\times Shower

$X^{(1)}$	$X^{(1)}$	\ldots		
$X^{(1)}$	$X^{(1)}$	$X^{(1)}$	$X^{(1)}$	\ldots
Born	$X^{+} I^{(0)}$	$X^{(1)}$	$X^{(1)}$	\ldots

Fixed-Order ME minus Shower
Approximation (NOTE: can be < 0!)
Subleading corrections generated by shower off subtracted ME

Matching 2: Subtraction

Examples: MC@NLO, aMC@NLO

Combine \rightarrow MC@ NLO Frixione, Webber, JHEP 0206 (2002) 029

Consistent NLO + parton shower (though correction events can have w<0) Recently, has been almost fully automated in aMC@NLO

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

NLO: for X inclusive
LO for X+1
LL: for everything else

NB: w < 0 are a problem because they kill efficiency:

Extreme example: 1000 positive-weight - 999 negative-weight events \rightarrow statistical precision of 1 event, for 2000 generated (for comparison, normal MC@NLO has ~ 10\% neg-weights)

Matching 3: ME Corrections

Standard Paradigm:
Have ME for $X, X+1, \ldots, X+n$;
Want to combine and add showers \rightarrow "The Soft Stuff"
Works pretty well at low multiplicities
Still, only corrected for "hard" scales; Soft still pure LL.
At high multiplicities:
Efficiency problems: slowdown from need to compute and generate phase space from $d \sigma_{x+n}$, and from unweighting (efficiency also reduced by negative weights, if present)
Scale hierarchies: smaller single-scale phase-space region
Powers of alphaS pile up
Better Starting Point: a QCD fractal?

(shameless VINCIA promo)

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)

Interleaved Paradigm:

Have shower; want to improve it using ME for $\mathrm{X}, \mathrm{X}+1, \ldots, \mathrm{X}+\mathrm{n}$.
Interpret all-orders shower structure as a trial distribution

Quasi-scale-invariant: intrinsically multi-scale (resums logs)
Unitary: automatically unweighted (\& IR divergences \rightarrow multiplicities)
More precise expressions imprinted via veto algorithm: ME corrections at LO, NLO, ... \rightarrow soft and hard corrections
No additional phase-space generator or σ_{X+n} calculations \rightarrow fast

Automated Theory Uncertainties

For each event: vector of output weights (central value $=1$)

+ Uncertainty variations. Faster than N separate samples; only one sample to analyse, pass through detector simulations, etc.

LO: Giele, Kosower, Skands, PRD84(2011)054003
NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\begin{aligned}
& \longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2} \\
& \text { Correct to Matrix Element }
\end{aligned}
$$

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\rightarrow \quad \text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\rightarrow\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

First Order

PYTHIA: LO $_{1}$ corrections to most SM and BSM decay processes, and for pp \rightarrow Z/W/H (Sjöstrand 1987)
POWHEG (\& POWHEG BOX): $\mathrm{LO}_{1}+\mathrm{NLO}_{0}$ corrections for generic processes (Frixione, Nason, Oleari, 2007)

Multileg NLO:

VINCIA: $\mathrm{LO}_{1,2,3,4}+\mathrm{NLO}_{0,1}$ (shower plugin to PYTHIA 8; formalism for pp soon to appear) (see previous slide) MiNLO-merged POWHEG: $\mathrm{LO}_{1,2}+\mathrm{NLO}_{0,1}$ for $\mathrm{pp} \rightarrow \mathrm{Z} / \mathrm{W} / \mathrm{H}$ UNLOPS: for generic processes (in PYTHIA 8, based on POWHEG input) (Lönnblad \& Prestel, 2013)

A88

The Tyranny of Carlo

"Another change that I find disturbing is the rising tyranny of
Carlo. No, I don't mean that fellow who runs CERN, but the other one, with first name Monte.

The simultaneous increase in detector complexity and in computation power has made simulation techniques an essential feature of contemporary experimentation. The Monte Carlo simulation has become the major means of visualization of not only detector performance but also of physics phenomena. So far so good.

But it often happens that the physics simulations provided by the the MC generators carry the authority of data itself. They look like data and feel like data, and if one is not careful they are accepted as if they were data. All Monte Carlo codes come with a GIGO (garbage in, garbage out) warning label. But the GIGO warning label is just as easy for a physicist to ignore as that little message on a packet of cigarettes is for a chain smoker to ignore. I see nowadays experimental papers that claim agreement with QCD (translation: someone's simulation labeled QCD) and/or disagreement with an alternative piece of physics (translation: an unrealistic simulation), without much evidence of the inputs into those simulations."

> Account for parameters + pertinent cross-checks and validations Do serious effort to estimate uncertainties, by salient MC variations

Uncertainty Estimates

a) Authors provide specific "tune variations"

Run once for each variation \rightarrow envelope
PS, Phys. Rev. D82 (2010) 074018

b) One shower run

+ unitarity-based uncertainties \rightarrow envelope
Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003

Uncertainty Estimates

a) Authors provide specific "tune variations"

Run once for each variation \rightarrow envelope
PS, Phys. Rev. D82 (2010) 074018

b) One shower run

+ unitarity-based uncertainties \rightarrow envelope
Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003

Summary: Parton Showers

Aim: generate events in as much detail as mother nature
\rightarrow Make stochastic choices \sim as in Nature (Q.M.) \rightarrow Random numbers
Factor complete event probability into separate universal pieces, treated independently and/or sequentially (Markov-Chain MC)

Improve lowest-order perturbation theory by including 'most significant' corrections

Resonance decays (e.g., $\left.t \rightarrow b W^{+}, W \rightarrow q q^{1}, H^{0} \rightarrow \gamma^{0} y^{0}, Z^{0} \rightarrow \mu^{+} \mu^{-}, \ldots\right)$
Bremsstrahlung (FSR and ISR, exact in collinear and soft* limits)
Hard radiation (matching, discussed tomorrow)
Hadronization (strings/clusters, discussed tomorrow)
Additional Soft Physics: multiple parton-parton interactions, BoseEinstein correlations, colour reconnections, hadron decays, ...

Coherence*

Soft radiation \rightarrow Angular ordering or Coherent Dipoles/Antennae

```
See also: 1) MCnet Review (long): Phys.Rept. 504 (2011) 145-233 and/or 2) PDG Review

\section*{Jets vs Showers}

\section*{Jet clustering algorithms}

Map event from low resolution scale (i.e., with many partons/hadrons, most of which are soft) to a higher resolution scale (with fewer, hard, IR-safe, jets)

Jet Clustering
Many soft particles (Deterministic*) \(\longrightarrow\) A few hard jets


Hadronization
 (Probabilistic)

Born-level ME

\section*{Parton shower algorithms}

Map a few hard partons to many softer ones
Probabilistic \(\rightarrow\) closer to nature. Not uniquely invertible by any jet algorithm*

\section*{Antennae}

\section*{Observation: the evolution kernel is responsible} for generating real radiation.
\(\rightarrow\) Choose it to be the ratio of the real-emission matrix element to the Born-level matrix element
\(\rightarrow\) AP in coll limit, but also includes the Eikonal for soft radiation.

Dipole-Antennae
(E.g., ARIADNE, VINCIA)
\(\mathrm{d} \mathcal{P}_{I K \rightarrow i j k}=\frac{\mathrm{d} s_{i j} \mathrm{~d} s_{j k}}{16 \pi^{2} s} a\left(s_{i j}, s_{j k}\right)\)

\[
\begin{aligned}
& \quad 2 \rightarrow 3 \text { instead of } 1 \rightarrow 2 \\
& \quad(\rightarrow \text { all partons on shell }) \\
& a_{q \bar{q} \rightarrow q g \bar{q}}=\frac{2 C_{F}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}\right) \\
& a_{q g \rightarrow q g g}= \\
& =\frac{C_{A}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}-s_{i j}^{3}\right) \\
& a_{g g \rightarrow g g g}= \\
& =\frac{C_{A}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}-s_{i j}^{3}-s_{j k}^{3}\right) \\
& a_{q g \rightarrow q \bar{q}^{\prime} q^{\prime}}=\frac{T_{R}}{s_{j k}}\left(s-2 s_{i j}+2 s_{i j}^{2}\right) \\
& a_{g g \rightarrow g q^{\prime} q^{\prime}}=a_{q g \rightarrow q q^{\prime} q^{\prime}}
\end{aligned}
\]
... + non-singular terms

\section*{The "CKKW" Prescription}

\section*{Start from a set of fixed-order MEs}

\section*{Separate Phase-Space Integrations}


Wish to add showers while eliminating Double Counting:
Transform inclusive cross sections, for "X or more", to exclusive ones, for "X and only X"
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Jet Algorithm (CKKW) \(\rightarrow\) Recluster back to \(F \rightarrow\) "fake" brems histo Or use statistical showers (Lönnblad), now done in all implementation Reweight each internal line by shower Sudakov factor \& each vertex b} \\
\hline \[
\sigma_{F+1}^{\operatorname{exc}}\left(Q_{F+1}\right)
\] & \(\sigma_{F+2}^{\text {exc }}{ }^{\star}\left(Q_{F+2}\right)\) \\
\hline
\end{tabular}

Reweight each external line by shower Sudakov factor
\(\sigma_{F}^{\mathrm{exc}}\left(Q_{\text {cut }}\right) \quad \sigma_{F+1}^{\mathrm{exc}}\left(Q_{\text {cut }}\right)\)
Now add a genuine parton shower \(\rightarrow\) remaining evolution down to confinement scale

\section*{Automatic Uncertainty Estimates}

\section*{One shower run (VINCIA + PYTHIA) \\ + unitarity-based uncertainties \(\rightarrow\) envelope \\ Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003}
```

