Event Generator Physics

Peter Skands (CERN Theoretical Physics Dept)

Ecole Joliot Curie Frejus, France, September - October 2013

Lecture 1 / 2

Scattering Experiments

→ Integrate differential cross sections over specific phase-space regions

Predicted number of counts = integral over solid angle

 $N_{\rm count}(\Delta\Omega) \propto \int_{\Delta\Omega} \mathrm{d}\Omega \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$

In particle physics:

Integrate over all quantum histories (+ interferences)

Lots of dimensions? Complicated integrands? → Use Monte Carlo

General-Purpose Event Generators

Calculate Everything \approx solve QCD \rightarrow requires compromise!

Improve lowest-order perturbation theory,
 by including the `most significant' corrections
 → complete events (can evaluate any observable you want)

The Workhorses

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String. HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering. SHERPA : Begun in 2000. Originated in "matching" of matrix elements to showers: CKKW-L. + MORE SPECIALIZED: ALPGEN, MADGRAPH, HELAC, ARIADNE, VINCIA, WHIZARD, (a)MC@NLO, POWHEG, HEJ, PHOJET, EPOS, QGSJET, SIBYLL, DPMJET, LDCMC, DIPSY, HIJING, CASCADE, GOSAM, BLACKHAT, ...

Factorization

Why is Fixed Order QCD not enough?

: It requires all resolved scales >> Λ_{QCD} **AND** no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales We want to consider high-scale processes \rightarrow large scale differences

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \sum_{a,b} \sum_{f} \int_{\hat{X}_{f}} f_{a}(x_{a}, Q_{i}^{2}) f_{b}(x_{b}, Q_{i}^{2}) \frac{\mathrm{d}\hat{\sigma}_{ab \to f}(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2})}{\mathrm{d}\hat{X}_{f}} D(\hat{X}_{f} \to X, Q_{i}^{2}, Q_{f}^{2})$$

PDFs: needed to compute inclusive cross sections

FFs: needed to compute (semi-)exclusive cross sections

Resummed pQCD: All resolved scales >> Λ_{QCD} **AND** X Infrared Safe

^{*)}pQCD = perturbative QCD

Divide and Conquer

Factorization → Split the problem into many (nested) pieces + Quantum mechanics → Probabilities → Random Numbers

 $\mathcal{P}_{\mathrm{event}} \;=\; \mathcal{P}_{\mathrm{hard}} \,\otimes\, \mathcal{P}_{\mathrm{dec}} \,\otimes\, \mathcal{P}_{\mathrm{ISR}} \,\otimes\, \mathcal{P}_{\mathrm{FSR}} \,\otimes\, \mathcal{P}_{\mathrm{MPI}} \,\otimes\, \mathcal{P}_{\mathrm{Had}} \,\otimes\, \dots$

Hard Process & Decays:

Use (N)LO matrix elements

→ Sets "hard" resolution scale for process: Q_{MAX}

Initial- & Final-State Radiation (ISR & FSR):

Altarelli-Parisi equations \rightarrow differential evolution, dP/dQ², as function of resolution scale; run from Q_{MAX} to ~ 1 GeV (More later)

MPI (Multi-Parton Interactions)

Additional (soft) parton-parton interactions: LO matrix elements

→ Additional (soft) "Underlying-Event" activity

Hadronization

Non-perturbative model of color-singlet parton systems \rightarrow hadrons

(PYTHIA)

PYTHIA anno 1978 (then called JETSET)

LU TP 78-18 November, 1978

A Monte Carlo Program for Quark Jet Generation

T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is presented, that simulates the fragmentation of a fast parton into a jet of mesons. It uses an iterative scaling scheme and is compatible with the jet model of Field and Feynman.

Note:

Field-Feynman was an early fragmentation model Now superseded by the String (in PYTHIA) and Cluster (in HERWIG & SHERPA) models.

SUBROUTINE JETGEN(N) COMMON /JET/ K(100,2), P(100,5) COMMON /PAR/ PUD, PS1, SIGMA, CX2, EBEG, WFIN, IFLBEG COMMON /DATA1/ MESO(9,2), CMIX(6,2), PMAS(19) IFLSGN=(10-IFLBEG)/5 W=2.*E8EG 1=0 IPD=0 C 1 FLAVOUR AND PT FOR FIRST QUARK IFL1=IABS(IFLBEG) PT1=SIGMA*SQRT(-ALOG(RANF(D))) PHI1=6.2832*RANF(0) PX1=PT1*COS(PHI1) PY1=PT1*SIN(PHI1) 100 I=I+1 C 2 FLAVOUR AND PT FOR NEXT ANTIQUARK IFL2=1+INT(RANF(0)/PUD) PT2=SIGMA*SQRT(-ALOG(RANF(0))) PH12=6.2832*RANF(0) PX2=PT2*COS(PHI2) PY2=PT2*SIN(PHI2) C 3 MESON FORMED, SPIN ADDED AND FLAVOUR MIXED K(I,1)=MESO(3*(IFL1-1)+IFL2,IFLSGN) ISPIN=INT(PS1+RANF(0)) K(I,2)=1+9*ISPIN+K(I:1) IF(K(I,1).LE.6) GOTO 110 TMIX=RANF(0) KM=K(I,1)-6+3*ISPIN K(I,2)=8+9*ISPIN+INT(TMIX+CMIX(KM,1))+INT(TMIX+CMIX(KM,2)) C 4 MESON MASS FROM TABLE, PT FROM CONSTITUENTS 110 P(1,5)=PMAS(K(1,2)) P(I,1) = PX1 + PX2P(I,2) = PY1 + PY2PMTS=P(1,1)**2+P(1,2)**2+P(1,5)**2 C 5 RANDOM CHOICE OF X=(E+PZ)MESON/(E+PZ)AVAILABLE GIVES E AND PZ x = RANF(0)IF(RANF(D).LT.CX2) X=1.-X**(1./3.) P(1,3)=(X*W-PMTS/(X*W))/2. P(I,4)=(X*W+PMTS/(X*W))/2. C & IF UNSTABLE, DECAY CHAIN INTO STABLE PARTICLES 120 IPD=IPD+1 IF(K(IPD,2).GE.8) CALL DECAY(IPD,I) IF(IPD.LT.I.AND.I.LE.96) GOTO 12D C 7 FLAVOUR AND PT OF QUARK FORMED IN PAIR WITH ANTIQUARK ABOVE IFL1=IFL2 PX1 = -PX2PY1=-PY2 C 8 IF ENOUGH E+PZ LEFT, GO TO 2 W = (1, -X) * WIF(W.GT.WFIN.AND.I.LE.95) GOTO 100 N = IRETURN END

(PYTHIA)

PYTHIA anno 2013

(now called PYTHIA 8)

LU TP 07-28 (CPC 178 (2008) 852) October, 2007

A Brief Introduction to PYTHIA 8.1

T. Sjöstrand, S. Mrenna, P. Skands

The Pythia program is a standard tool for the generation of high-energy collisions, comprising a coherent set of physics models for the evolution from a few-body hard process to a complex multihadronic final state. It contains a library of hard processes and models for initial- and final-state parton showers, multiple parton-parton interactions, beam remnants, string fragmentation and particle decays. It also has a set of utilities and interfaces to external programs. [...]

~ 100,000 lines of C++

What a modern MC generator has inside:

- Hard Processes (internal, interfaced, or via Les Houches events)
- BSM (internal or via interfaces)
- PDFs (internal or via interfaces)
- Showers (internal or inherited)
- Multiple parton interactions
- Beam Remnants
- String Fragmentation
- Decays (internal or via interfaces)
- Examples and Tutorial
- Online HTML / PHP Manual
- Utilities and interfaces to external programs

(some) Physics

cf. equivalent-photon approximation Weiszäcker, Williams ~ 1934

Charges Stopped or kicked

Radiation

a.k.a. Bremsstrahlung Synchrotron Radiation

Radiation

The harder they stop, the harder the fluctations that continue to become radiation

Jets \approx Fractals

- Most bremsstrahlung is driven by divergent propagators → simple structure
- Amplitudes factorize in singular limits (→ universal "conformal" or "fractal" structure)

$$\propto \frac{1}{2(p_a \cdot p_b)}$$

Partons ab \rightarrow P(z) = DGLAP splitting kernels, with z = energy fraction = E_a/(E_a+E_b) "collinear": $|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)|^2 \xrightarrow{a||b} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots, a+b, \ldots)|^2$

Gluon j \rightarrow "soft": Coherence \rightarrow Parton j really emitted by (i,k) "colour antenna" $|\mathcal{M}_{F+1}(\ldots,i,j,k\ldots)|^2 \stackrel{j_g \to 0}{\rightarrow} g_s^2 \mathcal{C} \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots,i,k,\ldots)|^2$

+ scaling violation: $g_s^2 \rightarrow 4\pi \alpha_s(Q^2)$

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times \rightarrow nested factorizations

Bremsstrahlung

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \ldots$

Factorization in Soft and Collinear Limits

P(z): "DGLAP Splitting Functions"

$$|M(\ldots, p_i, p_j \ldots)|^2 \stackrel{i||j}{\to} g_s^2 \mathcal{C} \frac{P(z)}{s_{ij}} |M(\ldots, p_i + p_j, \ldots)|^2$$

$$M(\ldots, p_i, p_j, p_k \ldots) | \stackrel{2}{\longrightarrow} \stackrel{j_g \to 0}{\longrightarrow} g_s^2 \mathcal{C} \frac{2s_{ik}}{s_{ij}s_{jk}} |M(\ldots, p_i, p_k, \ldots)|^2$$

"Soft Eikonal" : generalizes to Dipole/Antenna Functions (more later)

Bremsstrahlung

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \ldots$

Singularities: mandated by gauge theory Non-singular terms: process-dependent

$$\begin{split} \frac{|\mathcal{M}(Z^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(Z^0 \to q_I \bar{q}_K)|^2} &= g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} \right) \right] \\ \frac{\mathcal{M}(H^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(H^0 \to q_I \bar{q}_K)|^2} &= g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \\ \mathbf{SOFT} & \mathbf{COLLINEAR} + \mathbf{F} \end{split}$$

Bremsstrahlung

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \quad \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \quad \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \quad \dots$

Iterated factorization

Gives us a universal approximation to ∞ -order tree-level cross sections. Exact in singular (strongly ordered) limit.

Finite terms (non-universal) \rightarrow Uncertainties for non-singular (hard) radiation

But something is not right ... Total σ would be infinite ...

Loops and Legs

Coefficients of the Perturbative Series

Evolution

 $Q \sim Q_X$

Exclusive = n and only n jets Inclusive = n or more jets

Evolution

Exclusive = n and only n jets Inclusive = n or more jets

Evolution

Unitarity → Evolution

Unitarity

Kinoshita-Lee-Nauenberg: (sum over degenerate quantum states = finite)

Loop = -Int(Tree) + F

Parton Showers neglect F

→ Leading-Logarithmic (LL) Approximation

Imposed by Event evolution:

When (X) branches to (X+1): Gain one (X+1). Loose one (X).

 \rightarrow evolution equation with kernel $\frac{d\sigma_{X+1}}{d\sigma_X}$

Evolve in some measure of *resolution* ~ hardness, 1/time ... ~ fractal scale

→ includes both real (tree) and virtual (loop) corrections

Interpretation: the structure evolves! (example: X = 2-jets)

- Take a jet algorithm, with resolution measure "Q", apply it to your events
- At a very crude resolution, you find that everything is 2-jets

Evolution Equations

What we need is a differential equation

Boundary condition: a few partons defined at a high scale (Q_F) Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff ~ 1 GeV) \rightarrow It's an evolution equation in Q_F

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.

Decay constant

$$\frac{\mathrm{d}P(t)}{\mathrm{d}t} = c_N$$
Probability to remain undecayed in the time
interval $[t_1, t_2]$
 $\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} c_N \,\mathrm{d}t\right) = \exp\left(-c_N \,\Delta t\right)$

Decay probability per unit time

$$\frac{\mathrm{d}P_{\mathrm{res}}(t)}{\mathrm{d}t} = \frac{-\mathrm{d}\Delta}{\mathrm{d}t} = c_N \,\Delta(t_1, t)$$

(requires that the nucleus did not already decay)

 $= 1 - c_N \Delta t + \mathcal{O}(c_N^2)$

Nuclear Decay

The Sudakov Factor

In nuclear decay, the Sudakov factor counts:

How many nuclei remain undecayed after a time t

Probability to remain undecayed in the time interval $[t_1, t_2]$

$$\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} c_N \,\mathrm{d}t\right) = \exp\left(-c_N \,\Delta t\right)$$

The Sudakov factor for a parton system counts:

The probability that the parton system doesn't evolve (branch) when we run the factorization scale (~1/time) from a high to a low scale

Evolution probability per unit "time"

$$\frac{\mathrm{d}P_{\mathrm{res}}(t)}{\mathrm{d}t} = \frac{-\mathrm{d}\Delta}{\mathrm{d}t} = c_N \,\Delta(t_1, t)$$

(replace t by shower evolution scale)

(replace *c_N* by proper shower evolution kernels)

What's the evolution kernel?

→ Yuri's lectures

DGLAP splitting functions

Can be derived (*in the collinear limit*) from requiring invariance of the physical result with respect to $Q_F \rightarrow RGE$

Note: there exist now also alternatives to AP kernels (with same collinear limits!): dipoles, antennae, .

Coherence

QED: Chudakov effect (mid-fifties)

QCD: colour coherence for soft gluon emission

 \rightarrow an example of an interference effect that can be treated probabilistically

More interference effects can be included by matching to full matrix elements

Work

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

hadron collisions

tering at 45°)

Figure 4: Angular distribution of the first gluon emission in $qq \rightarrow qq$ scattering at 45°, for the two different color flows. The light (red) histogram shows the emission density for the forward flow, and the dark (blue) histogram shows the emission density for the backward flow.

Another good recent example is the SM contribution to the Tevatron top-quark forwardbackward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

Bootstrapped Perturbation Theory

Start from an **arbitrary lowest-order** process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (approximate infinite-order resummation)

The Shower Operator

But instead of evaluating O directly on the Born final state, first insert a showering operator

Born
+ shower
$$\frac{d\sigma_H}{d\mathcal{O}}\Big|_{\mathcal{S}} = \int d\Phi_H |M_H^{(0)}|^2 \mathcal{S}(\{p\}_H, \mathcal{O})$$
 {p}: partons
S: showering operator

Unitarity: to first order, S does nothing

 $\mathcal{S}(\{p\}_H, \mathcal{O}) = \delta \left(\mathcal{O} - \mathcal{O}(\{p\}_H) \right) + \mathcal{O}(\alpha_s)$

The Shower Operator

To ALL Orders (Markov Chain) $S(\{p\}_X, \mathcal{O}) = \Delta(t_{\text{start}}, t_{\text{had}})\delta(\mathcal{O} - \mathcal{O}(\{p\}_X))$ "Nothing Happens" \rightarrow "Evaluate Observable" $-\int_{t_{\text{start}}}^{t_{\text{had}}} dt \frac{d\Delta(t_{\text{start}}, t)}{dt} S(\{p\}_{X+1}, \mathcal{O})$ "Something Happens" \rightarrow "Continue Shower"

All-orders Probability that nothing happens

$$\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} \mathrm{d}t \; \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}t}\right) \quad \begin{array}{l} \text{(Exponential}\\ \text{Analogous}\\ \text{N(t)} \approx \end{array}$$

(Exponentiation) Analogous to nuclear decay $N(t) \approx N(0) \exp(-ct)$

A Shower Algorithm

Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details

1. Generate Random Number, $R \in [0,1]$ Solve equation $R = \Delta(t_1, t)$ for t (with starting scale t_l) Analytically for simple splitting kernels, else numerically (or by trial+veto) \rightarrow t scale for next branching

2. Generate another Random Number, $R_z \in [0,1]$

To find second (linearly independent) phase-space invariant

Solve equation
$$R_z = \frac{I_z(z,t)}{I_z(z_{\max}(t),t)}$$
 for z (at scale t)
With the "primitive function" $I_z(z,t) = \int_{z_{\min}(t)}^{z} dz \left. \frac{d\Delta(t')}{dt'} \right|_{t'=t}$

3. Generate a third Random Number, $R_{\varphi} \in [0,1]$ Solve equation $R_{\varphi} = \varphi/2\pi$ for $\varphi \rightarrow$ Can now do 3D branching

Perturbative Ambiguities

The final states generated by a shower algorithm will depend on

- 1. The choice of perturbative evolution variable(s) $t^{[i]}$. \leftarrow Ordering & Evolution-scale choices
- 2. The choice of phase-space mapping $d\Phi_{n+1}^{[i]}/d\Phi_n$. Recoils, kinematics
- 3. The choice of radiation functions a_i , as a function of the phase-space variables.
- 4. The choice of renormalization scale function μ_R .
- 5. Choices of starting and ending scales.

Subleading Colour Phase-space limits / suppressions for hard radiation and choice of

hadronization scale

Non-singular terms, Reparametrizations,

→ gives us additional handles for uncertainty estimates, beyond just μ_R (+ ambiguities can be reduced by including more pQCD → matching!)

Jack of All Orders, Master of None?

Nice to have all-orders solution

But it is only exact in the singular (soft & collinear) limits

→ gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: **visible, extra jets**

... which is exactly where fixed-order calculations work!

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Matching 1: Slicing

Examples: MLM, CKKW, CKKW-L

First emission: "the HERWIG correction"

Use the fact that the angular-ordered HERWIG parton shower has a "dead zone" for hard wide-angle radiation (Seymour, 1995)

Many emissions: the MLM & CKKW-L prescriptions

Slicing: The Cost

1. Initialization time 2. Time to generate 1000 events (to pre-compute cross sections $(Z \rightarrow partons, fully showered \&$ and warm up phase-space grids) matched. No hadronization.) 10000s **1000 SHOWERS** SHERPA+COMIX SHERPA (CKKW-L) 1000s 1000s (example of state of the art) 100s 100s 10s 10s 1s 1s 0.1s 3 5 5 6 4 3 2 6 4 2

$Z \rightarrow n$: Number of Matched Emissions

 $Z \rightarrow n$: Number of Matched Emissions

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; E_{CM} = 91.2 GeV ; Q_{match} = 5 GeV SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ; VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Examples: MC@NLO, aMC@NLO

LO × Shower NLO

Examples: MC@NLO, aMC@NLO

$LO \times Shower$ NLO - Shower_{NLO}

X ⁽²⁾	X+I ⁽²⁾	•••		
X (1)	X+I ^(I)	X+2 ^(I)	X+3(I)	
Born	X+I ⁽⁰⁾	X+2 ⁽⁰⁾	X+3 ⁽⁰⁾	•••

Expand shower approximation to NLO analytically, then subtract:

Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

Examples: MC@NLO, aMC@NLO

LO × Shower

X ⁽²⁾	X+I ⁽²⁾	•••		
X ⁽¹⁾	X+I ^(I)	X+2 ⁽¹⁾	X+3 ⁽¹⁾	•••
Born	X+I ⁽⁰⁾	X+2 ⁽⁰⁾	X+3 ⁽⁰⁾	••••

(NLO - Shower_{NLO}) × Shower

•••

Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

Subleading corrections generated by shower off subtracted ME

Examples: MC@NLO, aMC@NLO

Combine → MC@NLO Frixione, Webber, JHEP 0206 (2002) 029

Consistent NLO + parton shower (though correction events can have w<0)

Recently, has been almost fully automated in aMC@NLO

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

NLO: for X inclusive LO for X+1 LL: for everything else

NB: w < 0 are a problem because they kill efficiency:

Extreme example: 1000 positive-weight - 999 negative-weight events \rightarrow statistical precision of 1 event, for 2000 generated (for comparison, normal MC@NLO has ~ 10% neg-weights)

Matching 3: ME Corrections

Standard Paradigm:

Have ME for X, X+1,..., X+n;

Double counting, IR divergences, multiscale logs

Want to combine and add showers → "The Soft Stuff"

Works pretty well at low multiplicities

Still, only corrected for "hard" scales; Soft still pure LL.

At high multiplicities:

Efficiency problems: slowdown from need to compute and generate phase space from $d\sigma_{X+n}$, and from unweighting (efficiency also reduced by negative weights, if present)

Scale hierarchies: smaller single-scale phase-space region

Powers of alphaS pile up

Better Starting Point: a QCD fractal?

(shameless VINCIA promo)

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)

Interleaved Paradigm:

Have shower; want to improve it using ME for X, X+1, ..., X+n.

Interpret all-orders shower structure as a trial distribution

Quasi-scale-invariant: intrinsically multi-scale (resums logs) Unitary: automatically unweighted (& IR divergences \rightarrow multiplicities) More precise expressions imprinted via veto algorithm: ME corrections at LO, NLO, ... \rightarrow soft and hard corrections No additional phase-space generator or σ_{X+n} calculations \rightarrow fast

Automated Theory Uncertainties

For each event: vector of output weights (central value = 1) + Uncertainty variations. Faster than N separate samples; only one sample to analyse, pass through detector simulations, etc.

LO: Giele, Kosower, Skands, PRD84(2011)054003

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Illustrations from: PS, TASI Lectures, arXiv:1207.2389

First Order

PYTHIA: LO₁ corrections to most SM and BSM decay processes, and for pp \rightarrow Z/W/H (Sjöstrand 1987) **POWHEG** (& POWHEG BOX): LO₁ + NLO₀ corrections for generic processes (Frixione, Nason, Oleari, 2007)

Multileg NLO:

VINCIA: $LO_{1,2,3,4} + NLO_{0,1}$ (shower plugin to PYTHIA 8; formalism for pp soon to appear) (see previous slide) **MINLO**-merged POWHEG: $LO_{1,2} + NLO_{0,1}$ for pp $\rightarrow Z/W/H$ **UNLOPS**: for generic processes (in PYTHIA 8, based on POWHEG input) (Lönnblad & Prestel, 2013)

Speed

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; E_{CM} = 91.2 GeV ; Q_{match} = 5 GeV SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ; VINCIA 1.0.29 + MADGRAPH 4.4.26 ; gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

The Tyranny of Carlo

J. D. Bjorken

"Another change that I find disturbing is the rising tyranny of Carlo. No, I don't mean that fellow who runs CERN, but the other one, with first name Monte.

The simultaneous increase in detector complexity and in computation power has made simulation techniques an essential feature of contemporary experimentation. The Monte Carlo simulation has become the major means of visualization of not only detector performance but also of physics phenomena. So far so good.

But it often happens that the physics simulations provided by the the MC generators carry the authority of data itself. They look like data and feel like data, and if one is not careful they are accepted as if they were data. All Monte Carlo codes come with a GIGO (garbage in, garbage out) warning label. But the GIGO warning label is just as easy for a physicist to ignore as that little message on a packet of cigarettes is for a chain smoker to ignore. I see nowadays experimental papers that claim agreement with QCD (translation: someone's simulation labeled QCD) and/or disagreement with an alternative piece of physics (translation: an unrealistic simulation), without much evidence of the inputs into those simulations."

Account for parameters + pertinent cross-checks and validations Do serious effort to estimate uncertainties, by salient MC variations

Uncertainty Estimates

a) Authors provide specific "tune variations" Run once for each variation→ envelope

b) One shower run
 + unitarity-based uncertainties → envelope

Uncertainty Estimates

a) Authors provide specific "tune variations" Run once for each variation→ envelope

b) **One** shower run + unitarity-based uncertainties \rightarrow envelope Giele, Kosower, PS; <u>Phys. Rev. D84 (2011) 054003</u> **1-Thrust (udsc)**

Summary: Parton Showers

Aim: generate events in as much detail as mother nature

- \rightarrow Make stochastic choices \sim as in Nature (Q.M.) \rightarrow Random numbers
- **Factor** complete event probability into separate universal pieces, treated independently and/or sequentially (Markov-Chain MC)

Improve lowest-order perturbation theory by including `most significant' corrections

- Resonance decays (e.g., $t \rightarrow bW^+$, $W \rightarrow qq'$, $H^0 \rightarrow \gamma^0 \gamma^0$, $Z^0 \rightarrow \mu^+ \mu^-$, ...)
- Bremsstrahlung (FSR and ISR, exact in collinear and soft* limits)
- Hard radiation (matching, discussed tomorrow)
- Hadronization (strings/clusters, discussed tomorrow)
- Additional Soft Physics: multiple parton-parton interactions, Bose-Einstein correlations, colour reconnections, hadron decays, ...

Coherence*

Soft radiation → Angular ordering or Coherent Dipoles/Antennae

See also: **1)** MCnet Review (long): <u>Phys.Rept. 504 (2011) 145-233</u> and/or **2)** PDG Review on Monte Carlo Event Generators, and/or **3)** PS, TASI Lectures (short): <u>arXiv:1207.2389</u>

Jets vs Showers

Jet clustering algorithms

Map event from low resolution scale (i.e., with many partons/hadrons, most of which are soft) to a higher resolution scale (with fewer, hard, IR-safe, jets)

Parton shower algorithms

Map a few hard partons to many softer ones

Probabilistic \rightarrow closer to nature. Not uniquely invertible by any jet algorithm^{*}

(* See "Qjets" for a probabilistic jet algorithm, <u>arXiv:1201.1914</u>) (* See "Sector Showers" for a deterministic shower, <u>arXiv:1109.3608</u>)

Antennae

Observation: the evolution kernel is responsible for generating real radiation.

 \rightarrow Choose it to be the ratio of the real-emission matrix element to the Born-level matrix element

 \rightarrow AP in coll limit, but also includes the Eikonal for soft radiation.

Dipole-Antennae (E.g., ARIADNE, VINCIA) $d\mathcal{P}_{IK \to ijk} = \frac{ds_{ij}ds_{jk}}{16\pi^2 s} a(s_{ij}, s_{jk})$

 $2 \rightarrow 3$ instead of $1 \rightarrow 2$ (\rightarrow all partons on shell)

$$a_{q\bar{q}\to qg\bar{q}} = \frac{2C_F}{s_{ij}s_{jk}} \left(2s_{ik}s + s_{ij}^2 + s_{jk}^2 \right)$$

$$a_{qg\to qgg} = \frac{C_A}{s_{ij}s_{jk}} \left(2s_{ik}s + s_{ij}^2 + s_{jk}^2 - s_{ij}^3 \right)$$

$$a_{gg\to ggg} = \frac{C_A}{s_{ij}s_{jk}} \left(2s_{ik}s + s_{ij}^2 + s_{jk}^2 - s_{ij}^3 - s_{jk}^3 \right)$$

$$a_{qg\to q\bar{q}'q'} = \frac{T_R}{s_{jk}} \left(s - 2s_{ij} + 2s_{ij}^2 \right)$$

$$a_{gg\to g\bar{q}'q'} = a_{qg\to q\bar{q}'q'}$$

... + non-singular terms

The "CKKW" Prescription

Catani, Krauss, Kuhn, Webber, JHEP11(2001)063 Lönnblad, JHEP05(2002)046 Start from a set of fixed-order MEs Separate Phase-Space Integrations $\sigma_{F+1}^{\rm inc}(Q_{\rm cut})$ $\sigma_{F+2}^{\rm inc}(Q_{\rm cut})$ $\sigma_F^{\rm inc}$ Wish to add showers while eliminating Double Counting: Transform inclusive cross sections, for "X or more", to exclusive ones, for "X and only X" Jet Algorithm (CKKW) \rightarrow Recluster back to F \rightarrow "fake" brems history Or use statistical showers (Lönnblad), now done in all implementations Reweight each internal line by shower Sudakov factor & each vertex by $\alpha_s(\mu_{PS})$ $\sigma_{F+1}^{\rm exc}(Q_{F+1})$ $\sigma_{F+2}^{\rm exc}(Q_{F+2})$ Reweight each external line by shower Sudakov factor $\sigma_{F+1}^{\mathrm{exc}}(Q_{\mathrm{cut}})$ $\sigma_F^{\rm exc}(Q_{\rm cut})$ Now add a genuine parton shower \rightarrow remaining evolution down to confinement scale Start from Q_{cut} Start from Q_{F+2} * •

Automatic Uncertainty Estimates

One shower run (VINCIA + PYTHIA)

+ unitarity-based uncertainties \rightarrow envelope

Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003

PYTHIA Event and Cross Section Statistics PYTHIA Event and Cross Section Statistics								
Subprocess		Code 	Tri	Number c ed Selec	of events ted Accepte	d	sigma + (estimat	- delta ed) (mb)
f fbar -> gamma*/ZO		221	105	11 10	0000 1000	0 4	1.143e-05	0.000e+00
sum		İ	105	11 10	1000	0 4	4.143e-05	0.000e+00
End PYTHIA Event and Cross VINCIA Statistics Number of nonunity-weight events Number of negative-weight events								
This run User settings Var : VINCIA defaults Var : AlphaS-Hi Var : AlphaS-Lo Var : Antennae-Hi Var : Antennae-Lo Var : NLO-Hi Var : NLO-LO Var : Ordering-Stronger Var : Ordering-mDaughter Var : Subleading-Color-Hi Var : Subleading-Color-Lo	i = 0 1 2 3 4 5 6 7 8 9 10 11	IsUnw yes yes no no no yes yes no no no no	<pre><w> 1.000 1.000 0.996 1.020 1.000 0.996 1.000 1.000 1.000 1.004 1.033 1.001 1.006</w></pre>	<w-1> 0.000 0.000 -3.89e-03 1.99e-02 2.61e-04 -4.33e-03 0.000 0.000 4.48e-03 3.25e-02 7.37e-04 6.44e-03</w-1>	- - - - - - - - - - - -	1/ <w> 1.000 1.000 1.004 0.981 1.000 1.004 1.000 1.000 0.996 0.968 0.999 0.994</w>	Max Wt 1.000 22.414 43.099 5.417 10.753 1.000 1.000 14.225 55.954 1.505	<w>/MaxWt</w>