Zurich Phenomenology Workshop, January 2012

Higgs Searches - Sensitivity to Hadronization, Underlying Event, Pile-up, and MC tunings

Peter Skands (CERN)

Many plots from mcplots.cern.ch : Lot of credit to A. Karneyeu, D. Konstantinov, S. Prestel, A. Pytel

Exhortation

Final Remark from slides of M. Mangano

• Higgs-search studies are bringing in valuable information for the validation and further improvement of the tools, and further efforts should be made, alongside the discovery race, to fully exploit the potential of these data, to benefit improved tools, and further applications to studies of the Higgs once found, or other BSM searches

The SM groups in ATLAS, CMS, ALICE, and LHCb have already placed extremely valuable high-quality constraints on MC modeling. (Thank you!)

Main tool for propagating such constraints to MC authors and tuning:

HEPDATA and **RIVET**

If you look into an SM modeling aspect in the course of a Higgs or new-physics search, please consider publishing it in this form, if at all possible

Ensures that your constraints are **shared** so everyone can benefit from them

http://projects.hepforge.org/rivet/

From Partons to Pions

General-Purpose Monte Carlo models

Start from pQCD (still mostly LO). Extend towards Infrared. HERWIG/JIMMY, PYTHIA, SHERPA, EPOS

I) Shower Starting Scale = Matrix-element IR cutoff scale / matching scale

I) Shower Starting Scale = Matrix-element IR cutoff scale / matching scale

Beware: multiple defiitions of pT, Corke & Sjöstrand, EPJC69(2010)1

I) Shower Starting Scale = Matrix-element IR cutoff scale / matching scale Beware: multiple defitions of p_T, Corke & Sjöstrand, EPJC69(2010)I (a) Example: PYTHIA definition of p_T $p_{\perp}^{2} = p_{\perp evol}^{2} - \frac{p_{\perp evol}^{4}}{p_{\perp evol,max}^{2}}$ (b) $p_{\perp}^{2} = p_{\perp evol}^{2} - \frac{p_{\perp evol}^{4}}{p_{\perp evol,max}^{2}}$ (c) $p_{\perp}^{2} = p_{\perp evol}^{2} - \frac{p_{\perp evol}^{4}}{p_{\perp evol,max}^{2}}$ (c) $p_{\perp}^{2} = p_{\perp evol}^{2} - \frac{p_{\perp evol}^{4}}{p_{\perp evol,max}^{2}}$ (c) $p_{\perp}^{2} = p_{\perp evol}^{2} - \frac{p_{\perp evol,max}^{4}}{p_{\perp evol,max}^{2}}$ (c) $p_{\perp}^{2} = p_{\perp evol}^{2} - \frac{p_{\perp evol,max}^{4}}{p_{\perp evol,max}^{2}}$ (c) $p_{\perp}^{2} = p_{\perp evol}^{2} - \frac{p_{\perp evol,max}^{4}}{p_{\perp evol,max}^{2}}$ (c) $p_{\perp}^{2} = p_{\perp evol,max}^{2}$ (c) $p_{\perp evol,max}^{2}$ (c) p_{\perp

P. Skands

I) Shower Starting Scale = Matrix-element IR cutoff scale / matching scale

Beware: multiple defiitions of pT, Corke & Sjöstrand, EPJC69(2010)1

2) Choice of matching scale

In perturbative region, QCD is approximately scale invariant

→ A scale of 20 GeV for a W boson becomes 40 GeV for something weighing $2M_{W}$, etc ... (+ adjust for C_A/C_F if g-initiated) → The matching scale should be written as a **ratio** (Bjorken scaling) Using a too low matching scale → everything just becomes highest ME *Caveat emptor: showers generally do not include helicity correlations*

Renormalization Scale

in Parton Showers

One-loop radiation functions contain pieces proportional to

the β function (E.g.,: e+e- \rightarrow 3 jets, for arbitrary choice of μ R (e.g., μ R= mZ) piece from integrating quark loops over all of phase space

$$n_f A_3^0 \left(\ln \left(\frac{s_{23}}{\mu_R^2} \right) + \ln \left(\frac{s_{13}}{\mu_R^2} \right) \right) +$$
 sluon loops

Proportional to the β function (b₀).

Can be absorbed by using $\mu_R^4 = s_{13} s_{23} = p_T^2 s$. (~"BLM")

In an ordered shower, quark (and gluon) loop integrals are restricted by strong-ordering condition \rightarrow modified to

 $\mu_R = p_T$ (but depends on ordering variable? Anyway, we're using pT here)

Additional logs induced by gluon loops can be absorbed by replacing Λ^{MS} by $\Lambda^{MC} \sim 1.5 \Lambda^{MS}$ (with mild dependence on number of flavors)

Catani, Marchesini, Webber, NPB349 (1991) 635

Remaining ambiguity \rightarrow tuning

Note: CMW not automatic in PYTHIA, has to be done by hand, by choosing effective Λ or $\alpha_s(M_Z)$ values instead of \overline{MS} ones Note 2:There are obviously still order 2 uncertainties on μ_R , but this is the background for the central choice made in showers

µ_R in a matched setting (MLM)

B. Cooper et al., arXiv:1109.5295

If using one code for MEs and another for showering

Tree-level corrections use α_s from Matrix-element Generator

Virtual corrections use α_s from Shower Generator (Sudakov)

Mismatch if the two do not use same Λ_{QCD} or $\alpha_s(m_z)$

Parton Showers

Formally LL but include several important NLL aspects. A "good" shower should get close to NLL.

Other Ambiguities and issues (all beyond LL)

Momentum Recoil Strategies (global vs local $I \rightarrow 2 vs 2 \rightarrow 3$)

Coherence (e.g., angular-ordered parton showers vs p_T-ordered dipole ones, in particular initial-final connections: FSR broadening of ISR jets, ...)

Jet Substructure (e.g., DGLAP vs Dipole/Antenna radiation functions, polarization effects on brems correlations, and effective $I \rightarrow 3$ description in topologies with compressed hierarchies: high-mass substructure)

Mass Effects (b-jet calibration vs light-jet.) Description of H→bb + backgrounds

Gluon Splittings $g \rightarrow q\bar{q}$ (less well controlled even for massless quarks + not even singular for massive b quarks!) Backgrounds to $H \rightarrow bb$

Important cross-checks from comparisons to data (tuning) but also from theory (e.g., talk by Zanderighi)

Important test: LHC Jet Shapes

Dominated by FSR. For ISR, see talks by Mangano (slide 7-9), deFlorian, Zanderighi, and Higgs Working Group writeup

Plots from mcplots.cern.ch

Underlying Event

Lots of ambiguities and issues

Interesting to get constraints on non-trivial QCD **But bottom line** for High-p_T searches is UE now under good control (if using up-to-date MPI-based models/tunes)

(Though note: UE level sensitive to PDF choice!)

Underlying Event

Lots of ambiguities and issues

- Interesting to get constraints on non-trivial QCD
- **But bottom line** for High-p_T searches is UE now
- under good control (if using up-to-date MPI-based models/tunes)

(Though note: UE level sensitive to PDF choice!)

Color Connections

Better theory models needed

Color Reconnections?

E.g.,

. . .

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (PS, Wicke: Eur. Phys. J. C52 (2007) 133)

Better theory models needed

Color Reconnections?

E.g.,

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (PS, Wicke: Eur. Phys. J. C52 (2007) 133)

Better theory models needed

Pile-Up

= additional zero-bias interactions

Processes with no hard scale:

Larger uncertainties \rightarrow Good Underlying Event does not imply good pile-up.

Error of 50% on a soft component \rightarrow not bad. Multiply it by 60 Pile-Up interactions \rightarrow bad!

Calibration & filtering good at recovering jet calibration (with loss of resolution), but missing energy and isolation sensitive to modeling. H→WW

(E.g., YY studies by ATLAS, CMS, CDF, D0) $H \rightarrow \gamma \gamma$?

Pile-Up

= additional zero-bias interactions

Processes with no hard scale:

Larger uncertainties \rightarrow Good Underlying Event does not imply good pile-up.

H→WW

Error of 50% on a soft component \rightarrow not bad. Multiply it by 60 Pile-Up interactions \rightarrow bad!

Calibration & filtering good at recovering jet calibration (with loss of resolution), but missing energy and isolation sensitive to modeling.

 $H \rightarrow \gamma \gamma$?

Models

Minimum-Bias & Underlying Event

(E.g., YY studies by ATLAS, CMS, CDF, D0)

MC models so far: problems describing both MB & UE simultaneously → Consider using dedicated MB/diffraction model for pile-up

(UE/MB tension may be resolved in 2012 (eg. studies by R. Field), but for now must live with it)

Experimentalists advised to use unbiased data (when possible)

Pile-Up

= additional zero-bias interactions

Processes with no hard scale:

Larger uncertainties \rightarrow Good Underlying Event does not imply good pile-up.

H→WW

Error of 50% on a soft component \rightarrow not bad. Multiply it by 60 Pile-Up interactions \rightarrow bad!

Calibration & filtering good at recovering jet calibration (with loss of resolution), but missing energy and isolation sensitive to modeling.

 $H \rightarrow \gamma \gamma$? (E.g., $\gamma \gamma$ studies by ATLAS, CMS, CDF, D0)

Models

Minimum-Bias & Underlying Event MC models so far: problems describing both MB & UE simultaneously → Consider using dedicated MB/diffraction model for pile-up

(UE/MB tension may be resolved in 2012 (eg. studies by R. Field), but for now must live with it)

Experimentalists advised to use unbiased data (when possible)

Diffraction Warning: in forward region, Pile-up has larger diffractive component than Min-Bias (zero bias vs min-bias). Harder to reject due to lack of tracking in FWD region. Poorly described (or not at all) in current MC models \rightarrow can affect ETMiss etc. An improved model has been included in PYTHIA 8, but *still needs testing and tuning*. Improved models also on their way in Herwig++ and in Sherpa. Best current description of diffraction may be PHOJET, though also not perfect.

Extreme Fragmentation

See also talk by Mangano, slides 10-12

How often does an entire jet fragment into **a single/isolated particle?** (can produce dangerous fakes) Controlled by the behavior of the fragmentation function at $z \rightarrow I$. Deep Sudakov region, very tough to model. Intrinsically suppressed in cluster models. But even good string tunes probably not very reliable.

Extreme Fragmentation

See also talk by Mangano, slides 10-12

How often does an entire jet fragment into **a single/isolated particle?** (can produce dangerous fakes) Controlled by the behavior of the fragmentation function at $z \rightarrow I$. Deep Sudakov region, very tough to model. Intrinsically suppressed in cluster models. But even good string tunes probably not very reliable.

Plots from mcplots.cern.ch

Towards automatic uncertainty estimates

"inspired" by PDF uncertainties, see e.g., talk by J. Stirling

Towards automatic uncertainty estimates

"inspired" by PDF uncertainties, see e.g., talk by J. Stirling a) Authors provide specific "tune variations" b) **One** shower run (unweighted) + unitarity-based uncertainties Run once for each variation (= separate samples) \rightarrow envelope (= sets of weights) \rightarrow envelope Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003 PS, Phys. Rev. D82 (2010) 074018 91 GeV ee Z (hadronic) 1/N dN/d(1-T) 1-Thrust (udsc) 1/N dN/d(1-T) 10² 1-Thrust (particle-level, charged) • L3 10 Vincia (incl Z→5 at LO and $\mu_R = p_T$ at one loop) 10 vthia 6 (357:T16 10⁻¹ vthia 6 (358:T32) VINCIA example Vincia:uncertaintyBands = on PYTHIA 6 example 10⁻² **Perugia Variations** Vincia 1.027 + MadGraph 4.426 + Pythia 8.153 10-1 Eel.Unc. Bel.Unc. Data from Phys.Rept. 399 (2004) 71 μ_R , K_{MPI}, CR, E_{cm}-scaling, PDFs ALEPH 1996 S3486095 10-2 Pythia 6.426 Ord -Def Finite QMatch -0.3 0.2 0.1 0.4 0 1-T 1.4 Ratio to ALEPH [heory/Data 1.5 1.2 0.8 0.6 Plot from mcplots.cern.ch 0.3 0.4 0.1 0.2 0 1-T (udsc) 0.5

Note: not done yet for hadronization parameters

0.1

0.2

0.3

0.4

 $1/N_{2}^{2}$

0.5

Towards automatic uncertainty estimates

"inspired" by PDF uncertainties, see e.g., talk by J. Stirling

a) Authors provide specific "tune variations"

Run once for each variation

(= separate samples) \rightarrow envelope

- b) **One** shower run (unweighted)
 - + unitarity-based uncertainties
 - (= sets of weights) \rightarrow envelope

Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003

* PYTHIA Event and Cross Section Statistics*									
Subprocess		Code	-	Number o	of events		sigma +- delta		
				ea Serec	ted Accep	ted	(estimat	(am) (b9)	
				11 10					
T Tbar -> gamma*/20			105	11 10	1000 IU	000 4	4.143e-05	0.000e+00	
sum		İ	105	11 10	0000 10	000	4.143e-05	0.000e+00	
 * End PYTHIA Event and Cross Section Statistics*									
* VINCIA Statistics									
Number of nonunity-weight events			=	none				·	
Number of negative-weight events			=	none					
	weight(i)		Avg Wt	Avg Dev	rms(dev)	kUnwt	Expec	ted effUnw	
This run	i =	ISUNW	<w></w>	<w-1></w-1>		1/ <w></w>	Max Wt	<w>/MaxWt</w>	
User settings	0	yes	1.000	0.000	—	1.000	- 1 000	1 000	
Var : VINCIA GETAUTUS		yes	1.000		-	1.000	1.000		
Val . AlphaStl-Max	2	110	0.990	-3.69e-03	_	1.004 0.081	ZZ.414 13 000	4.44e-02	
Var : Antennae-Max		no	1 000	2 61e - 02		1_000	5_417	0 185	
Var : Antennae-Min	5	no	0.996	-4.33e-03	_	1_{-004}	10.753	9.26e-02	
Var : RESERVED	6	ves	1.000	0.000	_	1.000	1.000	1.000	
Var : RESERVED	7	ves	1.000	0.000	_	1.000	1.000	1.000	
Var : Ordering-Stronger	8	no	1.004	4.48e-03	—	0.996	14.225	7.06e-02	
Var : Ordering-mDaughter	9	no	1.033	3.25e-02	_	0.968	55.954	1.85e-02	
Var : ColorNLČ-Max	10	no	1.001	7.37e-04	_	0.999	1.505	0.665	
Var : ColorNLC-Min	11	no	1.006	6.44e-03	_	0.994	5.283	0.191	
End VINCIA Statistics									
End VINCIA Statistics									

Summary

Underlying Event and Jet Shapes: ok (for high-p_T physics)

If in doubt check <u>mcplots.cern.ch</u> ISR: include pTZ, pTtt, pTjj (EXP) & pTH, jet vetos (TH) WARNING: UE tuning depends **explicitly** on the PDF it was tuned with !!!

Pile-Up: Mismodeling can impact missing energy (and isolation?) estimates

No hard scale \rightarrow more challenging for pQCD-based models (only PYTHIA and PHOJET so far include diffraction. HERWIG++ and SHERPA models on their way)

Especially soft & diffractive aspects need more study/constraints/modeling

Other Modeling & Tuning Aspects

 μ_R : Fixing μ_R to its \overline{MS} value without accounting for known physics (e.g., CMW) and remaining ambiguities is too naive (in shower context)

Matching: remember Bjorken + ensure consistency between ME and PS sides, especially when combining different codes (e.g., ALPGEN/MADGRAPH + PYTHIA/HERWIG)

Color Reconnections: coherence not well understood *between* MPI chains. Affects hadronization in busy pp events. Can alter IR sensitive properties^{*}, like color-flow-variables, particle momentum spectra, and isolation.

Hadronization: depends on color connections.

Extreme tails $(z \rightarrow I)$ already difficult at LEP, important to be checked in situ (not just in min-bias)

*Sometimes unintentionally

MC4BSM-2012

MONTE CARLO TOOLS FOR PHYSICS BEYOND THE STANDARD MODEL

> MARCH 22-24, 2012 CORNELL UNIVERSITY ITHACA, NEW YORK USA

WWW.LEPP.CORNELL.EDU/EVENTS/MC4BSM/

ORGANIZING COMMITTEE KYLE CRANMER, NYU CSABA CSAKI, CORNELL CHRISTOPHE GROJEAN, CERN YUVAL GROSSMAN, CORNELL JAY HUBISZ, SYRACUSE KONSTANTIN MATCHEV, FLORIDA STEPHEN MRENNA, FERMILAB MAXIM PERELSTEIN (CHAIR), CORNELL ANDERS RYD, CORNELL PETER SKANDS, CERN

WORKSHOP SECRETARY ELIZABETH GUSTAFSON, CORNELL

ORGANIZER EMAIL MC4BSM@PHySICS.SyR.EDU

Backup Slides

72

(Color Flow in MC Models)

"Planar Limit"

Equivalent to $N_C \rightarrow \infty$: no color interference^{*}

Rules for color flow:

For an entire cascade:

 $-\underbrace{e_{e_{e}}}{} \longrightarrow \underbrace{ue_{e}}{} \longrightarrow \underbrace{ue_{e}}{} \longrightarrow \underbrace{ue_{e}}{} , ie_{e}}{} ,$

*) except as reflected by the implementation of QCD coherence effects in the Monte Carlos via angular or dipole ordering

Illustrations from: Nason + PS, PDG Review on *MC Event Generators*, 2012

Coherence of pQCD cascades \rightarrow not much "overlap" between strings \rightarrow planar approx pretty good LEP measurements in WW confirm this (at least to order 10% ~ 1/N_c²)

PYTHIA Models

Pythia 6: The Perugia Variations

"Tuning MC Generators: The Perugia Tunes" - PRD82 (2010) 074018

Central Tune + 9 variations

Perugia 2011 Tune Set

Note: no variation of hadronization parameters! (sorry, ten was already a lot)

MSTP(5) = ...

(350)	Perugia 2011	Central Perugia 2011 tune (CTEQ5L)	
(351)	Perugia 2011 radHi	Variation using $\alpha_s(\frac{1}{2}p_{\perp})$ for ISR and FSR	Harder radiation
(352)	Perugia 2011 radLo	Variation using $\alpha_s(\bar{2}p_{\perp})$ for ISR and FSR	Softer radiation
(353)	Perugia 2011 mpiHi	Variation using $\Lambda_{\rm QCD} = 0.26 {\rm GeV}$ also for MI	∙I UE more "jetty"
(354)	Perugia 2011 noCR	Variation without color reconnections	Softer hadrons
(355)	Perugia 2011 ${\rm M}$	Variation using MRST LO** PDFs	UE more "jetty"
(356)	Perugia 2011 C	Variation using CTEQ 6L1 PDFs	Recommended
(357)	Perugia 2011 T16	Variation using $PARP(90)=0.16$ scaling away f	from $7 { m TeV}$
(358)	Perugia 2011 T 32	Variation using $PARP(90)=0.32$ scaling away f	from 7 TeV
(359)	Perugia 2011 Tevatron	Variation optimized for Tevatron	~ low at LHC

Can be obtained in standalone Pythia from 6.4.25+

MSTP(5) = 350

Perugia 2011

Perugia 2011 radHi

MSTP(5) = 351

Perugia 2011 radLo

MSTP(5) = 352

Tunes of PYTHIA 8 : Corke & Sjöstrand - JHEP 03 (2011) 032 & JHEP 05 (2011) 009

(Important test: Drell-Yan p_T spectrum)

(Underlying Event Tuning)

PS: yes, we should update the PYTHIA 6 defaults ...

YΥ

Disagreement much smaller in ATLAS study arXiv:1107.0581

See also Mangano's from this workshop, slide 12

Disclaimer

Not an expert on H searches

How well do we know Theory?

Executive summary of issues and ambiguities

How well do we describe LHC?

Hadronization, Underlying Event (UE) and Pile-Up

→ MC Modeling and Constraints (tuning)

For Discussion

Areas of improvement with importance for Higgs Searches?