The PYTHIAEvent Generator

LHC is a QCD Machine

Hard processes initiated by partons (quarks \& gluons)

Associated with initial-state QCD corrections
Underlying event by QCD mechanisms (MPI, color flow)
Extra QCD jets, isolation, fakes \rightarrow all sensitive to QCD corrections

LHC is a QCD Machine

Hard processes initiated by partons (quarks \& gluons)

Associated with initial-state QCD corrections
Underlying event by QCD mechanisms (MPI, color flow)
Extra QCD jets, isolation, fakes \rightarrow all sensitive to QCD corrections

Even in BSM scenarios, production of new colored states often favored

Squarks, gluinos, KK gluons, excited quarks, ... + extra QCD jets ...

Monte Carlo Generators

Calculate Everything \approx solve $\mathrm{QCD} \rightarrow$ requires compromise!
Improve lowest-order perturbation theory, by including the 'most significant' corrections
\rightarrow complete events (can evaluate any observable you want)

Existing Approaches

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String. HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering. SHERPA : Begun in 2000. Originated in "matching" of matrix elements to showers: CKKW.

+ MORE SPECIALIZED: ALPGEN, MADGRAPH,ARIADNE,VINCIA,WHIZARD, MC@NLO, POWHEG, ...

PYTHIA anno 1978
 (then called JETSET)

```
LU TP 78-18
November, 1978
A Monte Carlo Program for Quark Jet
Generation
T. Sjöstrand, B. Söderberg
A Monte Carlo computer program is
presented, that simulates the
fragmentation of a fast parton into a
jet of mesons. It uses an iterative
scaling scheme and is compatible with
the jet model of Field and Feynman.
```

Note: Field-Feynman was an early fragmentation model
Now superseded by the String (in PYTHIA) and
Cluster (in HERWIG \& SHERPA) models.

PYTHIA anno 1978

(then called JETSET)

LU TP 78-18
 November, 1978

A Monte Carlo Program for Quark Jet Generation
T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is presented, that simulates the
fragmentation of a fast parton into a jet of mesons. It uses an iterative scaling scheme and is compatible with the jet model of Field and Feynman.

Note: Field-Feynman was an early fragmentation model Now superseded by the String (in PYTHIA) and Cluster (in HERWIG \& SHERPA) models.
gURROUTINE JETGEN(N)
COMMON /JET/ K(100,2), $P(100,5)$
COMMON /PAR/ PUD; PSI, SIGMA, CX2, EBEG; WFIN, IFLEEG
COMMON /DATA1/ MESO(7,2), CMIX (6;2), PMAS(19)
IFLSGN $=(10-1 F L B E G) / 5$
$W=2 . * E B E G$
$I=0$
$I P D=0$
c. 1 FLAVOUR AND PT FOR FIRST QUARK
$I F L I=I A B S(I F L B E G)$
PHI $1=6.2832 *$ RANF (0)
PY1=PTi*COS (PHI 1$)$
PYI=PT1*SIN(PHI 1$)$
$100 I=I+1$
C 2 FIAVOUR ANO PT FOR NEXT ANTIOUARK
IFL $2=1+$ INT (RANF (0)/PUD)
PT $2=S I G M A * S O R T(-A L O G(R A N F(O)))$
$\mathrm{PHI} 2=6.2832 * \mathrm{RANF}(0)$
PH12 $=6.2832 * R A N F$
P $2=9 T 2 * \cos (\mathrm{PHI} 2)$
PY2=PTZ*SIN(PHI2)
C 3 MESON FORMED, GPIN ADDED ANO FLAVOUR MIXEO
$K(I, 1)=M E S O(3 *(I F L 1-1)+I F L 2, I F L S G N)$
ISPIN=INT (PSI +RANF (0))
$K(I, 2)=1+9 * I S P I N+K(I: 1)$
IF $(K(I, 1) \cdot L E .6)$ GOTO 110
TMIX = RANF (D)
$K M=K(I, 1)-6+3 * I S P I N$
$K(I, 2)=8+9 * I S P I N+I N T(T M I X+C M I X(K M, 1))+I N T(T M I X+C M I X(K M, 2))$
C 4 MESON MASS FROM TABLE; PT FROM CONSTITUENTS
$110 \mathrm{P}(1,5)=\mathrm{PMAS}(K(1,2))$
$P(I, 1)=P X 1+P \times 2$
PMTS=P(I, 1$) * * 2+P(1,2) * * 2+P(1,5) * 2$
PMTS $=P(I ; 1) * * 2+P(1 ; 2) * * 2+P(1) S(E * Z)$ AVAILABLE GIVES E ANO PZ
C 5 RANDOM CHOI

$\operatorname{IF}(\mathrm{I}, 3)=(X * W-P M T S /(X * W)) / 2$.
$P(I, 4)=(X * W+P M T S /(X * W)) / 2$.
C \& IF UNSTABLE, DECAY CHAIN INTO STABLE
$120 \quad I P D=I P D+1$
IF (K (IPD, 2). GE.8) CALL DECAY (IPO,I)
IF (IPD.LT.I.AND.I.LE. 96) GOTO 120
7 FLAVOUR ANO PT OF UUARK FORMED IN PAIR WITH ANTIQUARK ABOVE
$1 F L 1=1 F L 2$
$P \times 1=-P \times 2$
$P Y 1=-P Y 2$
C 8 IF ENOUGH E+PZ LEFT, GO TO 2
$W=(1,-X) * W$
IF (W.GT.WFIN.AND.I.LE. 95) GOTO 100
$\mathrm{N}=\mathrm{I}$
RETURN
END

PYTHIA anno 2012

(now called PYTHIA 8)

~ 80,000 lines of C++
What a modern MC generator has inside:

- Hard Processes (internal, semiinternal, or via Les Houches events)
- BSM (internal or via interfaces)
- PDFs (internal or via interfaces)
- Showers (internal or inherited)
- Multiple parton interactions
- Beam Remnants
- String Fragmentation
- Decays (internal or via interfaces)
- Examples and Tutorial
- Online HTML / PHP Manual
- Utilities and interfaces to external programs

(Traditional) Monte Carlo Generators

Ambition

Cleaner code
More user-friendly
Easy interfacing
Physics Improvements

Current Status

Ready and tuned to LHC data
Better interfaces to (B)SM generators via LHEF and semiinternal processes
Improved shower model + interfaces to CKKW-L, POWHEG, and VINCIA

Team Members

- Stefan Ask
- Richard Corke
- Stephen Mrenna
- Stefan Prestel
- Torbjorn Sjostrand
- Peter Skands

Contributors

- Bertrand Bellenot
- Lisa Carloni
- Tomas Kasemets
- Mikhail Kirsanov
- Ben Lloyd
- Marc Montull
- Sparsh Navin
- MSTW, CTEQ, H1: PDFs
- DELPHI, LHCb: D/B BRs
- + several bug reports \& fixes

Hard Processes

Hard Physics

Standard Model
almost all $2 \rightarrow 1,2 \rightarrow 2$
A few $2 \rightarrow 3$
BSM: a bit of everything (see documentation)

Perturbative Resonance Decays

- Angular correlations often included (on a process-by-process basis - no generic formalism)
- User implementations (semi-internal resonance)

Hard Processes

Hard Physics

Standard Model

$$
\text { almost all } 2 \rightarrow 1,2 \rightarrow 2
$$

A few $2 \rightarrow 3$
BSM: a bit of everything (see documentation)

External Input

Les Houches Accord and LHEF (e.g., from MadGraph, CalcHEP, AlpGen,...)

User implementations (semi-internal process)

Inheriting from PYTHIA's $2 \rightarrow 2$ base class, then modify to suit you
(+ automated in MadGraph 5)

Perturbative Resonance Decays

- Angular correlations often included (on a process-by-process basis - no generic formalism)
- User implementations (semi-internal resonance)

Exotic Colors

Color Epsilon Topologies

Example: RPV SUSY

$$
\begin{gathered}
W_{\mathrm{BNV}}=\lambda_{i j k}^{\prime \prime} \epsilon_{a b c} \bar{U}_{i a} \bar{D}_{j b} \bar{D}_{k c} \\
\Longrightarrow q q \rightarrow \tilde{t}^{*} \rightarrow q q \\
\Longrightarrow \chi^{0} \rightarrow q q q
\end{gathered}
$$

Exotic Colors

Color Epsilon Topologies

Example: RPV SUSY

$$
\begin{gathered}
W_{\mathrm{BNV}}=\lambda_{i j k}^{\prime \prime} \epsilon_{a b c} \bar{U}_{i a} \bar{D}_{j b} \bar{D}_{k c} \\
\Longrightarrow q q \rightarrow \tilde{t}^{*} \rightarrow q q \\
\Longrightarrow \chi^{0} \rightarrow q q q
\end{gathered}
$$

Dipole Showers:

Radiation pattern obtained as if three radiating dipoles, but with half normal strength
N. Desai \& PS, arXiv:1109.5852.
(+Sextets \rightarrow two dipoles)

Exotic Colors

Color Epsilon Topologies

Example: RPV SUSY

$$
\begin{gathered}
W_{\mathrm{BNV}}=\lambda_{i j k}^{\prime \prime} \epsilon_{a b c} \bar{U}_{i a} \bar{D}_{j b} \bar{D}_{k c} \\
\Longrightarrow q q \rightarrow \tilde{t}^{*} \rightarrow q q \\
\Longrightarrow \chi^{0} \rightarrow q q q
\end{gathered}
$$

Dipole Showers:

Radiation pattern obtained as if three radiating dipoles, but with half normal strength
N. Desai \& PS, arXiv:1109.5852.
(+Sextets \rightarrow two dipoles)

T. Sjöstrand \& PS, Nucl. Phys. B659 (2003) 243

Exotic Colors

Color Epsilon Topologies
Example: RPV SUSY

$$
\begin{gathered}
W_{\mathrm{BNV}}=\lambda_{i j k}^{\prime \prime} \epsilon_{a b c} \bar{U}_{i a} \bar{D}_{j b} \bar{D}_{k c} \\
\Longrightarrow q q \rightarrow \tilde{t}^{*} \rightarrow q q \\
\Longrightarrow \chi^{0} \rightarrow q q q
\end{gathered}
$$

Dipole Showers:

Radiation pattern obtained as if three radiating dipoles, but with half normal strength
N. Desai \& PS, arXiv:1109.5852.
(+Sextets \rightarrow two dipoles)

T. Sjöstrand \& PS, Nucl. Phys. B659 (2003) 243

Hidden Valleys

Models only interesting if they can give observable consequences at the LHC!

Hidden Valleys

Models only interesting if they can give observable consequences at the LHC!

Carloni, Rathsman, Sjöstrand, JHEP 1104 (2011) 091
Interleaved shower in QCD, QED and HV sectors:

HV U(I): add γ_{v} emissions
HV SU(N): add g_{v} emissions

HV particles may remain invisible, or Broken $\mathrm{U}(\mathrm{I}): \gamma_{v} \rightarrow$ lepton pairs $\mathrm{SU}(\mathrm{N})$: hadronization in hidden sector, with full string fragmentation setup. For now assumed mass-degenerate.
Flavor Off-diagonal: stable \& invisible Flavor Diagonal, can decay back to SM

Resummation and Matching

Parton Distributions

Internal (faster than LHAPDF)

$$
\begin{aligned}
& \text { CTEQ + MSTW LO, plus a few NLO } \\
& \text { MSTW LO*, LO**, CTEQ CTO9MC }
\end{aligned}
$$

Interface to LHAPDF ${ }^{\text {T. Kasemets, arxiv: } 1002.4376]}$
Can use separate PDFs for hard scattering and UE (to 'stay tuned')

Resummation and Matching

Parton Distributions

Internal (faster than LHAPDF)
CTEQ + MSTW LO, plus a few NLO
MSTW LO*, LO**, CTEQ CT09MC

Interface to LHAPDF ${ }^{\text {T. Kasemets, arxiv: } 1002.4376]}$
Can use separate PDFs for hard scattering and UE (to 'stay tuned')

Showers

Transverse-momentum ordered
ISR \& FSR (new: fully interleaved)
Includes QCD and QED
Dipole-style recoils (partly new)
Improved high- p_{\perp} behavior [R. Corke]

Resummation and Matching

Parton Distributions

Internal (faster than LHAPDF)
CTEQ + MSTW LO, plus a few NLO MSTW LO*, LO**, CTEQ CT09MC
Interface to LHAPDF ${ }^{\text {T. Kasemets, arxiv: } 1002.4376]}$
Can use separate PDFs for hard scattering and UE (to 'stay tuned')

Showers

Transverse-momentum ordered ISR \& FSR (new: fully interleaved)

Includes QCD and QED
Dipole-style recoils (partly new)
Improved high- p_{\perp} behavior [R. Corke]

Matrix-Element Matching

Automatic first-order matching for most gluon-emission processes in resonance decays, e.g.,:

$$
\begin{aligned}
& Z \rightarrow q q \rightarrow q q g, \\
& t \rightarrow b W \rightarrow b W g, \\
& H \rightarrow b b \rightarrow b b g, \ldots
\end{aligned}
$$

Automatic first-order matching for internal $2 \rightarrow$ I color-singlet processes, e.g.:
$p p \rightarrow H / Z / W / Z^{\prime} / W^{+}+j e t$
More to come ...
Interface to AlpGen, MadGraph, ... via Les Houches Accords

Resummation and Matching

Parton Distributions

Internal (faster than LHAPDF)
CTEQ + MSTW LO, plus a few NLO MSTW LO*, LO**, CTEQ CT09MC

Interface to LHAPDF ${ }^{\text {T. Kasemets, arxiv: } 1002.4376]}$
Can use separate PDFs for hard scattering and UE (to 'stay tuned')

Showers

Transverse-momentum ordered ISR \& FSR (new: fully interleaved)

Includes QCD and QED
Dipole-style recoils (partly new)
Improved high- p_{\perp} behavior [R. Corke]

Matrix-Element Matching

Automatic first-order matching for most gluon-emission processes in resonance decays, e.g.,:

$$
\begin{aligned}
& Z \rightarrow q q \rightarrow q q g, \\
& t \rightarrow b W \rightarrow b W g, \\
& H \rightarrow b b \rightarrow b b g, \ldots
\end{aligned}
$$

Automatic first-order matching for internal $2 \rightarrow$ I color-singlet processes, e.g.:
$p p \rightarrow H / Z / W / Z{ }^{\prime} / W$ '+jet
More to come ...
Interface to AlpGen, MadGraph, ... via Les Houches Accords

Matched Showers: Interface to VINCIA (new showers + matching) [PS]

Matching

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)
UNITARITY (a.k.a. merging, PYTHIA,VINCIA, ...)

Exact

Cures

Tree-Level Matrix Elements PHASE-SPACE SLICING (a...a. CKKW, MLM, ...) UNITARITY (a.k.a. merging, PYTHIA, VINCIA, ...)

NLO Matrix Elements
SUBTRACTION (a.k.a.MC@NLO)
UNITARITY + SUBTRACTION (a.k.a.POWHEG,VINCIA)

Cures

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)
UNITARITY (a.k.a. merging, PYTHIA, VINCIA, ...)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO) UNITARITY + SUBTRACTION (a.k.a. POWHEG,VINCIA)

	${ }_{\text {+10 }} \times$			
x"	+110	+2"	${ }^{\times 10}$	
som	-	c\|	¢	

+ WORK IN PROGRESS ...

NLO + multileg tree-level matrix elements
NLO multileg matching
Matching at NNLO

Matching in PYTHIA 8

Internal: merging (correcting first shower emissions)

Tree-level matrix elements

CKKW-L: via Les Houches files L. Lönnblad \& S. Prestel, JHEP 1203 (2012) 019 MLM:Work started on Alpgen interface [r. Corke]

NLO matrix elements
POWHEG: done for ISR (via LHEF). In progress for FSR [R. Corke]
MC@NLO: in progress [s. Frixione, P. Torrielli]
(Already available for virtuality-ordered Pythia 6)

+ Interface to VINCIA: Markovian pQCD ...
(uses matrix elements from Madgraph to drive evolution)

VINCIA: Markovian PQCD*

Start at Born level
$\left|M_{F}\right|^{2}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

VINCIA: Markovian PQCD*

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

VINCIA: Markovian PQCD*

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

VINCIA: Markovian pQCD*

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

VINCIA: Markovian pQCD*

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int \operatorname{Real}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

VINCIA: Markovian pQCD*

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

VINCIA: Markovian PQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int \operatorname{Real}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

VINCIA: Markovian pQCD*

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

VINCIA: Markovian PQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

VINCIA: Markovian pQCD*

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

VINCIA: Markovian pQCD*

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo
Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

Markoy + Unitarity = SPEED

Efficient Matching with Sector Showers
J. Lopez-Villarejo \& PS :JHEP IIII (201I) I50

Initialization Time
(seconds)

Time to Generate $1000 \mathrm{Z} \rightarrow \mathrm{qq}$ showers (seconds)

$$
\mathrm{Z} \rightarrow \underset{\text { gfortran } / \mathrm{g}++ \text { with gcc v.4.4 -O2 on single } 3.06 \mathrm{GHz} \text { processor with } 4 \mathrm{~GB} \text { memory }}{ }
$$

Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.I50, Sherpa I.3.0, Vincia I. 026 (without uncertainty bands, NLL/NLC=OFF)

Soft QCD

Underlying-Event and
 Minimum-Bias

Multiple parton-parton interactions

Multi-parton PDFs constructed from
(flavor and momentum) sum rules
Interleaved evolution in p_{\perp} (partly new)
New: Rescattering [R. Corke]
Beam remnants colour-connected to interacting systems, with String junctions

Defaults tuned to LHC (tune 4C)

Improved model of diffraction
Diffractive jet production [S. Navin]

Output: Interface to HEPMC included

Underlying-Event and Minimum-Bias

Multiple parton-parton interactions

Multi-parton PDFs constructed from (flavor and momentum) sum rules
Interleaved evolution in p_{\perp} (partly new)
New: Rescattering [R. Corke]
Beam remnants colour-connected to interacting systems, with String junctions
Defaults tuned to LHC (tune 4C) Improved model of diffraction

Diffractive jet production [S. Navin]

Hadronization

String fragmentation

Lund fragmentation function for ($u, \mathrm{~d}, \mathrm{~s}$)

+ Bowler for heavy quarks (c,b)
Hadron and Particle decays
Usually isotropic, or:
New: Polarized T decays
User decays (DecayHandler)
Link to external packages
EVTGEN for B decays
TAUOLA for T decays
Bose-Einstein effects
Two-particle model (off by default)

Output: Interface to HEPMC included

Interleaved Evolution

Add exclusivity progressively by evolving everything downwards.

+(X,b) correlations Corke, Sjöstrand JHEP II05 (20II) 009

Color Connections

Multiplicity $\propto \mathrm{N}_{\mathrm{MPI}}$

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364)
Color Annealing (P.S.,Wicke: Eur. Phys. J. C52 (2007) I33)
Better theory models needed
Cluster reconnections (Gieseke, Röhr, Siodmok, arXiv:I206.004I)

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364)
Color Annealing (P.S.,Wicke: Eur. Phys. J. C52 (2007) I33)
Cluster reconnections (Gieseke, Röhr, Siodmok, arXiv:I206.004I)

Pythia 6: The Perugia Variations

Central Tune + 9 variations

Note: no variation of hadronization parameters! (sorry, ten was already a lot)

PS, PRD82	(2010) 074018
(350)	Perugia 2011
(351)	Perugia 2011 radHi
(352)	Perugia 2011 radLo
(353)	Perugia 2011 mpiHi
(354)	Perugia 2011 noCR
(355)	Perugia 2011 M
(356)	Perugia 2011 C
(357)	Perugia 2011 T 16
(358)	Perugia 2011 T 32
(359)	Perugia 2011 Tevatron

Perugia 2011 Tune Set

Central Perugia 2011 tune (CTEQ5L)
Variation using $\alpha_{s}\left(\frac{1}{2} p_{\perp}\right)$ for ISR and FSR
Harder radiation Variation using $\alpha_{s}\left(2 p_{\perp}\right)$ for ISR and FSR Softer radiation Variation using $\Lambda_{\mathrm{QCD}}=0.26 \mathrm{GeV}$ also for MPI ue more "jetty" Variation without color reconnections Softer hadrons Variation using MRST LO** PDFs UE more "jetty" Variation using CTEQ 6L1 PDFs Recommended Variation using PARP (90)=0.16 scaling away from 7 TeV Variation using PARP (90) $=0.32$ scaling away from 7 TeV Variation optimized for Tevatron

Can be obtained in standalone Pythia from 6.4.25+

 $\operatorname{MSTP}(5)=350 \quad \operatorname{MSTP}(5)=35 I \quad \operatorname{MSTP}(5)=352 \quad \operatorname{MSTP}(5)=\ldots$Perugia 2011
Perugia 20 I I radHi
Perugia 20 I radLo

Summary

PYTHIA 6 is still going strong (sigh)

Recommended: Perugia 20 I I tunes + variations
No longer actively developed
F77 interfaces not very flexible, outmoded.

Summary

PYTHIA 6 is still going strong (sigh)

Recommended: Perugia 20 | | tunes + variations
No longer actively developed
F77 interfaces not very flexible, outmoded.

PYTHIA 8 is the natural successor

Recommended: default (4C) tune + ATLAS and CMS efforts
Significant focus on interfaces \& interoperability (e.g., Madgraph, Alpgen, LHEF, ...)
New challenges (within and beyond SM) will be addressed within PYTHIA 8, not 6.

Summary

PYTHIA 6 is still going strong (sigh)

Recommended: Perugia 20 I I tunes + variations
No longer actively developed
F77 interfaces not very flexible, outmoded.

PYTHIA 8 is the natural successor

Recommended: default (4C) tune + ATLAS and CMS efforts
Significant focus on interfaces \& interoperability (e.g., Madgraph, Alpgen, LHEF, ...)
New challenges (within and beyond SM) will be addressed within PYTHIA 8, not 6.

Try VINCIA if you're ready for something new

Replaces shower functions by matrix elements
Fast + Extendable to NLO multileg + auto-uncertainties
So far only for FSR. Aim to have ISR this year.

Summary

PYTHIA 6 is still going strong (sigh)

Recommended: Perugia 20 I I tunes + variations
No longer actively developed
F77 interfaces not very flexible, outmoded.

PYTHIA 8 is the natural successor

Recommended: default (4C) tune + ATLAS and CMS efforts
Significant focus on interfaces \& interoperability (e.g., Madgraph, Alpgen, LHEF, ...)
New challenges (within and beyond SM) will be addressed within PYTHIA 8, not 6.

Try VINCIA if you're ready for something new

Replaces shower functions by matrix elements
Fast + Extendable to NLO multileg + auto-uncertainties
So far only for FSR. Aim to have ISR this year.

Backup Slides

Color Flow in MC Models

"Planar Limit"

Equivalent to $\mathrm{N}_{\mathrm{C}} \rightarrow \infty$: no color interference*
*) except as reflected by the implementation of QCD coherence effects in the Monte Carlos via angular or dipole ordering

Rules for color flow:

For an entire cascade:

Illustrations from: P.Nason \& P.S., PDG Review on MC Event Generators, 20I2

Coherence of pQCD cascades \rightarrow not much "overlap" between strings
\rightarrow planar approx pretty good
LEP measurements in WW confirm this (at least to order $10 \% \sim 1 / \mathrm{N}_{\mathrm{c}}{ }^{2}$)

Interfaces to External MES (POWHEG/SCALUP)

Standard Les Houches interface (LHA, LHEF) specifies startup scale SCALUP for showers, so "trivial" to interface any external program, including POWHEG.
Problem: for ISR

$$
p_{\perp}^{2}=\mathrm{p}_{\perp \mathrm{evol}}^{2}-\frac{\mathrm{p}_{\perp \mathrm{evol}}^{4}}{p_{\perp \mathrm{evol}, \mathrm{max}}^{2}}
$$

$$
\begin{array}{r}
\int d \Phi_{r} \frac{R(v, r)}{B(v)} \theta\left(k_{\mathrm{T}}(v, r)-p_{\mathrm{T}}\right) \\
\text { not needed if shower ordere }
\end{array}
$$

not needed if shower ordered in PT?
i.e. p_{\perp} decreases for $\theta^{*}>90^{\circ}$ but $\mathrm{p}_{\perp \text { evol }}$ monotonously increasing. Solution: run "power" shower but kill emissions above the hardest one, by POWHEG's definition.
(a)

(b)

Available,for ISR-dominated, coming for QCD jets with FSR issues.

Interfaces to External MES (MLM)
 B. Cooper et al., arXiv:I I 09.5295 [hep-ph]

If using one code for MEs and another for showering

Tree-level corrections use α_{s} from Matrix-element Generator
Virtual corrections use α_{s} from Shower Generator (Sudakov)
Mismatch if the two do not use same Λ_{ecd} or $\alpha_{\mathbf{s}}\left(\mathrm{mz}_{\mathbf{z}}\right)$

AlpGen: can set xlclu $=\Lambda_{\mathrm{QCD}}$ since v.2.14 (default remains to inherit from PDF) Pythia 6: set common $\operatorname{PARP}(61)=\operatorname{PARP}(72)=\operatorname{PARP}(81)=\Lambda_{\mathrm{QCD}}$ in Perugia 201 I tunes

Pythia 8: use TimeShower:alphaSvalue and SpaceShower:alphaSvalue

Scales: PT and CMW

Compute $\mathbf{e}^{+} \mathbf{e}^{-\rightarrow \mathbf{3}}$ jets, for arbitrary choice of μ_{R} (e.g., $\mu_{\mathrm{R}}=\mathrm{mz}_{\mathrm{z}}$)
One-loop correction $2 \operatorname{Re}\left[\mathrm{M}^{0} \mathrm{M}^{\prime *}\right]$ includes a universal $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ term from integrating quark loops over all of phase space

$$
n_{f} A_{3}^{0}\left(\ln \left(\frac{s_{23}}{\mu_{R}^{2}}\right)+\ln \left(\frac{s_{13}}{\mu_{R}^{2}}\right)\right) \quad+\text { gluon loops }
$$

Proportional to the β function (bo).
Can be absorbed by using $\mu_{R}{ }^{4}=s / 3 S_{23}=p T^{2} s . \quad(\sim$ "BLM")
In an ordered shower, quark (and gluon) loops restricted by strong-ordering condition \rightarrow modified to
$\mu_{R}=$ PT (but depends on ordering variable?)
Additional logs induced by gluon loops can be absorbed by replacing Λ^{MS} by $\Lambda^{\mathrm{MC}} \sim 1.5 \Lambda^{\mathrm{MS}}$ (with mild dependence on number of flavors)

Catani, Marchesini, Webber, NPB349 (199I) 635
There are obviously still order 2 uncertainties on μ_{R}, but this is the background for the central choice made in showers

I. Fragmentation Tuning

Perturbative: jet radiation, jet broadening, jet structure
Non-perturbative: hadronization modeling \& parameters

2. Initial-State Tuning

Perturbative: initial-state radiation, initial-final interference
Non-perturbative: PDFs, primordial k_{T}

3. Underlying-Event \& Min-Bias Tuning

Perturbative: Multi-parton interactions, rescattering
Non-perturbative: Multi-parton PDFs, Beam Remnant fragmentation, Color (re)connections, collective effects, impact parameter dependence, ...

PYTHIA Models

Note: tunes differ significantly in which data sets they include
LEP fragmentation parameters
Level of Underlying Event \& Minimum-bias Tails
Soft part of Drell-Yan рт spectrum

PYTHIA Models

Q-ordered PYTHIA 6

Рт-ordered PYTHIA 8

Tune A
(default)

DW(T)
D6(T)
D...-Pro

Pro-Q2O
Q2-LHC ?

4C, 4Cx
AI,AUI
A2,AU2
Main Data Sets included in each Tune (no guarantee that all subsets ok)

	A	$\begin{aligned} & \text { DW, } \\ & \text { D6, ... } \end{aligned}$	S0, S0A	MC09(c)	Pro-..., Perugia 0, Tune I, 2C, 2M	AMBTI	$\begin{gathered} \text { Perugia } \\ 2010 \end{gathered}$	Perugia 2011	Z1, Z2	4C, 4Cx	AUET2B, A2, AU2
LEP					\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
TeV MB			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		(\checkmark)	?
TeV UE	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		(\checkmark)	\checkmark ?
TeV DY		\checkmark									
LHC MB						\checkmark	\checkmark	\checkmark		\checkmark	!
LHC UE								\checkmark	\checkmark		\checkmark

Example: pQCD Shower Tuning

Main pQCD Parameters

$\alpha_{s}(m z)$
The value of the strong coupling at the Z pole
Governs overall amount of radiation
α_{s} Running

Matching

Subleading Logs

Renormalization Scheme and Scale for α s
I- / 2-loop running, MSbar / CMW scheme, $\mu_{R} \sim Q^{2}$ or PT^{2}
Additional Matrix Elements included?
At tree level / one-loop level? Using what scheme?
Ordering variable, coherence treatment, effective $I \rightarrow 3$ (or $2 \rightarrow 4$), recoil strategy, etc

Need IR Corrections?

PYTHIA 8 (hadronization off) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right)
$$

Significant Discrepancies (>10\%)
for $T<0.05$, Major <0.15, Minor <0.2, and for all values of Oblateness

Need IR Corrections?

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right) \quad-\quad=-T-\frac{1}{2}
$$

Need IR Corrections?

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right) \quad-\quad=\quad 1-T-\frac{1}{2}
$$

Note: Value of Strong coupling is

$$
\alpha_{s}\left(M_{z}\right)=0.14
$$

Value of Strong Coupling

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right)
$$

Note: Value of Strong coupling is

$$
\alpha_{s}\left(M_{z}\right)=0.12
$$

Wait ... is this Crazy?

Wait ... is this Crazy?

Best result

Obtained with $\alpha_{s}\left(M_{z}\right) \approx 0.14 \neq$ World Average $=0.1176 \pm 0.0020$

Wait ... is this Crazy?

Best result

Obtained with $\alpha_{s}(M z) \approx 0.14 \neq$ World Average $=0.1176 \pm 0.0020$

Value of $\boldsymbol{\alpha}_{\mathbf{s}}$

Depends on the order and scheme
$M C \approx$ Leading Order + LL resummation
Other leading-Order extractions of $\alpha_{s} \approx 0.13-0.14$
Effective scheme interpreted as "CMW" $\rightarrow 0.13$; 2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?

Wait ... is this Crazy?

Best result

Obtained with $\alpha_{s}\left(M_{z}\right) \approx 0.14 \neq$ World Average $=0.1176 \pm 0.0020$

Value of $\boldsymbol{\alpha}_{\mathbf{s}}$

Depends on the order and scheme
$M C \approx$ Leading Order $+L L$ resummation
Other leading-Order extractions of $\alpha_{s} \approx 0.13-0.14$
Effective scheme interpreted as "CMW" $\rightarrow 0.13$; 2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?

Not so crazy

Tune/measure even pQCD parameters with the actual generator. Sanity check = consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to 'MC scheme')

Wait ... is this Crazy?

Best result

Obtained with $\alpha_{s}\left(M_{z}\right) \approx 0.14 \neq$ World Average $=0.1176 \pm 0.0020$

Value of α_{s}

Depends on the order and scheme
$M C \approx$ Leading Order + LL resummation
Other leading-Order extractions of $\alpha_{s} \approx 0.13-0.14$
Effective scheme interpreted as "CMW" $\rightarrow 0.13$; 2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?

Not so crazy

Tune/measure even pQCD parameters with the actual generator.
Sanity check = consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to 'MC scheme')

$$
\begin{aligned}
& \text { Improve } \rightarrow \text { Matching at LO and NLO } \\
& \text { Non-perturbative } \rightarrow \text { Lecture on IR }
\end{aligned}
$$

FSR: Jet Shapes

ISR*: Drell-Yan p_{T}
 *From Quarks, at $\mathrm{Q}=\mathrm{Mz}_{z}$

Particularly sensitive to

I. α_{s} renormalization scale choice
2. Recoil strategy (color dipoles vs global vs ...)
3. FSR off ISR (ISR jet broadening)

Non-trivial result that modern GPMC shower models all reproduce it ~ correctly

Note: old PYTHIA 6 model (Tune A) did not give correct distribution, except with extreme μ_{R} choice (DW, D6, Pro-Q2O)

ISR: Dijet Decorrelation

ATLAS Phys.Rev.Lett. I06 (20II) I72002

ISR: Dijet Decorrelation

ATLAS Phys.Rev.Lett. I06 (20II) I72002

IR Safe Summary (ISR/FSR):

LO + showers generally in good $O(20 \%)$ agreement with LHC (modulo bad tunes, pathological cases) Room for improvement: Quantification of uncertainties is still more art than science.

Cutting Edge: multi-jet matching at NLO and systematic NLL showering
Bottom Line: perturbation theory is solvable. Expect progress.

Uncertainties

Buckley et al. (Professor) "Systematic Event Generator Tuning for LHC", EPJC65 (2010) 33 I
P.S. "Tuning MC Event Generators:The Perugia Tunes", PRD82 (2010) 074018

Schulz, P.S. "Energy Scaling of Minimum-Bias Tunes", EPJC7I (201I) 1644
Giele, Kosower, P.S. "Higher-Order Corrections to Timelike Jets", PRD84 (201 I) 054003

Variation of μ_{R} here done for ISR + FSR together (theoretically consistent, but may not be most conservative?)

+ Similar variations for PDFs (CTEQ vs MSTW) Amount of MPI, Color reconnections, Energy scaling
+ Variations of Fragmentation parameters (IR sensitive) on the way

Multiple Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Multiple Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Underlying Event

Note: the UE is more active than Min-Bias, which is more active than Pile-Up

PYTHIA 8 a bit too low?

Q2-ordered tunes (D6T and Pro-Q20) have the right energy, but it's distributed on too few particles \rightarrow momentum spectra too hard

Underlying Event: RMS

Measures the event-by-event FLUCTUATIONS of the Underlying Event

Never previously measured. Not used for tuning.

All in all
Amazing agreement

D6T has too
large RMS

Min-Bias: Inclusive Particles

Min-Bias: < $\mathrm{p}_{\top}>$ vs N_{ch}

Independent Particle Production: \rightarrow averages stay the same

Color Correlations / Jets / Collective effects: \rightarrow average rises

Diffraction in PYTHIA 6

> Diffractive Cross Section Formulæ:
> $\frac{\mathrm{d} \sigma_{\mathrm{sd}(A X)}(s)}{\mathrm{d} d M^{2}}=\frac{g_{3 \mathrm{P}}}{16 \pi} \beta_{A \mathbb{P}}^{2} \beta_{B \mathrm{BP}} \frac{1}{M^{2}} \exp \left(B_{\mathrm{sd}(A X)} t\right) F_{\mathrm{sd}}$,
> $\frac{\mathrm{d} \sigma_{\mathrm{dd}}(s)}{\mathrm{d} \mathrm{d} M_{1}^{2} d M_{2}^{2}}=\frac{g_{3 \mathrm{P}}^{2}}{16 \pi} \beta_{A \mathbb{P}} \beta_{B \mathrm{BP}} \frac{1}{M_{1}^{2}} \frac{1}{M_{2}^{2}} \exp \left(B_{\mathrm{dd}} t\right) F_{\mathrm{dd}}$

Spectra:
$2 \mathrm{~m}_{\mathrm{pi}}<\mathrm{M}_{\mathrm{D}}<1 \mathrm{GeV}$: 2-body decay $M_{D}>\mathrm{IGeV}$: string fragmentation

Partonic Substructure in Pomeron: Only in POMPYT addon (P. Bruni, A. Edin, G. Ingelman) high-рт "jetty" diffraction absent

Very soft spectra without POMPYT

Status: Supported, but not actively developed

Diffraction in PYTHIA 8

Navin, arXiv: I 005.3894

> Diffractive Cross Section Formulæ:
> $\frac{\mathrm{d} \sigma_{\operatorname{sd}(A X)}(s)}{\mathrm{d} t \mathrm{~d} M^{2}}=\frac{g_{3 \mathbb{P}}}{16 \pi} \beta_{A \mathbb{P}}^{2} \beta_{B \mathbb{P}} \frac{1}{M^{2}} \exp \left(B_{\mathrm{sd}(A X)} t\right) F_{\mathrm{sd}}$
> $\frac{\mathrm{d} \sigma_{\mathrm{dd}}(s)}{\mathrm{d} t \mathrm{~d} M_{1}^{2} \mathrm{~d} M_{2}^{2}}=\frac{g_{3 \mathbb{P}}^{2}}{16 \pi} \beta_{A \mathbb{P}} \beta_{B \mathbb{P}} \frac{1}{M_{1}^{2}} \frac{1}{M_{2}^{2}} \exp \left(B_{\mathrm{dd}} t\right) F_{\mathrm{dd}}$

Partonic Substructure in Pomeron:

Follows the IngelmanSchlein approach of Pompyt

- $M_{X} \leq 10 \mathrm{GeV}$: original longitudinal string description used

PYTHIA 8) $M_{X}>10 \mathrm{GeV}$: new perturbative description used (incl full MPl+showers for Pp system)
Choice between 5 Pomeron PDFs. Free parameter $\sigma_{\mathbb{P} p}$ needed to fix $\left\langle n_{\text {interactions }}\right\rangle=\sigma_{\text {jet }} / \sigma_{\mathbb{P} p}$.

Diffraction

Framework needs testing and tuning

E.g., interplay between non-diffractive and diffractive components

+ LEP tuning used directly for diffractive modeling
Hadronization preceded by shower at LEP, but not in diffraction \rightarrow dedicated diffraction tuning of fragmentation pars?

+ Little experience with new PYTHIA 8 MPI component in high-mass diffractive events
\rightarrow This component especially needs
testing and tuning
E.g., look at $n_{c h}$ and PT spectra in
high-mass ($>10 \mathrm{GeV}$) diffraction
(Not important for UE as such, but can be important if using PYTHIA to simulate pile-up!)

[^0]
Pile-Up

$=$ additional zero-bias interactions (contain more diffraction than ordinary min-bias)

Processes with no hard scale:

Larger uncertainties \rightarrow Good UE does not guarantee good pile-up.
Error of 50% on a soft component \rightarrow not bad.
Multiply it by 60 Pile-Up interactions \rightarrow bad!

Calibration \& filtering

Good at recovering jet calibration (with loss of resolution),
But missing energy and isolation sensitive to modeling.

[^1]
Pile-Up

= additional zero-bias interactions (contain more diffraction than ordinary min-bias)

Processes with no hard scale:

Larger uncertainties \rightarrow Good UE does not guarantee good pile-up.
Error of 50% on a soft component \rightarrow not bad.
Multiply it by 60 Pile-Up interactions \rightarrow bad!

Calibration \& filtering

Good at recovering jet calibration (with loss of resolution),
But missing energy and isolation sensitive to modeling.
$\mathrm{H} \rightarrow \mathrm{WW}$
$H \rightarrow \gamma \gamma$?
(E.g., YY studies by ATLAS, CMS, CDF, D0)

Models

MC models so far: problems describing both MB \& UE simultaneously
\rightarrow Consider using dedicated MB/diffraction model for pile-up (UE/MB tension may be resolved in 2012 (eg. studies by R. Field), but for now must live with it)
Experimentalists advised to use unbiased data for PU (when possible)

[^0]: $\sigma_{\mathbb{P p}}$ determines level of UE in high-mass diffraction through $<\mathrm{nmpl}>=\sigma_{\mathrm{jet}} / \sigma_{\mathbb{P} p} . \quad$ (Larger $\sigma_{\mathbb{P} p} \rightarrow$ smaller UE)

[^1]: $H \rightarrow W W$
 $H \rightarrow Y \gamma$?
 (E.g., YY studies by ATLAS, CMS, CDF, DO)

