TOOLS 2012, Stockholm, June 2012

The PYTHIA Event Generator

Peter Skands (CERN)

LHC is a QCD Machine

Hard processes initiated by partons (quarks & gluons)

- Associated with initial-state QCD corrections
- Underlying event by QCD mechanisms (MPI, color flow)
- Extra QCD jets, isolation, fakes \rightarrow all sensitive to QCD corrections

LHC is a QCD Machine

Hard processes initiated by partons (quarks & gluons)

- Associated with initial-state QCD corrections
- Underlying event by QCD mechanisms (MPI, color flow)
- Extra QCD jets, isolation, fakes \rightarrow all sensitive to QCD corrections
- **Even in BSM scenarios,** production of new colored states often favored
 - Squarks, gluinos, KK gluons, excited quarks, ...
 - + extra QCD jets ...

Monte Carlo Generators

Calculate Everything \approx solve QCD \rightarrow requires compromise!

Improve lowest-order perturbation theory, by including the 'most significant' corrections

→ complete events (can evaluate any observable you want)

Existing Approaches

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String. HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering. SHERPA : Begun in 2000. Originated in "matching" of matrix elements to showers: CKKW. + MORE SPECIALIZED: ALPGEN, MADGRAPH, ARIADNE, VINCIA, WHIZARD, MC@NLO, POWHEG, ...

PYTHIA anno 1978 (then called JETSET)

LU TP 78-18 November, 1978

A Monte Carlo Program for Quark Jet Generation

T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is presented, that simulates <u>the</u> <u>fragmentation of a fast parton</u> into a jet of mesons. It uses an iterative scaling scheme and is compatible with the jet model of Field and Feynman.

Note: Field-Feynman was an early fragmentation model Now superseded by the String (in PYTHIA) and Cluster (in HERWIG & SHERPA) models.

PYTHIA anno 1978 (then called JETSET)

LU TP 78-18 November, 1978

A Monte Carlo Program for Quark Jet Generation

T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is presented, that simulates <u>the</u> <u>fragmentation of a fast parton</u> into a jet of mesons. It uses an iterative scaling scheme and is compatible with the jet model of Field and Feynman.

Note: Field-Feynman was an early fragmentation model Now superseded by the String (in PYTHIA) and Cluster (in HERWIG & SHERPA) models.

SUBROUTINE JETGEN(N) COMMON /JET/ K(100,2), P(100,5) COMMON /PAR/ PUD, PS1, SIGMA, CX2, EBEG, WFIN, IFLBEG COMMON /DATA1/ MESO(9,2), CMIX(6,2), PMAS(19) IFLSGN=(10-IFLBEG)/5 W=2.*E8EG 1=0 IPD=0 C 1 FLAVOUR AND PT FOR FIRST QUARK IFL1=IABS(IFLBEG) PT1=SIGMA*SQRT(-ALOG(RANF(D))) PHI1=6.2832*RANF(0) PX1=PT1*COS(PHI1) PY1=PT1*SIN(PHI1) 100 I=I+1 C 2 FLAVOUR AND PT FOR NEXT ANTIQUARK IFL2=1+INT(RANF(0)/PUD) PT2=SIGMA*SQRT(-ALOG(RANF(0))) PH12=6.2832*RANF(0) PX2=PT2*COS(PHI2) PY2=PT2*SIN(PHI2) C 3 MESON FORMED, SPIN ADDED AND FLAVOUR MIXED K(I,1)=MESO(3*(IFL1-1)+IFL2,IFLSGN) ISPIN=INT(PS1+RANF(0)) K(I:2)=1+9*ISPIN+K(I:1) IF(K(I,1).LE.6) GOTO 110 TMIX=RANF(0) KM=K(I,1)-6+3*ISPIN K(I,2)=8+9*ISPIN+INT(TMIX+CMIX(KM,1))+INT(TMIX+CMIX(KM,2)) C 4 MESON MASS FROM TABLE, PT FROM CONSTITUENTS 110 P(1,5)=PMAS(K(1,2)) P(I,1) = PX1 + PX2P(1,2) = PY1 + PY2PMTS=P(1,1)**2+P(1,2)**2+P(1,5)**2 C 5 RANDOM CHOICE OF X=(E+PZ)MESON/(E+PZ)AVAILABLE GIVES E AND PZ x = RANF(0)IF(RANF(D).LT.CX2) X=1.-X**(1./3.) P(1,3)=(X*W-PMTS/(X*W))/2. P(I,4)=(X*W+PMTS/(X*W))/2. C & IF UNSTABLE, DECAY CHAIN INTO STABLE PARTICLES 120 IPD=IPD+1 IF(K(IPD,2).GE.8) CALL DECAY(IPD,I) IF(IPD.LT.I.AND.I.LE.96) GOTO 120 C 7 FLAVOUR AND PT OF QUARK FORMED IN PAIR WITH ANTIQUARK ABOVE IFL1=IFL2 PX1 = -PX2PY1=-PY2 C 8 IF ENOUGH E+PZ LEFT, GO TO 2 W = (1, -X) * WIF(W.GT.WFIN.AND.I.LE.95) GOTO 100 N = IRETURN END

THIA

PYTHIA anno 2012

(now called PYTHIA 8)

LU TP 07-28 (CPC 178 (2008) 852) October, 2007

A Brief Introduction to PYTHIA 8.1

T. Sjöstrand, S. Mrenna, P. Skands

The Pythia program is a standard tool for the generation of high-energy collisions, comprising a coherent set of physics models for the evolution from a few-body hard process to a complex multihadronic final state. It contains a library of hard processes and models for initial- and final-state parton showers, multiple parton-parton interactions, beam remnants, string fragmentation and particle decays. It also has a set of utilities and interfaces to external programs. [...]

~ 80,000 lines of C++

What a modern MC generator has inside:

- Hard Processes (internal, semiinternal, or via Les Houches events)
- BSM (internal or via interfaces)
- PDFs (internal or via interfaces)
- Showers (internal or inherited)
- Multiple parton interactions
- Beam Remnants
- String Fragmentation
- Decays (internal or via interfaces)
- Examples and Tutorial
- Online HTML / PHP Manual
- Utilities and interfaces to external programs

(Traditional) Monte Carlo Generators

Ambition

Cleaner code More user-friendly Easy interfacing Physics Improvements

Current Status

Ready and tuned to LHC data

Better interfaces to (B)SM generators via LHEF and semiinternal processes

Improved shower model + interfaces to CKKW-L, POWHEG, and VINCIA

Team Members

- Stefan Ask
- Richard Corke
- Stephen Mrenna
- Stefan Prestel
- Torbjorn Sjostrand
- Peter Skands

Contributors

- Bertrand Bellenot
- Lisa Carloni
- Tomas Kasemets
- Mikhail Kirsanov
- Ben Lloyd

- Marc Montull
- Sparsh Navin
- MSTW, CTEQ, H1: PDFs
- DELPHI, LHCb: D/B BRs
- + several bug reports & fixes

Hard Processes

Hard Physics

Standard Model

- almost all $2 \rightarrow 1, 2 \rightarrow 2$
- A few $2 \rightarrow 3$

BSM: a bit of everything (see documentation)

Perturbative Resonance Decays

- Angular correlations often included (on a process-by-process basis no generic formalism)
- User implementations (semi-internal resonance)

Hard Processes

Hard Physics

Standard Model

almost all $2 \rightarrow 1, 2 \rightarrow 2$

A few $2 \rightarrow 3$

BSM: a bit of everything (see documentation)

Les Houches Accord and LHEF (e.g., from MadGraph, CalcHEP, AlpGen,...)

User implementations (semi-internal process)

Inheriting from PYTHIA's $2 \rightarrow 2$ base class, then modify to suit you (+ automated in MadGraph 5)

Perturbative Resonance Decays

- Angular correlations often included (on a process-by-process basis no generic formalism)
- User implementations (semi-internal resonance)

P. Skands

9

P. Skands

Hidden Valleys

Models only interesting if they can give observable consequences at the LHC!

Hidden Valleys

Models only interesting if they can give observable consequences at the LHC!

Carloni, Rathsman, Sjöstrand, JHEP 1104 (2011) 091

Interleaved shower in QCD, QED and HV sectors:

HV U(1): add γ_v emissions HV SU(N): add g_v emissions

HV particles may remain invisible, or

Broken U(1): $\gamma_v \rightarrow$ lepton pairs SU(N): hadronization in hidden sector, with full string fragmentation setup. For now assumed mass-degenerate.

Flavor Off-diagonal: stable & invisible Flavor Diagonal, can decay back to SM

Parton Distributions

Internal (faster than LHAPDF) CTEQ + MSTW LO, plus a few NLO MSTW LO*, LO**, CTEQ CT09MC Interface to LHAPDF^{T. Kasemets, arXiv:1002.4376]} Can use separate PDFs for hard scattering and UE (to 'stay tuned')

Parton Distributions

Internal (faster than LHAPDF) CTEQ + MSTW LO, plus a few NLO MSTW LO*, LO**, CTEQ CT09MC Interface to LHAPDF^{T. Kasemets, arXiv:1002.4376]} Can use separate PDFs for hard scattering and UE (to 'stay tuned')

Showers

Transverse-momentum ordered ISR & FSR (new: fully interleaved) Includes QCD and QED Dipole-style recoils (partly new) Improved high-p_⊥ behavior [**R. Corke**]

Parton Distributions

Internal (faster than LHAPDF) CTEQ + MSTW LO, plus a few NLO MSTW LO*, LO**, CTEQ CT09MC Interface to LHAPDF^{IT. Kasemets, arXiv:1002.4376]}

Can use separate PDFs for hard scattering and UE (to 'stay tuned')

Showers

Transverse-momentum ordered ISR & FSR (new: fully interleaved) Includes QCD and QED Dipole-style recoils (partly new) Improved high-p_ behavior [R. Corke]

Matrix-Element Matching

Automatic first-order matching for most gluon-emission processes in resonance decays, e.g.,:

> $Z \rightarrow qq \rightarrow qqg,$ $t \rightarrow bW \rightarrow bWg,$ $H \rightarrow bb \rightarrow bbg, \dots$

Automatic first-order matching for internal $2 \rightarrow 1$ color-singlet processes, e.g.:

> $pp \rightarrow H/Z/W/Z'/W'+jet$ More to come ...

Interface to AlpGen, MadGraph, ... via Les Houches Accords

Parton Distributions

Internal (faster than LHAPDF) CTEQ + MSTW LO, plus a few NLO MSTW LO*, LO**, CTEQ CT09MC

Interface to LHAPDF^{T. Kasemets, arXiv:1002.4376]}

Can use separate PDFs for hard scattering and UE (to 'stay tuned')

Showers

Transverse-momentum ordered ISR & FSR (new: fully interleaved) Includes QCD and QED Dipole-style recoils (partly new) Improved high-p_ behavior [R. Corke]

Matrix-Element Matching

Automatic first-order matching for most gluon-emission processes in resonance decays, e.g.,:

> $Z \rightarrow qq \rightarrow qqg,$ $t \rightarrow bW \rightarrow bWg,$ $H \rightarrow bb \rightarrow bbg, \dots$

Automatic first-order matching for internal $2 \rightarrow 1$ color-singlet processes, e.g.:

 $pp \rightarrow H/Z/W/Z'/W'+jet$

More to come ...

Interface to AlpGen, MadGraph, ... via Les Houches Accords

Matched Showers: Interface to VINCIA (new showers + matching) [PS]

ΡΥΤΗΙΑ

Matching

ΡΥΤΗΙΑ

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)

Cures

UNITARITY (a.k.a. merging, PYTHIA, VINCIA, ...)

			FF ·	
X ⁽²⁾	X + ⁽²⁾			
X ⁽¹⁾	X +1 ⁽¹⁾	X +2 ⁽¹⁾	X +3 ⁽¹⁾	
Born	X +1 ⁽⁰⁾	X +2 ⁽⁰⁾	X +3 ⁽⁰⁾	

Exact

Approx

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)

UNITARITY (a.k.a. merging, PYTHIA, VINCIA, ...)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO)

UNITARITY + SUBTRACTION (a.k.a. POWHEG, VINCIA)

Cures

	+1(=)			
X ^(I)	X +1 ⁽¹⁾	X +2 ⁽¹⁾	X +3 ⁽¹⁾	
Born	X +1 ⁽⁰⁾	X +2 ⁽⁰⁾	X +3 ⁽⁰⁾	

Exact

Approx

X ⁽²⁾	X + ⁽²⁾			
X ⁽¹⁾	X +1 ⁽¹⁾	X +2 ⁽¹⁾	X +3 ⁽¹⁾	
Born	X + ⁽⁰⁾	X +2 ⁽⁰⁾	X +3 ⁽⁰⁾	

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)

UNITARITY (a.k.a. merging, PYTHIA, VINCIA, ...)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO)

UNITARITY + SUBTRACTION (a.k.a. POWHEG, VINCIA)

Cures

+ WORK IN PROGRESS ...

NLO + multileg tree-level matrix elements

- NLO multileg matching
- Matching at NNLO

 X(2)
 X + 1(2)
 ...
 X
 ...

 X(1)
 X
 +2(1)
 X
 ...

 Born
 X + 1(0)
 X
 +3(0)
 ...

Exact

X ⁽²⁾	X + ⁽²⁾			
X ⁽¹⁾	X +1 ⁽¹⁾	X +2 ⁽¹⁾	X +3 ⁽¹⁾	
Born	X + ⁽⁰⁾	X +2 ⁽⁰⁾	X +3 ⁽⁰⁾	

Matching in PYTHIA 8

Internal: merging (correcting first shower emissions)

Tree-level matrix elements

- CKKW-L: via Les Houches files L. Lönnblad & S. Prestel, JHEP 1203 (2012) 019
- MLM: Work started on Alpgen interface [R. Corke]

NLO matrix elements

- POWHEG: done for ISR (via LHEF). In progress for FSR [R. Corke]
- MC@NLO: in progress [S. Frixione, P. Torrielli]

(Already available for virtuality-ordered Pythia 6)

+ Interface to VINCIA: Markovian pQCD ...

(uses matrix elements from Madgraph to drive evolution)

P. Skands

Note: still only worked out for FSR. ISR in progress [M. Ritzmann]

*)pQCD : perturbative QCD

Start at Born level

 $|M_{F}|^{2}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

Note: still only worked out for FSR. ISR in progress [M. Ritzmann]

*)pQCD : perturbative QCD

Start at Born level

 $|M_F|^2$

Generate "shower" emission

 $|M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i \ |M_F|^2$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

Note: still only worked out for FSR. ISR in progress [M. Ritzmann]

*)pQCD : perturbative QCD

Start at Born level

 $|M_F|^2$

Generate "shower" emission

 $|M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2$

Correct to Matrix Element $|M_{E+1}|^2$

 $a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

Note: still only worked out for FSR. ISR in progress [M. Ritzmann]

*)pQCD : perturbative QCD

Start at Born level

 $|M_F|^2$

Generate "shower" emission $|M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$

 $i \in ant$

Correct to Matrix Element $a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$

Unitarity of Shower Virtual = $-\int \text{Real}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

Note: still only worked out for FSR. ISR in progress [M. Ritzmann]

*)pQCD : perturbative QCD

Start at Born level

 $|M_F|^2$

Generate "shower" emission $|M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i \ |M_F|^2$

Correct to Matrix Element $|M_{F+1}|^2$

 $a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$

Unitarity of Shower Virtual = $-\int \text{Real}$

Correct to Matrix Element $|M_F|^2 \rightarrow |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

Note: still only worked out for FSR. ISR in progress [M. Ritzmann]

*)pQCD : perturbative QCD

Start at Born level

 $|M_F|^2$

Generate "shower" emission $\longrightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2$

Correct to Matrix Element $a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$

Unitarity of Shower Virtual = $-\int \text{Real}$

Correct to Matrix Element • $|M_F|^2 \rightarrow |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

Note: still only worked out for FSR. ISR in progress [M. Ritzmann]

*)pQCD : perturbative QCD

Start at Born level

 $|M_F|^2$

Generate "shower" emission $\longrightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$

i∈ant

Correct to Matrix Element $a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$

Unitarity of Shower Virtual = $-\int \text{Real}$

Correct to Matrix Element • $|M_F|^2 \rightarrow |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

Repeat

Note: still only worked out for FSR. ISR in progress [M. Ritzmann]

*)pQCD : perturbative QCD

Start at Born level $|M_{F}|^{2}$ Generate "shower" emission $\rightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$ i∈ant Correct to Matrix Element $a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$ Unitarity of Shower Virtual = $-\int \text{Real}$ **Correct to Matrix Element** • $|M_F|^2 \to |M_F|^2 + 2 \text{Re}[M_F^1 M_F^0] + \int \text{Real}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

Repeat

Note: still only worked out for FSR. ISR in progress [M. Ritzmann]

*)pQCD : perturbative QCD

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

PYTHIA

Repeat

Note: still only worked out for FSR. ISR in progress [M. Ritzmann]

*)pQCD : perturbative QCD

Start at Born level $|M_{F}|^{2}$ Generate "shower" emission $\rightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$ i∈ant Correct to Matrix Element $a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$ Unitarity of Shower Virtual = $-\int \text{Real}$ **Correct to Matrix Element** • $|M_F|^2 \to |M_F|^2 + 2 \text{Re}[M_F^1 M_F^0] + \int \text{Real}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

PYTHIA

Repeat
VINCIA: Markovian pQCD*

Note: still only worked out for FSR. ISR in progress [M. Ritzmann]

*)pQCD : perturbative QCD

Start at Born level $|M_{F}|^{2}$ Generate "shower" emission $\rightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$ i∈ant Correct to Matrix Element $a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$ Unitarity of Shower Virtual = $-\int \text{Real}$ **Correct to Matrix Element** • $|M_F|^2 \to |M_F|^2 + 2 \text{Re}[M_F^1 M_F^0] + \int \text{Real}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

Repeat

Markov + Unitarity = SPEED

Efficient Matching with Sector Showers J. Lopez-Villarejo & PS : JHEP 1111 (2011) 150

Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

P. Skands

Soft QCD

Underlying-Event and Minimum-Bias

Multiple parton-parton interactions

Multi-parton PDFs constructed from (flavor and momentum) sum rules

Interleaved evolution in p_{\perp} (partly new)

New: Rescattering [R. Corke]

Beam remnants colour-connected to interacting systems, with String junctions

Defaults tuned to LHC (tune 4C)

Improved model of diffraction

Diffractive jet production [S. Navin]

Output: Interface to HEPMC included

Soft QCD

Underlying-Event and Minimum-Bias

Multiple parton-parton interactions

Multi-parton PDFs constructed from (flavor and momentum) sum rules

Interleaved evolution in p_{\perp} (partly new)

New: Rescattering [R. Corke]

Beam remnants colour-connected to interacting systems, with String junctions

Defaults tuned to LHC (tune 4C)

Improved model of diffraction

Diffractive jet production [S. Navin]

Hadronization

String fragmentation

Lund fragmentation function for (u,d,s) + Bowler for heavy quarks (c,b)

Hadron and Particle decays

Usually isotropic, or:

New: Polarized T decays

User decays (DecayHandler)

Link to external packages

EVTGEN for B decays

TAUOLA for τ decays

Bose-Einstein effects

Two-particle model (off by default)

Output: Interface to HEPMC included

P. Skands

Interleaved Evolution

Sjöstrand, PS, JHEP 0403 (2004) 053; EPJ C39 (2005) 129 Corke, Sjöstrand, JHEP 1103 (2011) 032

+ (x,b) correlations Corke, Sjöstrand JHEP 1105 (2011) 009

Color Connections

 $Multiplicity \propto N_{MPI}$

Color Reconnections?

E.g.,

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133) Cluster reconnections (Gieseke, Röhr, Siodmok, arXiv:1206.0041)

Better theory models needed

Color Reconnections?

E.g.,

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133) Cluster reconnections (Gieseke, Röhr, Siodmok, arXiv:1206.0041)

Better theory models needed

Pythia 6: The Perugia Variations

Central Tune + 9 variations

Note: no variation of hadronization parameters! (sorry, ten was already a lot)

MSTP(5) = ...

PS, PRD82 (2010) 074018		Perugia 2011 Tune Set	
(350)	Perugia 2011	Central Perugia 2011 tune (CTEQ5L)	
(351)	Perugia 2011 radHi	Variation using $\alpha_s(\frac{1}{2}p_{\perp})$ for ISR and FSR	Harder radiation
(352)	Perugia 2011 radLo	Variation using $\alpha_s(\bar{2}p_{\perp})$ for ISR and FSR	Softer radiation
(353)	Perugia 2011 mpiHi	Variation using $\Lambda_{\rm QCD} = 0.26 {\rm GeV}$ also for MPI	UE more "jetty'
(354)	Perugia 2011 noCR	Variation without color reconnections	Softer hadrons
(355)	Perugia 2011 M	Variation using MRST LO** PDFs	UE more "jetty'
(356)	Perugia 2011 C	Variation using CTEQ 6L1 PDFs	Recommended
(357)	Perugia 2011 T16	Variation using $PARP(90)=0.16$ scaling away fr	0000 om 7 TeV
(358)	Perugia 2011 T32	Variation using $PARP(90)=0.32$ scaling away fr	000 om 7 TeV
(359)	Perugia 2011 Tevatron	Variation optimized for Tevatron	~ low at LHC

Can be obtained in standalone Pythia from 6.4.25+

MSTP(5) = 350

Perugia 2011

Perugia 2011 radHi

MSTP(5) = 351

MSTP(5) = 352 Perugia 2011 radLo

ΡΥΤΗΙΑ

PYTHIA 6 is still going strong (sigh)

Recommended: Perugia 2011 tunes + variations No longer actively developed F77 interfaces not very flexible, outmoded.

PYTHIA 6 is still going strong (sigh)

Recommended: Perugia 2011 tunes + variations No longer actively developed F77 interfaces not very flexible, outmoded.

PYTHIA 8 is the natural successor

Recommended: default (4C) tune + ATLAS and CMS efforts Significant focus on interfaces & interoperability (e.g., Madgraph, Alpgen, LHEF, ...) New challenges (within and beyond SM) will be addressed within PYTHIA 8, not 6.

PYTHIA 6 is still going strong (sigh)

Recommended: Perugia 2011 tunes + variations No longer actively developed F77 interfaces not very flexible, outmoded.

PYTHIA 8 is the natural successor

Recommended: default (4C) tune + ATLAS and CMS efforts Significant focus on interfaces & interoperability (e.g., Madgraph, Alpgen, LHEF, ...) New challenges (within and beyond SM) will be addressed within PYTHIA 8, not 6.

Try VINCIA if you're ready for something new

Replaces shower functions by matrix elements Fast + Extendable to NLO multileg + auto-uncertainties So far only for FSR. Aim to have ISR this year.

PYTHIA 6 is still going strong (sigh)

Recommended: Perugia 2011 tunes + variations No longer actively developed F77 interfaces not very flexible, outmoded.

PYTHIA 8 is the natural successor

Recommended: default (4C) tune + ATLAS and CMS efforts Significant focus on interfaces & interoperability (e.g., Madgraph, Alpgen, LHEF, ...) New challenges (within and beyond SM) will be addressed within PYTHIA 8, not 6.

Try VINCIA if you're ready for something new

Replaces shower functions by matrix elements Fast + Extendable to NLO multileg + auto-uncertainties So far only for FSR. Aim to have ISR this year.

Backup Slides

P. Skands

Color Flow in MC Models

"Planar Limit"

- Equivalent to $N_C \rightarrow \infty$: no color interference^{*}
- Rules for color flow:

For an entire cascade:

*) except as reflected by the implementation of QCD coherence effects in the Monte Carlos via angular or dipole ordering

 $\overbrace{e_e} \rightarrow \longrightarrow \qquad \underbrace{ue_e} \rightarrow \underbrace$

Coherence of pQCD cascades \rightarrow not much "overlap" between strings \rightarrow planar approx pretty good LEP measurements in WW confirm this (at least to order 10% ~ 1/N_c²)

Interfaces to External MEs (POWHEG/SCALUP)

Slide from T. Sjöstrand, TH-LPCC workshop, August 2011, CERN

Standard Les Houches interface (LHA, LHEF) specifies startup scale SCALUP for showers, so "trivial" to interface any external program, including POWHEG. Problem: for ISR

$$p_{\perp}^{2} = p_{\perp evol}^{2} - \frac{p_{\perp evol}^{4}}{p_{\perp evol,max}^{2}}$$

$$\int d\Phi_r \frac{R(v,r)}{B(v)} \theta(k_{\rm T}(v,r) - p_{\rm T})$$
not needed if shower ordered in p_T?

i.e. p_{\perp} decreases for $\theta^* > 90^{\circ}$ but $p_{\perp evol}$ monotonously increasing. Solution: run "power" shower but kill emissions above the hardest one, by POWHEG's definition.

Available, for ISR-dominated, coming for QCD jets with FSR issues.

in PYTHIA 8

Note: Other things that may differ in comparisons: PDFs (NLO vs LO), Scale Choices PYTHIA

Interfaces to External MEs (MLM)

B. Cooper et al., arXiv:1109.5295 [hep-ph]

If using one code for MEs and another for showering

Tree-level corrections use α_s from Matrix-element Generator

Virtual corrections use α_s from Shower Generator (Sudakov)

Mismatch if the two do not use same Λ_{QCD} or $\alpha_s(m_z)$

Scales: pT and CMW

Compute e⁺e⁻ \rightarrow **3 jets,** for arbitrary choice of μ_R (e.g., μ_R = m_Z)

One-loop correction $2Re[M^0M^{1*}]$ includes a universal $O(\alpha_s^2)$ term from integrating quark loops over all of phase space

$$n_f A_3^0 \left(\ln \left(\frac{s_{23}}{\mu_R^2} \right) + \ln \left(\frac{s_{13}}{\mu_R^2} \right) \right) \qquad \text{+ gluon loops}$$

Proportional to the β function (b₀).

Can be absorbed by using $\mu_R^4 = s_{13} s_{23} = p_T^2 s$. (~"BLM")

In an ordered shower, quark (and gluon) loops restricted by strong-ordering condition → modified to

 $\mu_R = p_T$ (but depends on ordering variable?)

Additional logs induced by gluon loops can be absorbed by replacing Λ^{MS} by $\Lambda^{MC} \sim 1.5 \Lambda^{MS}$ (with mild dependence on number of flavors)

Catani, Marchesini, Webber, NPB349 (1991) 635

There are obviously still order 2 uncertainties on μ_R , but this is the background for the central choice made in showers

Tuning

I. Fragmentation Tuning

Perturbative: jet radiation, jet broadening, jet structure **Non-perturbative:** hadronization modeling & parameters

2. Initial-State Tuning

Perturbative: initial-state radiation, initial-final interference Non-perturbative: PDFs, primordial k_T

3. Underlying-Event & Min-Bias Tuning

Perturbative: Multi-parton interactions, rescattering

Non-perturbative: Multi-parton PDFs, Beam Remnant fragmentation, Color (re)connections, collective effects, impact parameter dependence, ...

PYTHIA Models

Note: tunes differ significantly in which data sets they include

LEP fragmentation parameters Level of Underlying Event & Minimum-bias Tails Soft part of Drell-Yan p_T spectrum

PYTHIA Models

Example: pQCD Shower Tuning

Main pQCD Parameters

The value of the strong coupling at the Z pole

 $\alpha_s(m_Z)$

 α_s Running

Renormalization Scheme and Scale for α s

Governs overall amount of radiation

I - / 2-loop running, MSbar / CMW scheme, $\mu_R \sim Q^2$ or p_T^2

Matching

Additional Matrix Elements included?

At tree level / one-loop level? Using what scheme?

Subleading Logs

Ordering variable, coherence treatment, effective $I \rightarrow 3$ (or $2 \rightarrow 4$), recoil strategy, etc

Need IR Corrections?

vs LEP: Thrust **PYTHIA 8** (hadronization off)

Significant Discrepancies (>10%) for T < 0.05, Major < 0.15, Minor < 0.2, and for all values of Oblateness

PYTHIA

Major

Need IR Corrections?

PYTHIA 8 (hadronization on) vs LEP: Thrust

34

PYTHIA

Major

Need IR Corrections?

PYTHIA 8 (hadronization on) vs LEP: Thrust

34

Value of Strong Coupling

vs LEP: Thrust **PYTHIA 8** (hadronization on)

Major

ΡΥΤΗΙΑ

Best result

Obtained with $\alpha_s(M_Z) \approx 0.14 \neq World Average = 0.1176 \pm 0.0020$

Best result

Obtained with $\alpha_s(M_Z) \approx 0.14 \neq World Average = 0.1176 \pm 0.0020$

Value of α_s

Depends on the order and scheme

 $MC \approx Leading Order + LL resummation$

Other leading-Order extractions of $\alpha_s \approx 0.13$ - 0.14

Effective scheme interpreted as "CMW" $\rightarrow 0.13$; 2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?

Best result

Obtained with $\alpha_s(M_Z) \approx 0.14 \neq World Average = 0.1176 \pm 0.0020$

Value of α_s

Depends on the order and scheme $MC \approx Leading Order + LL resummation$

Other leading-Order extractions of $\alpha_s \approx 0.13$ - 0.14

Effective scheme interpreted as "CMW" $\rightarrow 0.13$; 2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?

Not so crazy

Tune/measure even pQCD parameters with the actual generator.

Sanity check = consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to 'MC scheme')

Best result

Obtained with $\alpha_s(M_Z) \approx 0.14 \neq World Average = 0.1176 \pm 0.0020$

Value of α_s

Depends on the order and scheme $MC \approx Leading Order + LL resummation$

Other leading-Order extractions of $\alpha_s \approx 0.13 - 0.14$

Effective scheme interpreted as "CMW" $\rightarrow 0.13$; 2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?

Not so crazy

Tune/measure even pQCD parameters with the actual generator.

Sanity check = consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to 'MC scheme')

> Improve \rightarrow Matching at LO and NLO Non-perturbative \rightarrow Lecture on IR

FSR: Jet Shapes

Plots from mcplots.cern.ch

ISR*: Drell-Yan pt ATLAS: arXiv:1107.2381 CMS: arXiv:110.4973

*From Quarks, at Q=M_Z

Particularly sensitive to

- $I. \alpha_s$ renormalization scale choice
- 2. Recoil strategy (color dipoles vs global vs ...)
- 3. FSR off ISR (ISR jet broadening)

Non-trivial result that modern GPMC shower models all reproduce it ~ correctly

Note: old PYTHIA 6 model (Tune A) did not give correct distribution, except with extreme μ_R choice (DW, D6, Pro-Q2O)

ISR: Dijet Decorrelation

ISR: Dijet Decorrelation

IR Safe Summary (ISR/FSR):

LO + showers generally in good 0(20%) agreement with LHC (modulo bad tunes, pathological cases) **Room for improvement:** Quantification of <u>uncertainties</u> is still more art than science. **Cutting Edge**: multi-jet matching at NLO and systematic NLL showering **Bottom Line:** perturbation theory is solvable. Expect progress.

Uncertainties

Buckley et al. (Professor) "Systematic Event Generator Tuning for LHC", EPJC65 (2010) 331
P.S. "Tuning MC Event Generators: The Perugia Tunes", PRD82 (2010) 074018
Schulz, P.S. "Energy Scaling of Minimum-Bias Tunes", EPJC71 (2011) 1644
Giele, Kosower, P.S. "Higher-Order Corrections to Timelike Jets", PRD84 (2011) 054003

Variation of µ_R here done for ISR + FSR together (theoretically consistent, but may not be most conservative?)

+ Similar variations for PDFs (CTEQ vs MSTW) Amount of MPI, Color reconnections, Energy scaling

+ Variations of Fragmentation parameters (IR sensitive) on the way
Multiple Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Earliest MC model ("old" PYTHIA 6 model) Sjöstrand, van Zijl PRD36 (1987) 2019

Lesson from bremsstrahlung in pQCD: divergences → fixed-order breaks down Perturbation theory still ok, with resummation <u>(unitarity)</u>

> → Resum dijets? Yes → MPI!

Multiple Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Earliest MC model ("old" PYTHIA 6 model) Sjöstrand, van Zijl PRD36 (1987) 2019

Lesson from bremsstrahlung in pQCD: divergences → fixed-order breaks down Perturbation theory still ok, with resummation <u>(unitarity)</u>

> → Resum dijets? Yes → MPI!

Underlying Event

Note: the UE is more active than Min-Bias, which is more active than Pile-Up

Underlying Event: RMS

Measures the event-by-event FLUCTUATIONS of the Underlying Event

Min-Bias: Inclusive Particles

ncolots.cem.ch

200

200

 N_{ch}

Min-Bias: <pT> vs Nch

Independent Particle Production:

 \rightarrow averages stay the same

Color Correlations / Jets / Collective effects: → average rises

Extrapolation to high multiplicity ~ UE

Average particles slightly too hard

 \rightarrow Too much energy, or energy distributed on too few particles

~ OK?

Average particles slightly too soft

 \rightarrow Too little energy, or energy distributed on too many particles

Evolution of other distributions with N_{ch} also interesting: e.g., $< p_T > (N_{ch})$ for identified particles, strangeness & baryon ratios, 2P correlations, ...

Very soft spectra without POMPYT Status: Supported, but not actively developed

P. Skands

46

PYTHIA

Diffraction in PYTHIA 8 Navin, arXiv:1005.3894

Diffraction

Framework needs testing and tuning

- E.g., interplay between non-diffractive and diffractive components
- + LEP tuning used directly for diffractive modeling

Hadronization preceded by shower at LEP, but not in diffraction \rightarrow dedicated diffraction tuning of fragmentation pars?

+ Little experience with new PYTHIA 8 MPI component in high-mass diffractive events

 \rightarrow This component especially needs testing and tuning

E.g., look at n_{ch} and p_T spectra in high-mass (>10GeV) diffraction

(Not important for UE as such, but can be important if using PYTHIA to simulate pile-up!)

 $\sigma_{\mathbb{P}p}$ determines level of UE in high-mass diffraction through $\langle n_{MPI} \rangle = \sigma_{jet} / \sigma_{\mathbb{P}p}$. (Larger $\sigma_{\mathbb{P}p} \rightarrow$ smaller UE)

PYTHIA

Pile-Up

= additional zero-bias interactions (contain more diffraction than ordinary min-bias)

Processes with no hard scale:

Larger uncertainties \rightarrow Good UE does *not* guarantee good pile-up.

Error of 50% on a soft component \rightarrow not bad.

Multiply it by 60 Pile-Up interactions \rightarrow bad!

Calibration & filtering

H→WW

Good at recovering jet calibration (with loss of resolution),

But missing energy and isolation sensitive to modeling.

(E.g., $\gamma\gamma$ studies by ATLAS, CMS, CDF, D0)

Pile-Up

= additional zero-bias interactions (contain more diffraction than ordinary min-bias)

Processes with no hard scale:

Larger uncertainties \rightarrow Good UE does *not* guarantee good pile-up.

Error of 50% on a soft component \rightarrow not bad.

Multiply it by 60 Pile-Up interactions \rightarrow bad!

Calibration & filtering

H→WW

Good at recovering jet calibration (with loss of resolution),

But missing energy and isolation sensitive to modeling.

 $H \rightarrow v v?$

(E.g., $\gamma\gamma$ studies by ATLAS, CMS, CDF, D0)

Models

MC models so far: problems describing both MB & UE simultaneously → Consider using dedicated MB/diffraction model for pile-up

(UE/MB tension may be resolved in 2012 (eg. studies by R. Field), but for now must live with it)

Experimentalists advised to use unbiased data for PU (when possible)