

ALFA + ATLAS Physics Opportunities

ALFA+ATLAS Meeting, Sep 4 2012, NBI

QCD Models

QCD Models

Soft QCD: Definitions

$\sigma_{tot} \approx$		EXPERIMENT		THEORY MODELS
ELASTIC	₽Р→РР	QED+QCD	~	(*QED = ∞)
SINGLE DIFFRACTION	рр→р+gap+X	Fiducial region,	≠	SD model: Small gaps suppressed but not zero
DOUBLE DIFFRACTION	pp→X+gap+X	identified proton, and/or	≠	DD model: Small gaps suppressed but not zero
INELASTIC NON-DIFFRACTIVE	pp→X (no gap)	observable gap	≠	Large gaps suppressed but not zero

(+ multi-gap diffraction = central diff + ...)

Soft QCD: Definitions

$\sigma_{tot} \approx$		EXPERIMENT		THEORY MODELS
ELASTIC	рр→рр	QED+QCD	~	(*QED = ∞)
SINGLE DIFFRACTION	рр→р+gap+X	Fiducial region, identified proton, and/or observable gap	≠	SD model: Small gaps suppressed but not zero
DOUBLE DIFFRACTION	pp→X+gap+X		≠	DD model: Small gaps suppressed but not zero
INELASTIC NON-DIFFRACTIVE	pp→X (no gap)		ŧ	Large gaps suppressed but not zero

(+ multi-gap diffraction = central diff + ...)

Min-Bias, Single-Gap, Forward-proton, etc.

= Experimental trigger condition(s) (hardware-dependent)
 Correct to hardware-independent reference condition(s)
 Full acceptance (not 4π), or more restrictive

"Theory" for Min-Bias/Diffraction/...?

Really = Model for ALL INELASTIC incl diffraction (with model-dependent defs of ND, SD, ...) Compare to data with different reference condition(s) \rightarrow suppress/enhance diffraction Can also extrapolate to full phase space (model-dependent)

1) Hard Interactions (Inelastic, Non-Diffractive)

2) Underlying Event (UE) (A.K.A. the "Pedestal Effect")

Hadrons are composite \rightarrow possibility of Multiple Simultaneous Parton Interactions

 P^+

Example: two parton-parton interactions in one pp interaction
→ Generates UE > Min-Bias (& destroys diffractive gaps)

(Hitting Colour-Singlet Substructure Fluctuations in the Beam Hadrons)

Full hadron wavefunction contains a superposition of states

(Hitting Colour-Singlet Substructure Fluctuations in the Beam Hadrons)

Full hadron wavefunction contains a superposition of states

 \rightarrow Sometimes, p = n⁰ π + for a little (virtual) while ...

(Hitting Colour-Singlet Substructure Fluctuations in the Beam Hadrons)

Full hadron wavefunction contains a superposition of states

 \rightarrow Sometimes, p = n⁰ π + for a little (virtual) while ...

or p = p' + singlet-glueball (a.k.a. Pomeron) for a little (virtual) while ...

... etc ...

(Hitting Colour-Singlet Substructure Fluctuations in the Beam Hadrons)

Full hadron wavefunction contains a superposition of states

 \rightarrow Sometimes, p = n⁰ π + for a little (virtual) while ...

or p = p' + singlet-glueball (a.k.a. Pomeron) for a little (virtual) while ...

... etc ...

(Colour-Singlet Substructure Fluctuations in the Beam Hadrons)

Color Flow in MC Models

"Planar Limit"

- Equivalent to $N_C \rightarrow \infty$: no color interference^{*}
- Rules for color flow:

For an entire cascade:

```
*) except as reflected by
the implementation of
QCD coherence effects in
the Monte Carlos via
angular or dipole ordering
```

Illustrations from: Nason + PS, PDG Review on *MC Event Generators*, 2012

Coherence of pQCD cascades \rightarrow not much "overlap" between strings \rightarrow planar approx pretty good LEP measurements in WW confirm this (at least to order 10% ~ 1/N_c²)

Color Connections

Each MPI (or cut Pomeron) exchanges color between the beams

The colour flow determines the hadronizing string topology

- Each MPI, even when soft, is a color spark
- Final distributions crucially depend on color space

Different models

Color Connections

Each MPI (or cut Pomeron) exchanges color between the beams

The colour flow determines the hadronizing string topology

- Each MPI, even when soft, is a color spark
- Final distributions <u>crucially</u> depend on color space

Different models

Color Connections

Better theory models needed

Color Reconnections?

E.g.,

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133) Statistical CR (Gieseke et al., arXiv:1206004)

Rapidity

Better theory models needed

Do the systems really form and hadronize independently?

Can gaps be created?

Multiplicity 🖗 N_{MPI}

Effects of CR

Examples from "CR in Herwig++" : Gieseke et al., arXiv:1206004 (Note: exhibits larger dN/dŋ effects than PYTHIA models, but qualitative features similar)

Main IR Parameters

Number of MPI

Pedestal Rise

Strings per Interaction

P. Skands

Main IR Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{T0}) \rightarrow size of overall activity

Pedestal Rise

Strings per Interaction

Main IR Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{T0}) \rightarrow size of overall activity

Pedestal Rise

Proton transverse mass distribution \rightarrow difference between central (active) vs peripheral (less active) collisions

Strings per Interaction

Main IR Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{T0}) \rightarrow size of overall activity

Pedestal Rise

Proton transverse mass distribution \rightarrow difference between central (active) vs peripheral (less active) collisions

Strings per Interaction

Color correlations between multiple-parton-interaction systems \rightarrow shorter or longer strings \rightarrow less or more hadrons per interaction

+ Diffraction (in PYTHIA 8)

Navin, arXiv:1005.3894

Choice between 5 Pomeron PDFs. Free parameter $\sigma_{\mathbb{P}p}$ needed to fix $\langle n_{\text{interactions}} \rangle = \sigma_{\text{jet}} / \sigma_{\mathbb{P}p}$.

+ Recently Central Diffraction!

Framework needs testing and tuning, e.g. of $\sigma_{\mathbf{P}p}$.

SD: Identified Particles

- * Λ and K_S
- * Other identified particles?
- * Compare to minimum bias

SD DIJETS

- * Mass Spectrum (how high can you go?)
- * Underlying Event in SD DIJET events
- * Dijet Decorrelation $\Delta \phi_{ij}$
- * SD FOUR JETS (MPI in diffraction!)

SD: Identified Particles

- $*\Lambda$ and K_S
- * Other identified particles?
- * Compare to minimum bias

CD

- * Mass Spectrum (how high can you go?)
- * $Mass^2 = x_{Pom1} x_{Pom2} s$
- * Rapidity of system $\rightarrow x_{Pom1} / x_{Pom2}$

CD

- * Mass Spectrum (how high can you go?)
- * $Mass^2 = x_{Pom1} x_{Pom2} s$
- * Rapidity of system $\rightarrow x_{Pom1} / x_{Pom2}$

CD JETS

- * Underlying Event
- * Dijet Decorrelation, $\Delta \phi_{jj}$

Multi-Gap Diffraction (= Subset of Single-Gap)

Summary

Monte Carlo Event Generators

Aim to describe complete event structure

The MPI that produce the underlying event (UE) in the **central** region also disturb the beam remnant in the **forward** region

→ correlations between central and fwd fragmentation

Current MC constraints sum inclusively over FWD region \rightarrow blind spot

If there are **big elephants** there, the central constraints would need to be thoroughly re-evaluated

Diffraction

Is not a big elephant for the UE or central physics program (mainly non-diff) But important for fwd physics + all MCs in active development (Hard + Central diffraction model in Pythia 8, POMWIG-type model in Herwig++, KMR model in Sherpa) → need good constraints: → study both diff-enhanced and diff-suppressed triggered samples

Multiple Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Multiple Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Multiple Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Earliest MC model ("old" PYTHIA 6 model) Sjöstrand, van Zijl PRD36 (1987) 2019

Lesson from bremsstrahlung in pQCD: divergences → fixed-order breaks down Perturbation theory still ok, with resummation <u>(unitarity)</u>

> → Resum dijets? Yes → MPI!

How many?

Naively
$$\langle n_{2\to 2}(p_{\perp \min}) \rangle = \frac{\sigma_{2\to 2}(p_{\perp \min})}{\sigma_{\text{tot}}}$$

Interactions independent (naive factorization) \rightarrow Poisson

$$\sigma_{\text{tot}} = \sum_{n=0}^{\infty} \sigma_n$$

$$\sigma_{\text{int}} = \sum_{n=0}^{\infty} n \sigma_n$$

$$\mathcal{P}_n \quad \sigma_{\text{int}} > \sigma_{\text{tot}} \iff \langle n \rangle > 1$$

$$\int \left(\sqrt{n} \rangle = 2 \text{ (example)} \right)$$

$$\int (\sqrt{n} \rangle = 2 \text{ (example)}$$

$$\int (\sqrt{n} \rangle = 2 \text{ (example)}$$

$$\mathcal{P}_n = rac{\langle n
angle^n}{n!} e^{-\langle n
angle}$$

How many?

Naively $\langle n_{2\to 2}(p_{\perp \min}) \rangle = \frac{\sigma_{2\to 2}(p_{\perp \min})}{\sigma_{tot}}$ Interactions independent (naive factorization) \rightarrow Poisson

$$\mathcal{P}_n = rac{\langle n
angle^n}{n!} e^{-\langle n
angle}$$

Real Life

Momentum conservation suppresses high-n tail + physical correlations → not simple product

1: A Simple Model

The minimal model incorporating single-parton factorization, perturbative unitarity, and energy-and-momentum conservation

$$\sigma_{2\to 2}(p_{\perp \min}) = \langle n \rangle(p_{\perp \min}) \sigma_{\text{tot}}$$

Parton-Parton Cross Section

Hadron-Hadron Cross Section

I. Choose $p_{T\min}$ cutoff

= main tuning parameter

- 2. Interpret $< n > (p_{Tmin})$ as mean of Poisson distribution Equivalent to assuming all parton-parton interactions equivalent and independent ~ each take an instantaneous "snapshot" of the proton
- 3. Generate *n* parton-parton interactions (pQCD 2 \rightarrow 2) Veto if total beam momentum exceeded \rightarrow overall (E,p) cons
- 4. Add impact-parameter dependence $\rightarrow \langle n \rangle = \langle n \rangle(b)$ Assume factorization of transverse and longitudinal d.o.f., \rightarrow PDFs : f(x,b) = f(x)g(b) b distribution \propto EM form factor \rightarrow JIMMY model Butterworth, Forshaw, Seymour Z.Phys. C72 (1996) 637 Constant of proportionality = second main tuning parameter
- 5. Add separate class of "soft" (zero-pt) interactions representing interactions with $p_T < p_{T\min}$ and require $\sigma_{soft} + \sigma_{hard} = \sigma_{tot}$ \rightarrow Herwig++ model Bähr et al, arXiv:0905.4671

2: Interleaved Evolution

Sjöstrand & Skands, JHEP 0403 (2004) 053; EPJ C39 (2005) 129

Also available for Pomeron-Proton collisions since Pythia 8.165