Recap: VINCIA

Plug-in to PYTHIA 8 C++ (~20,000 lines)

Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Based on antenna factorization

- of Amplitudes (exact in both soft and collinear limits)
- of Phase Space (LIPS : 2 on-shell \rightarrow 3 on-shell partons, with (E,p) constants

Evolution Scale

Infinite family of continuously deformable Q_E

Special cases: transverse momentum, invariant mass, energy Improvements for hard $2 \rightarrow n$: "smooth ordering" & I matching

Radiation functions

Written as Laurent-series with arbitrary coefficients, ant; Special cases for non-singular terms: Gehrmann-Gloper, MIN, + Massive antenna functions for massive fermions

Kinematics maps

Formalism derived for infinitely deformable $\kappa_{3\rightarrow 2}$ Special cases: ARIADNE, Kosower, + massive generalizations

vincia.hepforge.org

 $|(y_R; z)|^2$

One-Loop Corrections

Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026

Trivial Example (for notation): $Z^0 \rightarrow q\bar{q}$ First Order (~POWHEG)

NLO Correction: Subtract and correct by difference

$$\frac{2 \operatorname{Re}[M_0^0 M_0^{1^*}]}{|M_0^0|^2} = \frac{\alpha_s}{2\pi} 2C_F \left(2I_{q\bar{q}}(\epsilon, \mu^2/m_Z^2) - 4\right) \\ \int_0^s d\Phi_{\operatorname{ant}} 2C_F g_s^2 A_{g/q\bar{q}} = \frac{\alpha_s}{2\pi} 2C_F \left(-2I_{q\bar{q}}(\epsilon, \mu^2/m_Z^2) + \frac{19}{4}\right) \\ \operatorname{IR Singularity Operator}$$

$$|M_0^0|^2 \to \left(1 + \frac{\alpha_s}{\pi}\right) |M_0^0|^2$$

One-Loop Corrections

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

Getting Serious: second order

Master Equation

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

NLO Correction: Subtract and correct by difference

$$\begin{aligned} \mathsf{A}_{\mathsf{NLO}} &= \mathsf{A}_{\mathsf{LO}} \left(1 + \mathsf{V}_{\mathsf{I}}\right) \\ V_{\mathsf{I}Z}(q, g, \bar{q}) &= \left[\frac{2\operatorname{Re}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{\mathsf{LC}} - \frac{\alpha_{s}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right)^{\mathsf{IR}} \left(\frac{\mu_{\mathsf{ME}}^{2}}{\mu_{\mathsf{PS}}^{2}}\right) \\ \\ \mathsf{Standard IR} \\ \mathsf{Singularities} &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{\bar{q}g}) - 2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{g\bar{q}}) + \frac{34}{3}\right] & \mathsf{Gluon Emission IR} \\ \mathsf{Singularity} \\ \\ \mathsf{Standard} \\ \mathsf{Finte Terms} \\ \mathsf{Finte Terms} \\ \mathsf{A} = \mathsf{LO} \\ \mathsf{Matching} \\ \mathsf{Terms}(\mathsf{finite}) &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^{2}/s_{qg}) - 2I_{gq}^{(1)}(\epsilon, \mu^{2}/s_{qg}) - 1 \right] & \mathsf{Gluon Splitting IR} \\ \mathsf{Singularity} \\ \mathsf{Standard} \\ \mathsf{Finte Terms} \\ \mathsf{Finte} \\ \mathsf{Terms}(\mathsf{finite}) &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[\mathsf{8}\pi^{2} \int_{Q_{1}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathsf{ant}} A_{g/qg}^{\mathsf{std}}} + \mathsf{8}\pi^{2} \int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathsf{ant}} \delta A_{g/qg} \\ \mathsf{A} = \mathsf{LO} \\ \mathsf{Matching} \\ \mathsf{Terms}(\mathsf{finite}) \\ \mathsf{A} = \mathsf{LO} \\ \mathsf{Matching} \\ \mathsf{Terms}(\mathsf{finite}) \\ \mathsf{A} = \mathsf{LO} \\ \mathsf{A} = \mathsf{A} = \mathsf{LO} \\ \mathsf{A} = \mathsf{A} = \mathsf{LO} \\ \mathsf{A} = \mathsf{$$

Loop Corrections

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

 $(MC)^2$: NLO Z \rightarrow 2 \rightarrow 3 Jets + Markov Shower

Choice of µR

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

Markov Evolution in: Transverse Momentum, $a_S(M_Z) = 0.12$

Choice of QEvol

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

1.0

1.0

Choice of Finite Terms

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

MIN Antennae: MAX Antennae: $\delta A_{3\rightarrow 4} < 0$ $\delta A_{3 \rightarrow 4} > 0$ $Q_E = 2p_T$ (strong) $Q_E = 2p_T$ (strong) 0 [].] 0 1.3 1.05 13 -2-2Large finite terms Small finite terms → Small 3→4 Sudakov \rightarrow Large 3 \rightarrow 4 Sudakov (much Sudakov Suppr) (little Sudakov Suppr) $\ln(y_{jk})$ $\ln(y_{jk})$ 1.2 1.05 -6 -6 Note: this just for Plustration. Matching to LO matrix elements fixes δA uniquely -8-6 -20.0 -40 -8-2-6 -40 $\ln(y_{ij})$ $\ln(y_{ij})$ **Parameters:** $a_S(M_Z) = 0.12$, $\mu_R = p_{TA}$, $\Lambda_{QCD} = \Lambda_{CMW}$ Ska $Q_E=2p_T$ (smooth)

Outlook

- Publish 3 papers (~ a couple of months: helicities, NLO multileg, ISR)
- 2. Apply these corrections to a broader class of processes, including ISR → LHC phenomenology
- **3. Automate correction procedure, via interfaces to one-loop codes ...** (goes slightly beyond Binoth Accord; for LO corrections, we currently use own interface to modified MadGraph ME's)
- **4. Variations.** No calculation is more precise than the reliability of its uncertainty estimate \rightarrow aim for full assessment of TH uncertainties.
- **5.** Recycle formalism for all-orders shower corrections?

Phase Space Contours

Evolution Variables:

Consequences of Ordering

Number of antennae restricted by ordering condition

Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

Solution: (MC)²

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

Start from quasi-conformal all-orders structure (approximate) Impose exact higher orders as finite corrections Truncate at fixed **scale** (rather than fixed order) **Bonus:** low-scale partonic events → can be hadronized

Problems:

Idea:

Traditional parton showers are history-dependent (non-Markovian)

 \rightarrow Number of generated terms grows like $2^{N}N!$

+ Highly complicated expansions

Solution: (MC)² : Monte-Carlo Markov Chain

Markovian Antenna Showers (VINCIA)

- \rightarrow Number of generated terms grows like N
- + extremely simple expansions

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

New: Markovian pQCD*

*)pQCD : perturbative QCD

Fixed Order: Recap

Improve by computing quantum corrections, order by order

(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)

Shower Types

Traditional vs Coherent vs Global vs Sector vs Dipole

Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity of the IK pair, respectively, originate in different shower types. (Θ_I and Θ_K represent angular vetos with respect to partons I and K, respectively, and Θ_{IK} represents a sector phase-space veto, see text.)

Global Antennae

×	$rac{1}{y_{ij}y_{jk}}$	$\frac{1}{y_{ij}}$	$rac{1}{y_{jk}}$	$rac{y_{jk}}{y_{ij}}$	$rac{y_{ij}}{y_{jk}}$	$\frac{y_{jk}^2}{y_{ij}}$	$\frac{y_{ij}^2}{y_{jk}}$	1	y_{ij}	y_{jk}
$q\bar{q} ightarrow qg\bar{q}$										
$++ \rightarrow +++$	1	0	0	0	0	0	0	0	0	0
$++ \rightarrow +-+$	1	-2	-2	1	1	0	0	2	0	0
$+- \rightarrow ++-$	1	0	-2	0	1	0	0	0	0	0
$+- \rightarrow +$	1	-2	0	1	0	0	0	0	0	0
$qg \rightarrow qgg$										
$++ \rightarrow +++$	1	0	$-\alpha + 1$	0	$2\alpha - 2$	0	0	0	0	0
$++ \rightarrow +-+$	1	-2	-3	1	3	0	-1	3	0	0
$+- \rightarrow ++-$	1	0	-3	0	3	0	-1	0	0	0
$+- \rightarrow +$	1	-2	$-\alpha + 1$	1	$2\alpha - 2$	0	0	0	0	0
$gg \rightarrow ggg$								1		
$++ \rightarrow +++$	1	$ -\alpha+1 $	$-\alpha + 1$	$2\alpha - 2$	$2\alpha - 2$	0	0	0	0	0
$++ \rightarrow +-+$	1	-3	-3	3	3	-1	-1	3	1	1
$+- \rightarrow ++-$	1	$-\alpha + 1$	-3	$2\alpha - 2$	3	0	-1	0	0	0
$+- \rightarrow +$	1	-3	$-\alpha + 1$	3	$2\alpha - 2$	-1	0	0	0	0
$qg \to q\bar{q}'q'$										
$++ \rightarrow ++ -$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0
$++ \rightarrow +-+$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	0	0	0
$+- \rightarrow ++ -$	0	0	$\frac{\frac{1}{2}}{\frac{1}{2}}$	0	-1	0	$\frac{\overline{1}}{2}$	0	0	0
$+- \rightarrow +$	0	0	Ō	0	0	0	$\frac{\overline{1}}{2}$	0	0	0
$gg \to g\bar{q}q$										
$++ \rightarrow ++ -$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0
$++ \rightarrow +-+$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{\overline{1}}{2}$	0	0	0
$+- \rightarrow + + -$	0	0	$\frac{\frac{1}{2}}{\frac{1}{2}}$	0	-1	0	$\frac{1}{21}$	0	0	0
$+- \rightarrow +-+$	0	0	Ō	0	0	0	$\frac{\overline{1}}{2}$	0	0	0

Sector Antennae

Global
$$\bar{a}_{g/qg}^{\text{gl}}(p_i, p_j, p_k) \xrightarrow{s_{jk} \to 0} \frac{1}{s_{jk}} \left(P_{gg \to G}(z) - \frac{2z}{1-z} - z(1-z) \right)$$

 \rightarrow P(z) = Sum over two neigboring antennae

The Denominator

In a traditional parton shower, you would face the following problem:

Existing parton showers are not really Markov Chains

Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to n^{th} branching $\propto 2^{n}n!$

 $\left(\left(\sum_{i=1}^{j=1} -2 \operatorname{terms}^{j=1} \right) \right) \xrightarrow{j=1}{2 \operatorname{terms}^{j=1}}$

(f + (f) = 2) $\rightarrow 4 \text{ terms}$

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

 $a_i \rightarrow$

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

 $2^{n}n! \rightarrow n!$

Giele, Kosower, Skands, PRD 84 (2011) 054003

+ Change "shower restart" to Markov criterion:

Given an *n*-parton configuration, "ordering" scale is

 $Q_{ord} = min(Q_{E1}, Q_{E2}, ..., Q_{En})$

Unique restart scale, independently of how it was produced

+ Matching: $n! \rightarrow n$

Given an *n*-parton configuration, its phase space weight is:

 $|M_n|^2$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

+ Sector antennae

 \rightarrow I term at *any* order

Larkosi, Peskin, Phys. Rev. D81 (2010) 054010 Lopez-Villarejo, Skands, JHEP 1111 (2011) 150 Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Approximations

Q: How well do showers do?

Exp: Compare to data. Difficult to interpret; all-orders cocktail including hadronization, tuning, uncertainties, etc

Th: Compare products of splitting functions to full tree-level matrix elements

Plot distribution of Log₁₀(PS/ME)

Dead Zone: I-2% of phase space have no strongly ordered paths leading there*

*fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

Generate Branchings without imposing strong ordering

Better Approximations

Distribution of Log₁₀(PS_{LO}/ME_{LO}) (inverse ~ matching coefficient)

+ Matching (+ full colour)

IR Singularity Operators

Gehrmann, Gehrmann-de Ridder, Glover, JHEP 0509 (2005) 056

 $q\bar{q} \to qg\bar{q} \text{ antenna function} \qquad \qquad X_{ijk}^0 = S_{ijk,IK} \frac{|\mathcal{M}_{ijk}^0|^2}{|\mathcal{M}_{IK}^0|^2}$ $A_3^0(1_q, 3_g, 2_{\bar{q}}) = \frac{1}{s_{123}} \left(\frac{s_{13}}{s_{23}} + \frac{s_{23}}{s_{13}} + 2\frac{s_{12}s_{123}}{s_{13}s_{23}} \right)$

Integrated antenna

$$\mathcal{P}oles\left(\mathcal{A}_{3}^{0}(s_{123})\right) = -2\mathbf{I}_{q\bar{q}}^{(1)}\left(\epsilon, s_{123}\right)$$
$$\mathcal{F}inite\left(\mathcal{A}_{3}^{0}(s_{123})\right) = \frac{19}{4} \ .$$
$$\mathcal{X}_{ijk}^{0}(s_{ijk}) = \left(8\pi^{2}\left(4\pi\right)^{-\epsilon}e^{\epsilon\gamma}\right)\int \mathrm{d}\Phi_{X_{ijk}} X_{ijk}^{0}.$$

Singularity Operators

$$\mathbf{I}_{q\bar{q}}^{(1)}\left(\epsilon,\mu^{2}/s_{q\bar{q}}\right) = -\frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)} \left[\frac{1}{\epsilon^{2}} + \frac{3}{2\epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q\bar{q}}}\right)^{\epsilon}$$
$$\mathbf{I}_{qg}^{(1)}\left(\epsilon,\mu^{2}/s_{qg}\right) = -\frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)} \left[\frac{1}{\epsilon^{2}} + \frac{5}{3\epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{qg}}\right)^{\epsilon} \quad \text{for } qg \rightarrow qgg$$
$$\mathbf{I}_{qg,F}^{(1)}\left(\epsilon,\mu^{2}/s_{qg}\right) = \frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)} \frac{1}{6\epsilon} \operatorname{Re}\left(-\frac{\mu^{2}}{s_{qg}}\right)^{\epsilon} \quad \text{for } qg \rightarrow qq'q'$$

Loop Corrections

The choice of evolution variable (Q)

Variation with $\mu_R = m_D = 2 \min(s_{ij}, s_{jk})$

