Recap: VINCIA

Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Based on antenna factorization

- of Amplitudes (exact in both soft and collinear limits)

- of Phase Space (LIPS : 2 on-shell $\rightarrow 3$ on-shell partons, with (E,p) cons)

Evolution Scale

Infinite family of continuously deformable Q_{E}
Special cases: transverse momentum, invariant mass, energy Improvements for hard $2 \rightarrow \mathrm{n}$: "smooth ordering" \& LO matching

Radiation functions

Written as Laurent-series with arbitrary coefficients, ant t_{i} Special cases for non-singular terms: Gehrmann-Glover, MIN, MAX + Massive antenna functions for massive fermions (c, b, t)

Kinematics maps

Formalism derived for infinitely deformable $\kappa_{3 \rightarrow 2}$
Special cases: ARIADNE, Kosower, + massive generalizations

One-Loop Corrections

Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026 Trivial Example (for notation): $Z^{0} \rightarrow q \bar{q}$ First Order (~POwheg)

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at $\mathrm{Q}=$ Qhad

$$
=\underset{\text { Born }}{\left|M_{0}^{0}\right|^{2}\left(1+\frac{2 \operatorname{Re}\left[M_{0}^{0} M_{0}^{\left.1^{*}\right]}\right.}{\left|M_{0}^{0}\right|^{2}}\right.}+\underset{\text { Virtual }}{\left.\int_{0}^{Q_{\text {had }}^{2}}{ }_{\text {Unresolved Real }} \mathrm{d} \Phi_{\text {ant }} g_{s}^{2} \mathcal{C} A_{g / q \bar{q}}\right)} \xrightarrow{\left|M_{0}^{0}\right|^{2}}
$$

Markov Shower: Exclusive 2-jet rate (2 and only 2 jets), at $\mathrm{Q}=\mathrm{Q}_{\text {had }}$

$$
\begin{gathered}
\left|M_{0}^{0}\right|^{2} \Delta\left(s, Q_{\text {had }}^{2}\right)=\left|M_{0}^{0}\right|^{2}\left(1-\int_{\substack{Q_{\text {had }}^{2} \\
\text { Approximate Virtual + Unresolved Real }}}^{s} \mathrm{~d} \Phi_{\text {ant }} g_{s}^{2} \mathcal{C} A_{g / q \bar{q}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
\end{gathered}
$$

Approximate Virtual + Unresolved Real

NLO Correction: Subtract and correct by difference

$$
\left.\begin{array}{rl}
\frac{2 \operatorname{Re}\left[M_{0}^{0} M_{0}^{1^{*}}\right]}{\left|M_{0}^{0}\right|^{2}} & =\frac{\alpha_{s}}{2 \pi} 2 C_{F}\left(2 I_{q \bar{q}}\left(\epsilon, \mu^{2} / m_{Z}^{2}\right)-4\right) \\
\Phi_{\text {ant }} 2 C_{F} g_{s}^{2} A_{g / q \bar{q}} & =\frac{\alpha_{s}}{2 \pi} 2 C_{F}\left(-2 I_{q \bar{q}}\left(\epsilon, \mu^{2} / m_{Z}^{2}\right)+\frac{19}{4}\right)
\end{array}\right\} \quad\left|M_{0}^{0}\right|^{2} \rightarrow\left(1+\frac{\alpha_{s}}{\pi}\right)\left|M_{0}^{0}\right|^{2}
$$

IR Singularity Operator

One-Loop Corrections

Ongoing work, with E. Laenen \& L. Hartgring (NIKHEF)

Getting Serious: second order

Fixed Order: Exclusive 3-jet rate (3 and only 3 jets), at $\mathrm{Q}=\mathrm{Q}_{\text {had }}$

$$
\text { Exact } \rightarrow \underset{\text { Born }}{\left|M_{1}^{0}\right|^{2}}+\underset{\text { Virtual }}{2 \operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}+\int_{0}^{Q_{\text {had }}^{2}} \frac{\mathrm{~d} \Phi_{2}}{\underset{\text { Unresolved Real }}{\mathrm{d} \Phi_{1}}\left|M_{2}^{0}\right|^{2}}
$$

Master Equation

Ongoing work, with E. Laenen \& L. Hartgring (NIKHEF)

NLO Correction: Subtract and correct by difference

$$
\begin{aligned}
\mathrm{A}_{\text {NLO }}= & \mathrm{A}_{\mathrm{LO}}\left(1+\mathrm{V}_{1}\right) \\
& V_{1 Z}(q, g, \bar{q})=\left[\frac{2 \operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}{\left|M_{1}^{0}\right|^{2}}\right]^{\mathrm{LC}}-\frac{\alpha_{s}}{\pi}-\frac{\alpha_{0}}{2 \pi}\left(\frac{11 N_{C}-2 n_{F}}{6}\right)^{\mu_{\mathrm{R}}} \ln \left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right)
\end{aligned}
$$

Standard IR
Singularities

Standard
Finite Terms
$\mathbf{\delta} \mathbf{A}=\mathrm{LO}$
Matching
Terms (finite)

$$
\begin{aligned}
& +\frac{\alpha_{s} C_{A}}{2 \pi}\left[-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{g \bar{q}}\right)+\frac{34}{3}\right] \\
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-2 I_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{g \bar{q}, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-1\right]
\end{aligned}
$$

Gluon Emission IR Singularity

Gluon Splitting IR
Singularity
$3 \rightarrow 4$
Sudakov Logs

$$
+\frac{\alpha_{s} n_{F}}{2 \pi}\left[-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }}\left(1-O_{S j}\right) P_{A j} A_{\bar{q} / q g}^{\text {Ordering Function }} \begin{array}{c}
\text { Osjo } \\
\text { Gluon-Splitting } \\
\text { Ordering Function }
\end{array}\right) ~ \sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{\bar{q} / q g}
$$

$$
\left.-\frac{1}{6} \frac{s_{q g}-s_{g \bar{q}}}{s_{q g}+s_{g \bar{q}}} \ln \left(\frac{s_{q g}}{s_{g \bar{q}}}\right)\right]
$$

${ }^{*}$)Note: here only Leading Color

Loop Corrections

Ongoing work, with E. Laenen \& L. Hartgring (NIKHEF)

$(M C)^{\mathbf{2}}:$ NLO $Z \rightarrow 2 \rightarrow 3$ Jets + Markov Shower

Size of NLO Correction: over 3-parton Phase Space

$$
\begin{gathered}
\text { Markov } \\
\text { Evolution in: } \\
\text { Transverse } \\
\text { Momentum } \\
\text { Parameters: } \\
\mathrm{a}_{\mathrm{S}}\left(\mathrm{M}_{\mathrm{z}}\right)=0.12 \\
\mu_{\mathrm{R}}=\mathrm{m}_{\mathrm{Z}} \\
\Lambda_{\mathrm{QCD}}=\Lambda_{\mathrm{MS}}
\end{gathered}
$$

Scaled Invariants

$$
y_{i j}=\frac{\left(p_{i} \cdot p_{j}\right)}{M_{Z}^{2}}
$$

$\rightarrow 0$ when illj
\& when $\mathrm{E}_{\mathrm{j}} \rightarrow 0$

Choice of μ_{R}

Ongoing work, with E. Laenen \& L. Hartgring (NIKHEF)

Markov Evolution in: Transverse Momentum, $\mathrm{as}_{\mathrm{s}}\left(\mathrm{Mz}_{\mathrm{z}}\right)=0.12$

Choice of Qevoi

Ongoing work, with E. Laenen \& L. Hartgring (NIKHEF)

Choice of Finite Terms

Parameters: $\mathrm{as}_{\mathrm{S}}\left(\mathrm{Mz}_{\mathrm{z}}\right)=0.12, \mu_{\mathrm{R}}=\mathrm{p}_{\mathrm{T}}, \Lambda_{\mathrm{Q}} \mathrm{CD}=\Lambda_{\mathrm{CmW}}$

Outlook

1. Publish 3 papers (\sim a couple of months: helicities, NLO multileg, ISR)
2. Apply these corrections to a broader class of processes, including ISR \rightarrow LHC phenomenology
3. Automate correction procedure, via interfaces to one-loop codes ... (goes slightly beyond Binoth Accord; for LO corrections, we currently use own interface to modified MadGraph ME's)
4. Variations. No calculation is more precise than the reliability of its uncertainty estimate \rightarrow aim for full assessment of TH uncertainties.
5. Recycle formalism for all-orders shower corrections?

Phase Space Contours

Evolution Variables:

Mass-Ordering
$\left(m_{\text {min }}^{2}\right)$

(a) $Q_{E}^{2}=m_{D}^{2}=2 \min \left(y_{i j}, y_{j k}\right) s$

(d) $Q_{E}^{2}=\frac{m_{D}^{4}}{s}=4 \min \left(y_{i j}^{2}, y_{j k}^{2}\right) s$
p_{\perp}-ordering
$\left(\left\langle m^{2}\right\rangle_{\text {geometric }}\right)$

(b) $Q_{E}^{2}=2 p_{\perp} \sqrt{s}=2 \sqrt{y_{i j} y_{j k}} s$

(e) $Q_{E}^{2}=4 p_{\perp}^{2}=4 y_{i j} y_{j k} s$

Energy-Ordering
$\left(\left\langle m^{2}\right\rangle_{\text {arithmetic }}\right)$

(c) $Q_{E}^{2}=2 E^{*} \sqrt{s}=\left(y_{i j}+y_{j k}\right) s$

(f) $Q_{E}^{2}=4 E^{* 2}=\left(y_{i j}+y_{j k}\right)^{2} s$

Consequences of Ordering

Number of antennae restricted
Ongoing work, with E. Laenen \& L. Hartgring (NIKHEF) by ordering condition

Solution: $(M C)^{2}$

"Higher-Order Corrections To Timelike Jets"

Idea:

Start from quasi-conformal all-orders structure (approximate) Impose exact higher orders as finite corrections
Truncate at fixed scale (rather than fixed order)
Bonus: low-scale partonic events \rightarrow can be hadronized

Problems:

Traditional parton showers are history-dependent (non-Markovian)
\rightarrow Number of generated terms grows like $2^{\mathrm{N}} \mathrm{N}$!

+ Highly complicated expansions
Solution: (MC) ${ }^{2}$: Monte-Carlo Markov Chain Markovian Antenna Showers (VINCIA)
\rightarrow Number of generated terms grows like N
+ extremely simple expansions

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

New: Markovian pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element $\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

Fixed Order: Recap

Improve by computing quantum

 corrections, order by order
Leading Order

Next-to-Leading Order

The
Subtraction
Idea

$$
=\sigma^{\text {Born }}+\int \mathrm{d} \Phi_{F+1} \underbrace{\left(\left|\mathcal{M}_{F+1}^{(0)}\right|^{2}-\mathrm{d} \sigma_{S}^{\mathrm{NLO}}\right)}_{\text {Finite by Universality }}
$$

$$
+\underbrace{\int \mathrm{d} \Phi_{F} 2 \operatorname{Re}\left[\mathcal{M}_{F}^{(1)} \mathcal{M}_{F}^{(0) *}\right]+\int \mathrm{d} \Phi_{F+1} \mathrm{~d} \sigma_{S}^{\mathrm{NLO}}}_{\text {Finite by KLN }}
$$

"Subtraction Terms" (will return to later)

Shower Types

Traditional vs Coherent vs Global vs Sector vs Dipole

Parton Shower (DGLAP)
Coherent Parton Shower (Herwig [12, 40], Pythia6 [11])
Global Dipole-Antenna (ARIADNE [17], GGG [36], WK [32], Vincia)
Sector Dipole-Antenna (LP [41], Vincia)
Partitioned-Dipole Shower (SK [23], NS [42], DTW [24], Pythia 8 [38], SHERPA)

$\operatorname{Coll}(I)$	$\operatorname{Soft}(I K)$
a_{I}	$a_{I}+a_{K}$
$\Theta_{I} a_{I}$	$\Theta_{I} a_{I}+\Theta_{K} a_{K}$
$a_{I K}+a_{H I}$	$a_{I K}$
$\Theta_{I K} a_{I K}+\Theta_{H I} a_{H I}$	$a_{I K}$
$a_{I, K}+a_{I, H}$	$a_{I, K}+a_{K, I}$

Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity of the $I K$ pair, respectively, originate in different shower types. $\left(\Theta_{I}\right.$ and Θ_{K} represent angular vetos with respect to partons I and K, respectively, and $\Theta_{I K}$ represents a sector phase-space veto, see text.)

Global Antennae

\times	$\frac{1}{y_{i j} y_{j k}}$	$\frac{1}{y_{i j}}$	$\frac{1}{y_{j k}}$	$\frac{y_{j k}}{y_{i j}}$	$\frac{y_{i j}}{y_{j k}}$	$\frac{y_{j k}^{2}}{y_{i j}}$	$\frac{y_{i j}^{2}}{y_{j k}}$	1	$y_{i j}$	$y_{j k}$
$q \bar{q} \rightarrow q q \bar{q}$										
$++\rightarrow+++$	1	0	0	0	0	0	0	0	0	0
$++\rightarrow+-+$	1	-2	-2	1	1	0	0	2	0	0
$+-\rightarrow++-$	1	0	-2	0	1	0	0	0	0	0
$+-\rightarrow+--$	1	-2	0	1	0	0	0	0	0	0
$q g \rightarrow q g g$										
$++\rightarrow+++$	1	0	$-\alpha+1$	0	$2 \alpha-2$	0	0	0	0	0
$++\rightarrow+-+$	1	-2	-3	1	3	0	-1	3	0	0
$+-\rightarrow++-$	1	0	-3	0	3	0	-1	0	0	0
$+-\rightarrow+--$	1	-2	$-\alpha+1$	1	$2 \alpha-2$	0	0	0	0	0
$g g \rightarrow g g g$										
$++\rightarrow+++$	1	$-\alpha+1$	$-\alpha+1$	$2 \alpha-2$	$2 \alpha-2$	0	0	0	0	0
$++\rightarrow+-+$	1	-3	-3	3	3	-1	-1	3	1	1
$+-\rightarrow++-$	1	$-\alpha+1$	-3	$2 \alpha-2$	3	0	-1	0	0	0
$\xrightarrow{+-\rightarrow+--}$	1	-3	$-\alpha+1$	3	$2 \alpha-2$	-1	0	0	0	0
$q g \rightarrow q \bar{q}^{\prime} q^{\prime}$										
$++\rightarrow++-$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0
$++\rightarrow+-+$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{1}{2}$	0	0	0
$+-\rightarrow++-$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{1}{2}$	0	0	0
$+-\rightarrow+--$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0
$g g \rightarrow g \bar{q} q$										
$++\rightarrow++-$	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0
$++\rightarrow+-+$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{1}{2}$	0	0	0
$+-\rightarrow++-$	0	0	$\frac{1}{2}$	0	-1	0	$\frac{1}{2}$	0	0	0
$+-\rightarrow+-+$	0	0		0		0		0	0	0

Sector Antennae

Global $\quad \bar{a}_{g / q g}^{\mathrm{gl}}\left(p_{i}, p_{j}, p_{k}\right) \xrightarrow{s_{j k} \rightarrow 0} \frac{1}{s_{j k}}\left(P_{g g \rightarrow G}(z)-\frac{2 z}{1-z}-z(1-z)\right)$
$\rightarrow \mathrm{P}(z)=$ Sum over two neigboring antennae

Sector

Only a single term in each phase space point

\rightarrow Full $\mathrm{P}(\mathrm{z})$ must be contained in every antenna

$$
\begin{aligned}
& \bar{a}_{j / I K}^{\mathrm{sct}}\left(y_{i j}, y_{j k}\right)=\bar{a}_{j / I K}^{\mathrm{gl}}\left(y_{i j}, y_{j k}\right)+\delta_{I g} \delta_{H_{K} H_{k}}\left\{\delta_{H_{I} H_{i}} \delta_{H_{I} H_{j}}\left(\frac{1+y_{j k}+y_{j k}^{2}}{y_{i j}}\right)\right. \\
& \left.+\delta_{H_{I} H_{j}}\left(\frac{1}{y_{i j}\left(1-y_{j k}\right)}-\frac{1+y_{j k}+y_{j k}^{2}}{y_{i j}}\right)\right\} \\
& \text { Sector }=\text { Global + } \\
& +\delta_{K g} \delta_{H_{I} H_{i}}\left\{\delta_{H_{I} H_{j}} \delta_{H_{K} H_{k}}\left(\frac{1+y_{i j}+y_{i j}^{2}}{y_{j k}}\right)\right. \\
& \left.+\delta_{H_{K} H_{j}}\left(\frac{1}{y_{j k}\left(1-y_{i j}\right)}-\frac{1+y_{i j}+y_{i j}^{2}}{y_{j k}}\right)\right\}
\end{aligned}
$$

The Denominator the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to $\mathrm{n}^{\text {th }}$ branching $\propto \mathbf{2}^{\mathbf{n}} \mathbf{n}$!

$$
(K \sim M+K) \substack{i=1 \\ \rightarrow 2 \text { terms }} \substack{i=1}
$$

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms
(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

$$
\mathbf{2}^{\mathrm{n}} \mathrm{n}!\rightarrow \mathrm{n}!
$$

Giele, Kosower, Skands, PRD 84 (20II) 054003

(+ generic Lorentz-
invariant and on-shell
phase-space factorization)

+ Change "shower restart" to Markov criterion:
Given an n-parton configuration,"ordering" scale is

$$
Q_{\text {ord }}=\min \left(Q_{E I}, Q_{E 2}, \ldots, Q_{E n}\right)
$$

Unique restart scale, independently of how it was produced

+ Matching: $\mathbf{n !} \rightarrow \mathbf{n}$
Given an n-parton configuration, its phase space weight is:
$\left|M_{n}\right|^{2}$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms After 4 branchings: 384 terms

+ Sector antennae Larkosi, Peskin,Phys.Rev.D8I (20I0) 054010
\rightarrow I term at any order Lopez-Villarejo, Skands, JHEP IIII (201I) I50

Approximations

Q: How well do showers do?

Exp: Compare to data. Difficult to interpret; all-orders cocktail including hadronization, tuning, uncertainties, etc
Th: Compare products of splitting functions to full tree-level matrix elements
Plot distribution of Logıo(PS/ME)
Dead Zone: I-2\% of phase space have no strongly ordered paths leading there*
"fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

Generate Branchings without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space
Overcounting removed by matching

+ smooth ordering beyond matched multiplicities

$$
\frac{\hat{p}_{\perp}^{2}}{\hat{p}_{\perp}^{2}+p_{\perp}^{2}} P_{\mathrm{LL}} \quad \begin{array}{lll}
\hat{p}_{\perp}^{2} \text { last branching } \\
p_{\perp}^{2} & \text { current branching }
\end{array}
$$

Better Approximations

Distribution of Logı(PSLo/MELo) (inverse ~ matching coefficient)

Leading Order, Leading Color, Flat phase-space scan, over all of phase space (no matching scale)

P. Skands

+ Matching (+ full colour)

IR Singularity Operators

Gehrmann, Gehrmann-de Ridder, Glover, JHEP 0509 (2005) 056
$q \bar{q} \rightarrow q g \bar{q}$ antenna function

$$
X_{i j k}^{0}=S_{i j k, I K} \frac{\left|\mathcal{M}_{i j k}^{0}\right|^{2}}{\left|\mathcal{M}_{I K}^{0}\right|^{2}}
$$

$$
A_{3}^{0}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right)=\frac{1}{s_{123}}\left(\frac{s_{13}}{s_{23}}+\frac{s_{23}}{s_{13}}+2 \frac{s_{12} s_{123}}{s_{13} s_{23}}\right)
$$

Integrated antenna

$$
\begin{aligned}
& \mathcal{P o l e s}\left(\mathcal{A}_{3}^{0}\left(s_{123}\right)\right)=-2 \mathbf{I}_{q \bar{q}}^{(1)}\left(\epsilon, s_{123}\right) \\
& \mathcal{F i n i t e}\left(\mathcal{A}_{3}^{0}\left(s_{123}\right)\right)=\frac{19}{4} \cdot \\
& \quad \mathcal{X}_{i j k}^{0}\left(s_{i j k}\right)=\left(8 \pi^{2}(4 \pi)^{-\epsilon} e^{\epsilon \gamma}\right) \int \mathrm{d} \Phi_{X_{i j k}} X_{i j k}^{0} .
\end{aligned}
$$

Singularity Operators

$$
\begin{aligned}
\mathbf{I}_{q \bar{q}}^{(1)}\left(\epsilon, \mu^{2} / s_{q \bar{q}}\right) & =-\frac{e^{\epsilon \gamma}}{2 \Gamma(1-\epsilon)}\left[\frac{1}{\epsilon^{2}}+\frac{3}{2 \epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q \bar{q}}}\right)^{\epsilon} \\
\mathbf{I}_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right) & =-\frac{e^{\epsilon \gamma}}{2 \Gamma(1-\epsilon)}\left[\frac{1}{\epsilon^{2}}+\frac{5}{3 \epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q g}}\right)^{\epsilon} \quad \text { for } \mathbf{q g} \rightarrow \mathbf{q g g} \\
\mathbf{I}_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right) & =\frac{e^{\epsilon \gamma}}{2 \Gamma(1-\epsilon)} \frac{1}{6 \epsilon} \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q g}}\right)^{\epsilon} \quad \text { for } \mathbf{q g} \rightarrow \mathbf{q q}^{\prime} \mathbf{q}^{\prime}
\end{aligned}
$$

Loop Corrections

The choice of evolution variable (Q)

Variation with $\mu_{\mathrm{R}}=\mathrm{m}_{\mathrm{D}}=2 \min \left(\mathrm{~s}_{\left.\mathrm{ij}, \mathrm{s}_{\mathrm{jk}}\right)}\right.$

Parameters: $\mathrm{as}_{\mathrm{s}}\left(\mathrm{Mz}_{\mathrm{z}}\right)=0.12, \wedge_{\mathrm{Qcd}}=\Lambda \mathrm{cmw}$

