Physics Colloquium, Nov 28 2012, Monash U, Melbourne

Virtual Colliders

Peter Skands CERN Theoretical Physics

Introduction

Scattering Experiments

LHC detector Cosmic-Ray detector Neutrino detector X-ray telescope

→ Integrate differential cross sections over specific phase-space regions

Predicted number of counts = integral over solid angle

 $N_{\rm count}(\Delta\Omega) \propto \int_{\Delta\Omega} \mathrm{d}\Omega \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$

In particle physics:

Integrate over all quantum histories Only physical observables are well-defined and meaningful

Why virtual colliders? The Problem of Measurement

Theory: Need predictions for "physical observables" (Bohr would agree) Experiment: Need simulated events to optimize detectors and measurements

P. Skands

... and of course the Higgs

+ other physics studies:

of journal papers so far:183 ATLAS, 183 CMS, 67 LHCb,36 ALICE, + ...

Some of these studies are already **theory limited**

Precision = Clarity, in our vision of the Terascale

- Searching towards lower cross sections, the game gets harder
- + Intense scrutiny (after discovery) requires high precision
- Theory task: invest in precision

This talk: how we (attempt to) solve the LHC, and how we plan to get better at it

Homś

Fixed-order perturbative Quantum Field Theory:

- Good: full quantum treatment, order by order
- **Problems**: can only really do first few orders; computationally slow; converges badly (or not at all) in classical limits

Infinite-order semi-classical approximations

- **Good**: universal; computationally fast; classical correspondence is guaranteed
- **Problems**: limited precision; misses interference effects

"Matching": Best of both Worlds?

- Good: QFT for first few orders + semi-classical for the rest
- **Problems**: cobbled together; computationally slow; divergences → room for improvement

The Problem of Bremsstrahlung

The harder they get kicked, the harder the fluctations that continue to become strahlung

ergy

Bremsstrahlung

- Most bremsstrahlung is emitted by particles that are almost classical (=on shell)
- Divergent propagators →
 Bad fixed-order
 COnvergence (would need very high orders to get reliable answer)
- Would be infinitely slow to carry out separate phasespace integrations for each and every order

Jets = Fractals

- Most bremsstrahlung is driven by divergent propagators -> simple structure
- Amplitudes factorize in singular limits (-> universal "conformal" or "fractal" structure)

$$\propto \frac{1}{2(p_a \cdot p_b)}$$

Partons ab \rightarrow P(z) = Altarelli-Parisi splitting kernels, with z = energy fraction = E_a/(E_a+E_b) "collinear": $|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)|^2 \xrightarrow{a||b}{\rightarrow} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots, a+b, \ldots)|^2$

$$\begin{array}{ll} \text{Gluon j} & \text{Coherence} \rightarrow \text{Parton j really emitted by (i,k) "colour} \\ \rightarrow \text{"soft":} & |\mathcal{M}_{F+1}(\ldots,i,j,k\ldots)|^2 \stackrel{j_g \rightarrow 0}{\rightarrow} g_s^2 \mathcal{C} \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\ldots,i,k,\ldots)|^2 \end{array}$$

+ scaling violation: $g_s^2 \rightarrow 4\pi \alpha_s(Q^2)$

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times → nested factorizations

Divide and Conquer

Factorization → Split the problem into many (nested) pieces

+ Quantum mechanics → Probabilities → Random Numbers (Monte Carlo)

$$\mathcal{P}_{\mathrm{event}} \;=\; \mathcal{P}_{\mathrm{Hard}} \otimes \mathcal{P}_{\mathrm{Dec}} \otimes \mathcal{P}_{\mathrm{Brems}} \otimes \mathcal{P}_{\mathrm{Hadr}} \otimes \dots$$

Hard Process & Decays:

- Use fixed-order amplitudes
- \rightarrow Also defines fundamental resolution scale for process: Q_{MAX}

Bremsstrahlung:

Semi-classical evolution equations \rightarrow differential perturbative evolution, dP/dQ², as function of resolution scale; run from Q_{MAX} to Q_{CONFINEMENT} ~ 1 GeV (More later)

Hadronization

Non-perturbative model of transition from coloured partons to colour-neutral hadrons (confinement): at QCONFINEMENT

Bootstrapped Perturbation Theory

Start from an **arbitrary lowest-order** process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (yellow = fractal with scaling violation)

Jack of All Orders, Master of None?

Nice to have all-orders solution

- But it is only exact in the singular (soft & collinear) limits
- → gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: visible, extra jets
- ... which is exactly where fixed-order calculations work!

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

So combine them!

The Problem of Matching

First emission: "the HERWIG correction"

Use the fact that the specific HERWIG parton shower has a "dead zone" for hard wide-angle radiation

Arbitrary emissions: the "CKKW" prescription

F @ LO×LL-Soft (excl)

0

F @ $LO_2 \times LL$ (MLM & (L)-CKKW)

(loops)

0

k (legs)

2

 $2 \sigma_0^{(2)} \cdots$

Image Credits: istockphoto

The "CKKW" Prescription

The Cost

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; E_{CM} = 91.2 GeV ; Q_{match} = 5 GeV SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ; VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Changing Paradigm

Ask:

Is it possible to use the all-orders structure that the shower so nicely generates for us, as a substrate, a stratification, on top of which fixed-order amplitudes could be interpreted as finite corrections?

Answer:

Used to be no.

First order worked out in the 80^s (Sjöstrand, the PYTHIA correction), but beyond that, the expansions became too complicated

People then resorted to slicing up phase space (fixed-order amplitude goes here, shower goes there) \rightarrow previous slides

Markovian Evolution

"Higher-Order Corrections To Timelike Jets" Giele, Kosower, Skands, PRD 84 (2011) 054003

Idea:

- Start from quasi-conformal all-orders structure (approximate)
- Impose exact higher orders as finite corrections
- Truncate at fixed scale (rather than fixed order)
- Bonus: low-scale partonic events \rightarrow can be hadronized

Problems:

- Traditional parton showers are history-dependent (non-Markovian)
- \rightarrow Number of generated terms grows like 2^N N!
- + Highly complicated expansions

Solution:

- Markovian Antenna Showers (VINCIA)
- $\bullet \rightarrow$ Number of generated terms grows like N
- self-correcting + simple expansions

Traditional Parton Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

New: Markovian pQCD*

*)pQCD : perturbative QCD

P. Skands

General-purpose "virtual collider" (begun in 1978, main author: T. Sjöstrand)

Physics Processes, mainly for e^+e^- and $pp/p\bar{p}$ beams

Standard Model: Quarks, gluons, photons, Higgs, W & Z boson(s); + Decays Supersymmetry + Generic Beyond-the-Standard-Model: N. Desai & P. Skands, arXiv:1109.5852 + New gauge forces, More Higgses, Compositeness, 4th Gen, Hidden-Valley, ...

(Parton Showers) and Underlying Event

PT-ordered showers & multiple-parton interactions: Sjöstrand & Skands, Eur.Phys.J. C39 (2005) 129 + more recent improvements: Corke & Sjöstrand, JHEP 01 (2010) 035; Eur.Phys.J. C69 (2010) 1

Hadronization: Lund String

Org "Lund" (Q-Qbar) string: Andersson, Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 7 (1997) 1 + "Junction" (Q_RQ_GQ_B) strings: Sjöstrand & Skands, Nucl.Phys. B659 (2003) 243; JHEP 0403 (2004) 053

Soft QCD: Minimum-bias, color reconnections, Bose-Einstein, diffraction, ...

Color Reconnection: Skands & Wicke, EPJC52 (2007) 133 Bose-Einstein: Lönnblad, Sjöstrand, EPJC2 (1998) 165 Diffraction: Navin, arXiv:1005.3894

LHC "Perugia" Tunes: Skands, PRD82 (2010) 074018

Topcites Home 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2007 2008 2009 2010

The 100 most highly cited papers during 2010 in the hep-ph archive

PYTHIA 6.4 Physics and Manual By T. Sjostrand, S. Mrenna, P. Skands Published in: <u>JHEP 0605:026,2006</u> (arXiv: <u>hep-ph/0603175</u>)

Now → PYTHIA 8: Sjöstrand, Mrenna, Skands, CPC 178 (2008) 852

Confinement

We don't see quarks and gluons ...

Baryons Quark-Quark-Quark Bound States $p^{\pm},\,n^0,\,\Lambda^0,\,\ldots$

Mesons

Quark-Antiquark Bound States $\pi^0, \pi^{\pm}, K^0, K^{\pm}, \eta, \ldots$

Linear Confinement

From Partons to Strings

Motivates a model:

Model: assume the color field collapses into a (infinitely) narrow flux tube of uniform energy density $\varkappa \sim 1$ GeV / fm

→ Relativistic 1+1 dimensional worldsheet – string

Lund String Model of Hadronization

Pedagogical Review: B. Andersson, *The Lund model*. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 1997.

String Breaks

Virtual Colliders

The (Lund) String Model

Map:

- Quarks → String Endpoints
- **Gluons** → Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break (by quantum tunneling) constant per unit area → AREA LAW

Gluon = kink on string, carrying energy and momentum

Simple space-time picture Details of string breaks more complicated

Hadronization: Summary

The problem:

Given a set of **coloured** partons resolved at a scale of ~ 1 GeV, need a (physical) mapping to a new set of degrees of freedom = **colour**-**neutral** hadronic states.

Numerical models do this in three steps

- Map partons onto endpoints/kinks of continuum of strings ~ highly excited hadronic states (evolves as string worldsheet)
- 2. Iteratively map strings/clusters onto **discrete set of primary hadrons** (string breaks, via quantum tunneling)
- 3. Sequential decays into secondary hadrons (e.g., $\rho \rightarrow \pi\pi$, $\Lambda^0 \rightarrow n\pi^0$, $\pi^0 \rightarrow \gamma\gamma$, ...)

Distance Scales ~ 10⁻¹⁵ m = 1 fermi

Theory ↔ Data

Global Comparisons

Thousands of measurements Different energies, acceptance regions, and observable defs Different generators & versions, with different setups

LHC@home 2.0

TEST4THEORY

LEP Tevatron SLC LHC ISR HERA SPS RHIC Quite technical Quite tedious

Ask someone else everyone

> B. Segal, P. Skands, J. Blomer, P. Buncic, F. Grey, A. Haratyunyan, A. Karneyeu, D. Lombrana-Gonzalez, M. Marquina

6,500 Volunteers Over 500 billion simulated collision events

LHC@Home 2.0 - Test4Theory

Idea: ship volunteers a virtual atom smasher

(to help do high-energy theory simulations)

Runs when computer is idle. Sleeps when user is working.

Problem: Lots of different machines, architectures (tedious, technical)

→ replica of our normal working environment. Factorization of IT and Science

Infrastructure; Sending Jobs and Retrieving output

- Based on BOINC platform for volunteer clouds (but can also use other distributed computing resources, like GRID or traditional farms)
- New aspect: virtualization, never previously done for a volunteer cloud

http://lhcathome2.cern.ch/test4theory/

Last 24 Hours: 2853 machines

Next Big Project : Citizen Cyberlab (3.4M€), interact with simulations to learn physics, just started ...

Results → mcplots.cern.ch

Thrust Minor

Beyond Perturbation Theory

Better pQCD → Better non-perturbative constraints

Soft QCD & Hadronization:

Less perturbative ambiguity → improved clarity Prepare the way to tell new ideas apart from old

ALICE/RHIC:

pp as reference for AA
Collective (soft) effects in pp?

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:29:42 Fill : 1482 Run : 137124 Event : 0x00000000271EC693

central slice (0.5% of tracks in th

Beyond Colliders?

Other uses for a high-precision fragmentation model

Dark-matter annihilation: Photon & particle spectra

Cosmic Rays: Extrapolations to ultra-high energies

> ISS, March 28, 2012 Aurora and sunrise over Ireland & the UK

Summary

QCD phenomenology is witnessing a rapid evolution:

Driven by demand of high precision for LHC environment

Non-perturbative QCD is still hard

- Lund string model remains best bet, but ~ 30 years old
- Lots of input from LHC (THANK YOU to the experiments!)

"Solving the LHC" is both interesting and rewarding

New ideas needed and welcome on both perturbative and non-perturbative sides \rightarrow many opportunities for theory-experiment interplay

Key to high precision \rightarrow max information about the Terascale

The Strong Coupling

Bjorken scaling To first approximation, QCD is SCALE INVARIANT (a.k.a. conformal)

A jet inside a jet inside a jet inside a jet ...

If the strong coupling didn't "run", this would be absolutely true (e.g., N=4 Supersymmetric Yang-Mills)

As it is, α_s only runs slowly (logarithmically) → can still gain insight from fractal analogy

Note: I use the terms "conformal" and "scale invariant" interchangeably

Strictly speaking, conformal (angle-preserving) symmetry is more restrictive than just scale invariance But examples of scale-invariant field theories that are not conformal are rare (eg 6D noncritical self-dual string theory)

Conformal QCD

Bremsstrahlung

Rate of bremsstrahlung jets mainly depends on the RATIO of the jet p_T to the "hard scale"

Conformal QCD in Action

Naively, QCD radiation suppressed by $\alpha_s \approx 0.1$

Truncate at fixed order = LO, NLO, ...

But beware the jet-within-a-jet-within-a-jet ...

Example: 100 GeV can be "soft" at the LHC

SUSY pair production at 14 TeV, with $M_{SUSY} \approx 600 \text{ GeV}$

LHC - sps1a - m~600 Ge	Plehn, Rainwater, PS PLB645(2007)217					
FIXED ORDER pQCD	$\sigma_{\rm tot}[{\rm pb}]$	$ ilde{g} ilde{g}$	$\tilde{u}_L \tilde{g}$	$\tilde{u}_L \tilde{u}_L^*$	$\tilde{u}_L \tilde{u}_L$	TT
$p_{T,j} > 100 \text{ GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1.30
inclusive X + 1 "jet"	$\rightarrow \sigma_{1j}$	2.89	2.74	0.136	0.145	0.73
inclusive X + 2 "jets" -	$\rightarrow \sigma_{2j}$	1.09	0.85	0.049	0.039	0.26

$p_{T,j} > 50 \text{ GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1.30
	σ_{1j}	5.90	5.37	0.283	0.285	1.50
	σ_{2j}	4.17	3.18	0.179	0.117	1.21

(Computed with SUSY-MadGraph)

σ for X + jets much larger than naive estimate

σ for 50 GeV jets ≈ larger than total cross section → not under control

P. Skands

(Parton Distributions)

 \rightarrow Lifetime of fluctuations ~ 1/M_h

Hard incoming probe interacts over much shorter time scale \sim 1/Q

On that timescale, partons ~ frozen

Hard scattering knows nothing of the target hadron apart from the fact that it contained the struck parton

Illustration from T. Sjöstrand

(Factorization Theorem)

 \rightarrow We really can write the cross section in factorized

$$\sigma^{\ell h} = \sum_{i} \sum_{f} \int dx_{i} \int d\Phi_{f} f_{i/h}(x_{i}, Q_{F}^{2}) \frac{d\hat{\sigma}^{\ell i \to f}(x_{i}, \Phi_{f}, Q_{F}^{2})}{dx_{i} d\Phi_{f}}$$
Sum over
Initial (i)
and final (f)
parton flavors
$$\sigma^{\ell h} = Final-state
phase space
phase space
phase space
by fits to data
$$\frac{d\hat{\sigma}^{\ell i \to f}(x_{i}, \Phi_{f}, Q_{F}^{2})}{dx_{i} d\Phi_{f}}$$
Differential partonic
Hard-scattering
Matrix Element(s)$$

Last Ingredient: Loops

PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Unitarity (KLN):

Singular structure at loop level must be equal and opposite to tree level Kinoshita-Lee-Nauenberg:

$$Loop = -Int(Tree) + F$$

Neglect $F \rightarrow$ Leading-Logarithmic (LL) Approximation

\rightarrow Virtual (loop) correction:

$$2\operatorname{Re}[\mathcal{M}_{F}^{(0)}\mathcal{M}_{F}^{(1)*}] = -g_{s}^{2}N_{C}\left|\mathcal{M}_{F}^{(0)}\right|^{2}\int \frac{\mathrm{d}s_{ij}\,\mathrm{d}s_{jk}}{16\pi^{2}s_{ijk}}\left(\frac{2s_{ik}}{s_{ij}s_{jk}} + \text{less singular terms}\right)$$

Realized by Event evolution in Q = fractal scale (virtuality, pt, formation time, ...)

VINCIA

Virtual Numerical Collider with Interleaved Antennae Written as a Plug-in to PYTHIA 8 C++ (~20,000 lines)

Helicities

Larkoski, Peskin, PRD 81 (2010) 054010 + Ongoing, with A. Larkoski (MIT) & J. Lopez-Villarejo (CERN)

Traditional parton showers use the standard Altarelli-Parisi kernels, P(z) = helicity sums/averages over:

Generalize these objects to dipole-antennae

E.g.,

- $\begin{array}{l} q\bar{q} \rightarrow qg\bar{q} \\ ++ \rightarrow ++ + \quad \mathrm{MHV} \\ ++ \rightarrow +- + \quad \mathrm{NMHV} \end{array}$
- $+- \rightarrow + + -$ P-wave
- $+- \rightarrow + -$ P-wave

- \rightarrow Can trace helicities through shower
- → Eliminates contribution from unphysical helicity configurations
 - → Can match to individual helicity amplitudes rather than helicity sum → Fast! (gets rid of another factor 2^N)

Shower Types

Traditional vs Coherent vs Global vs Sector vs Dipole

Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity of the IK pair, respectively, originate in different shower types. (Θ_I and Θ_K represent angular vetos with respect to partons I and K, respectively, and Θ_{IK} represents a sector phase-space veto, see text.)

The Denominator

In a traditional parton shower, you would face the following problem:

Existing parton showers are not really Markov Chains

Further evolution (restart scale) depends on which branching happened last → proliferation of terms

Number of histories contributing to n^{th} branching $\propto 2^{n}n!$

 $\left(\left(\sum_{i=1}^{j=1} -2 \text{ terms} \right) \right) \xrightarrow{j=1}{j=1}$

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

After 4 branchings: 4 terms + Sector amennae Larkosi, Peskin, Phys. Rev. D81 (2010) 054010 → 1 term at any orderpez-Villarejo, Skands, JHEP 1111 (2011) 150

After 2 branchings: 2 terms

After 3 branchings: 3 terms

P. Skands

Effective $2 \rightarrow 4$

Generate Branchings without imposing strong ordering

Example: Non-Singular Terms

Giele, Kosower, Skands, PRD 84 (2011) 054003

Thrust = LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)

Example: μ_R

Giele, Kosower, Skands, PRD 84 (2011) 054003

Thrust = LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)

Fixed Order: Recap

Improve by computing quantum corrections, order by order

(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)

P. Skands

(Color Flow in MC Models)

"Planar Limit"

- Equivalent to $N_C \rightarrow \infty$: no color interference^{*}
- Rules for color flow:

For an entire cascade:

*) except as reflected by the implementation of QCD coherence effects in the Monte Carlos via angular or dipole ordering

Illustrations from: Nason + PS, PDG Review on MC Event Generators, 2012

Coherence of pQCD cascades \rightarrow not much "overlap" between strings \rightarrow planar approx pretty good

LEP measurements in WW confirm this (at least to order $10\% \sim 1/N_c^2$)

Hadronization

