Physics Colloquium, Nov 28 2012, Monash U, Melbourne

Virtual Colliders

Peter Skands
CERN Theoretical Physics

Introduction

Scattering Experiments

LHC detector Cosmic-Ray detector Neutrino detector X-ray telescope
\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

In particle physics:

Integrate over all quantum histories
Only physical observables are well-defined and meaningful

Why virtual colliders? The Problem of Measurement

Theory: Need predictions for "physical observables" (Bohr would agree) Experiment: Need simulated events to optimize detectors and measurements

... and of course the Higgs

> + other physics studies:
> \# of journal papers so far: 183 ATLAS, 183 CMS, 67 LHCb, 36 ALICE, + ...
> Some of these studies are already theory limited

Precision = Clarity, in our vision of the Terascale
Searching towards lower cross sections, the game gets harder

+ Intense scrutiny (after discovery) requires high precision Theory task: invest in precision

This talk: how we (attempt to) solve the LHC, and how we plan to get better at it

How?

Fixed-order perturbative Quantum Field Theory:

Good: full quantum treatment, order by order
Problems: can only really do first few orders; computationally slow; converges badly (or not at all) in classical limits

Infinite-order semi-classical approximations
Good: universal; computationally fast; classical correspondence is guaranteed

Problems: limited precision; misses interference effects
"Matching": Best of both Worlds?
Good: QFT for first few orders + semi-classical for the rest
Problems: cobbled together; computationally slow; divergences
\rightarrow room for improvement

The Problem of Bremsstrahlung

The harder they get kicked, the harder the fluctations that continue to become strahlung

Bremsstrahlung

- Most bremsstrahlung is emitted by particles that are almost classical (=on shell)
- Divergent propagators \rightarrow Bad fixed-order convergence (would need very high orders to get reliable answer)
- Would be infinitely slow to carry out separate phasespace integrations for each and every order

Jets $=$ Fractals

Most bremsstrahlung is driven by divergent propagators \rightarrow simple structure

- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

$$
\begin{aligned}
& \text { Partons ab } \rightarrow \quad \mathrm{P}(\mathrm{z})=\text { Altarelli-Parisi splitting kernels, with } \mathrm{z}=\text { energy fraction }=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right) \\
& \text { "collinear": } \\
& \qquad\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{aligned}
$$

$$
\rightarrow \text { "soft": }\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\text { antena" }\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

$$
+ \text { scaling violation: } g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(\mathrm{Q}^{2}\right)
$$

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times
\rightarrow nested factorizations

Divide and Conquer

Factorization \rightarrow Split the problem into many (nested) pieces

$$
\text { + Quantum mechanics } \rightarrow \text { Probabilities } \rightarrow \text { Random Numbers (Monte Carlo) }
$$

$$
\mathcal{P}_{\text {event }}=\mathcal{P}_{\text {Hard }} \otimes \mathcal{P}_{\text {Dec }} \otimes \mathcal{P}_{\text {Brems }} \otimes \mathcal{P}_{\text {Hadr }} \otimes \ldots
$$

Hard Process \& Decays:

Use fixed-order amplitudes
\rightarrow Also defines fundamental resolution scale for process: $Q_{\text {max }}$

Bremsstrahlung:
Semi-classical evolution equations \rightarrow differential perturbative evolution, $\mathrm{dP} / \mathrm{dQ}^{2}$, as function of resolution scale; run from $Q_{\text {max }}$ to $Q_{\text {confinement }} \sim 1 \mathrm{GeV}$ (More later)

Hadronization

Non-perturbative model of transition from coloured partons to colour-neutral hadrons (confinement): at Qconfinement

Bootstrapped Perturbation Theory

Start from an arbitrary lowest-order process (green = QFT amplitude squared)
Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (yellow $=$ fractal with scaling violation)

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Cancellation of real \& virtual singularities
Exponentiation
fluctuations within fluctuations

No. of Bremsstrahlung Emissions
(real corrections)

Jack of All Orders, Master of None?

Nice to have all-orders solution

But it is only exact in the singular (soft \& collinear) limits
\rightarrow gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: visible, extra jets
... which is exactly where fixed-order calculations work!

So combine them!

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

F \& F+1 @ LO \times LL

The Problem of Matching

First emission: "the HERWIG correction"

- Use the fact that the specific HERWIG parton shower has a "dead zone" for hard wide-angle radiation

- Arbitrary emissions: the "CKKW" prescription

The "CKKW" Prescription

Start from a set of fixed-order calculations

Wish to add showers while eliminating Double Counting:
Transform inclusive cross sections, for "X or more", to exclusive ones, for "X and only X "
Jet Algorithm \rightarrow Recluster back to $\mathrm{F} \rightarrow$ "fake" brems history
Attach shower-like resummation factors to each vertex and internal line

$$
\sigma_{F+1}^{\operatorname{exc}}\left(Q_{F+1}\right) \quad \sigma_{F+2}^{\operatorname{exc}}\left(Q_{F+2}\right)
$$

Attach shower-like resummation factors on external lines
$\sigma_{F}^{\mathrm{exc}}\left(Q_{\text {cut }}\right) \quad \sigma_{F+1}^{\mathrm{exc}}\left(Q_{\text {cut }}\right)$
Now ddd a genuine parton shower \rightarrow remaining evolution down to confinement scale

The Cost

1. Initialization time
(to pre-compute cross sections and warm up phase-space grids)

$\mathrm{Z} \rightarrow \mathrm{n}$: Number of Matched Emissions
2. Time to generate 1000 events
($Z \rightarrow$ partons, fully showered \& matched.
No hadronization.)

$\mathrm{Z} \rightarrow \mathrm{n}$: Number of Matched Emissions

$$
\begin{gathered}
\mathrm{Z} \rightarrow \text { udscb } ; \text { Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE } ; \mathrm{E}_{\mathrm{cm}}=91.2 \mathrm{GeV} ; \mathrm{Q}_{\text {match }}=5 \mathrm{GeV} \\
\text { SHERPA I.4.0 (+COMIX) ; PYTHIA 8.I. } 65 ; \text { VINCIA I.0.29 (+MADGRAPH 4.4.26) ; } \\
\text { gcc/gfortran v 4.7.I -O2 ; single } 3.06 \mathrm{GHz} \text { core (4GB RAM) }
\end{gathered}
$$

Changing Paradigm

Ask:

Is it possible to use the all-orders structure that the shower so nicely generates for us, as a substrate, a stratification, on top of which fixed-order amplitudes could be interpreted as finite corrections?

Answer:

Used to be no.
First order worked out in the 80^{s} (Sjöstrand, the PYTHIA correction), but beyond that, the expansions became too complicated People then resorted to slicing up phase space (fixed-order amplitude goes here, shower goes there) \rightarrow previous slides

Markovian Evolution

"Higher-Order Corrections To Timelike Jets"

- Idea:

- Start from quasi-conformal all-orders structure (approximate)
- Impose exact higher orders as finite corrections
- Truncate at fixed scale (rather than fixed order)
- Bonus: low-scale partonic events \rightarrow can be hadronized
- Problems:
- Traditional parton showers are history-dependent (non-Markovian)
- \rightarrow Number of generated terms grows like 2^{N} N!
- + Highly complicated expansions
- Solution:
- Markovian Antenna Showers (VINCIA)
- \rightarrow Number of generated terms grows like N
- self-correcting + simple expansions

```
Traditional Parton Shower:
    After 2 branchings: }8\mathrm{ terms
    After 3 branchings: }48\mathrm{ terms
    After 4 branchings: }384\mathrm{ terms
```

```
Markovian Antenna Shower:
```

Markovian Antenna Shower:
After 2 branchings: }2\mathrm{ terms
After 2 branchings: }2\mathrm{ terms
After 3 branchings: }3\mathrm{ terms
After 3 branchings: }3\mathrm{ terms
After 4 branchings: 4 terms

```
    After 4 branchings: 4 terms
```


New: Markovian pQCD*

Start at Lowest Order

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission $\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real
*)pQCD : perturbative QCD

"Higher-Order Corrections To Timelike Jets"
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

A88
 Speed

1. Initialization time
(to pre-compute cross sections and warm up phase-space grids)

$\mathrm{Z} \rightarrow \mathrm{n}$: Number of Matched Legs

2. Time to generate 1000 events
($Z \rightarrow$ partons, fully showered \& matched. No hadronization.)

1000 SHOWERS

0.1 s
$\begin{array}{lllll}2 & 3 & 4 & 5 & 6\end{array}$
$\mathrm{Z} \rightarrow \mathrm{n}:$ Number of Matched Legs
$Z \rightarrow$ udscb $;$ Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM $=91.2 \mathrm{GeV} ; \mathrm{Q}_{\text {match }}=5 \mathrm{GeV}$
SHERPA I.4.0 (+COMIX) ; PYTHIA 8.I.65; VINCIA I.0.29 (+MADGRAPH 4.4.26) ;
gcc/gortran v 4.7.I -O2 ; single 3.06 GHz core (4GB RAM)

+ Interfaced to PYTHIA

General-purpose "virtual collider" (begun in 1978, main author: T. Sjöstrand)
Physics Processes, mainly for $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{pp} / \mathrm{p} \overline{\mathrm{p}}$ beams
Standard Model: Quarks, gluons, photons, Higgs, W \& Z boson(s); + Decays Supersymmetry + Generic Beyond-the-Standard-Model: N. Desai \& P. Skands, arXiv:1109.5852 + New gauge forces, More Higgses, Compositeness, $4^{\text {th }}$ Gen, Hidden-Valley, ...

(Parton Showers) and Underlying Event

Pt-ordered showers \& multiple-parton interactions: sjöstrand \& Skands, Eur.Phys.J. C39 (2005) 129

+ more recent improvements: Corke \& Sjöstrand, JHEP 01 (2010) 035; Eur.Phys.J. C69 (2010) 1

Hadronization: Lund String

Org "Lund" (Q-Qbar) string: Andersson, Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 7 (1997) 1

+ "Junction" ($Q_{R} Q_{G} Q_{B}$) strings: sjöstrand \& Skands, Nucl.Phys. B659 (2003) 243; JHEP 0403 (2004) 053
Soft QCD: Minimum-bias, color reconnections, Bose-Einstein, diffraction, ...

Color Reconnection: Skands \& Wicke, EPJC52 (2007) 133
Bose-Einstein: Lönnblad, Sjöstrand, EPJC2 (1998) 165

Diffraction: Navin, arXiv:1005.3894
LHC "Perugia" Tunes: Skands, PRD82 (2010) 074018

Topcites Home 199219931994199519961997199819992000200120022007200820092010
The 100 most highly cited papers during 2010 in the hep-ph archive

1. PYTHIA 6.4 Physics and Manual

By T. Sjostrand, S. Mrenna, P. Skands
Published in:JHEP 0605:026,2006 (arXiv: hep-ph/0603175)

Confinement

We don't see quarks and gluons ...

Mesons

Quark-Antiquark Bound States

$$
\pi^{0}, \pi^{ \pm}, K^{0}, K^{ \pm}, \eta, \ldots
$$

Baryons

Quark-Quark-Quark Bound States

$$
p^{ \pm}, n^{0}, \Lambda^{0}, \ldots
$$

Linear Confinement

Lattice QCD: Potential between a quark and an antiquark as function of distance, R

Short Distances ~ pQCD

Partons
"Quenched" Lattice QCD

Long Distances ~ Linear Confinement

Hadrons

What physical

 system has a linear potential?
From Partons to Strings

Motivates a model:

Model: assume the color field collapses into a (infinitely) narrow flux tube of uniform energy density $x \sim 1 \mathrm{GeV} / \mathrm{fm}$
\rightarrow Relativistic 1+1 dimensional worldsheet - string

Lund String Model of Hadronization

Pedagogical Review: B. Andersson, The Lund model. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 1997.

String Breaks

In "unquenched" QCD

$\mathrm{g} \rightarrow \mathrm{qq} \rightarrow$ The strings would break

> String Breaks (via Quantum Tunneling)
simplified colour representation

$$
\mathcal{P} \propto \exp \left(\frac{-m_{q}^{2}-p_{\perp q}^{2}}{\kappa}\right)
$$

The (Lund) String Model

Map:

- Quarks \rightarrow String Endpoints
- Gluons \rightarrow Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break (by quantum tunneling) constant per unit area \rightarrow AREA LAW

Gluon = kink on string, carrying energy and momentum

Simple space-time picture
 Details of string breaks more complicated

Hadronization: Summary

The problem:

Given a set of coloured partons resolved at a scale of $\sim 1 \mathrm{GeV}$, need a (physical) mapping to a new set of degrees of freedom = colourneutral hadronic states.
Numerical models do this in three steps

1. Map partons onto endpoints/kinks of continuum of strings \sim highly excited hadronic states (evolves as string worldsheet)
2. Iteratively map strings/clusters onto discrete set of primary hadrons (string breaks, via quantum tunneling)
3. Sequential decays into secondary hadrons (e.g., $\rho \rightarrow \pi \pi, \wedge^{0} \rightarrow n \pi^{0}, \pi^{0} \rightarrow \gamma \gamma, \ldots$)

$$
\text { Distance Scales } \sim 10^{-15} \mathrm{~m}=1 \text { fermi }
$$

Theory \leftrightarrow Data

Global Comparisons

Thousands of measurements
Different energies, acceptance regions, and observable defs Different generators \& versions, with different setups

LHC@home 2.0

TEST4THEORY

Quite technical Quite tedious

Ask someone else everyone

LEP Tevatron

B. Segal,
P. Skands,
J. Blomer,
P. Buncic,
F. Grey,
A. Haratyunyan,
A. Karneyeu,
D. Lombrana-Gonzalez,
M. Marquina

6,500 Volunteers
Over 500 billion simulated collision events

LHC@Home 2.0 - Test4Theory

Idea: ship volunteers a virtual atom smasher

 (to help do high-energy theory simulations)Runs when computer is idle. Sleeps when user is working.
Problem: Lots of different machines, architectures (tedious, technical)
Use Virtualization (CernVM) \rightarrow provides standardized computing environment on any machine (in our case Scientific Linux)
\rightarrow replica of our normal working environment. Factorization of IT and Science
Infrastructure; Sending Jobs and Retrieving output
Based on BOINC platform for volunteer clouds (but can also use other distributed computing resources, like GRID or traditional farms)

New aspect: virtualization, never previously done for a volunteer cloud

http://lhcathome2.cern.ch/test4theory/

Last 24 Hours: 2853 machines

Next Big Project : Citizen Cyberlab (3.4M€), interact with simulations to learn physics, just started ...

Results \rightarrow mcplots.cern.ch

Menu

\rightarrow Front Page

\rightarrow LHC@home 2.0
\rightarrow Generator Versions
\rightarrow Generator Validation
\rightarrow Update History

Analysis filter:

\rightarrow ALL_ op/ppbar $\rightarrow \mathrm{ALL}$ ee
Specific analysis:

Z (hadronic)

\rightarrow Aplanarity
$\rightarrow \mathrm{B}$ (Total)
$\rightarrow \mathrm{B}$ (Heavy Hemisph)
$\rightarrow \mathrm{B}$ (Light Hemisph)
\rightarrow C parameter
\rightarrow D parameter
$\rightarrow \mathrm{M}$ (Heavy Hemisph)
\rightarrow M(Light Hemisph)
$\rightarrow \Delta \mathrm{M}$ (Heavy-Light)
\rightarrow Multiplicity Distributions
\rightarrow Planarity
\rightarrow pTin (Sph)
\rightarrow pTin (Thrust)
\rightarrow pTout (Sph)
\rightarrow pTout (Thrust)
\rightarrow Sphericity
\rightarrow Thrust
1-Thrust
Thrust Major
Z (hadronic) : 1-Thrust
(Total number of plots ~ 500,000)

Generator Group: Main Herwig++ Pythia 6 Pythia 8 Sherpa Vincia Custom

\rightarrow Constraints on non-pertürbative model parameters

Thrust Minor

Beyond Perturbation Theory

Better pQCD \rightarrow Better non-perturbative constraints

Soft QCD \& Hadronization:

Less perturbative ambiguity \rightarrow improved clarity Prepare the way to tell new ideas apart from old

ALICE/RHIC:

pp as reference for AA
Collective (soft) effects in pp?

Beyond Colliders?

Other uses for a high-precision fragmentation model

Dark-matter annihilation:

 Photon \& particle spectra
Cosmic Rays:

Extrapolations to ultra-high energies

Summary

QCD phenomenology is witnessing a rapid evolution:

Driven by demand of high precision for LHC environment
Non-perturbative QCD is still hard
Lund string model remains best bet, but ~ 30 years old
Lots of input from LHC (THANK YOU to the experiments!)
"Solving the LHC" is both interesting and rewarding
New ideas needed and welcome on both perturbative and non-perturbative sides \rightarrow many opportunities for theoryexperiment interplay
Key to high precision \rightarrow max information about the Terascale

The Strong Coupling

Bjorken scaling

To first approximation, QCD is SCALE INVARIANT (a.k.a. conformal)

A jet inside a jet inside a jet inside a jet...

If the strong coupling didn't "run", this would be absolutely true (e.g., $N=4$ Supersymmetric Yang-Mills)

As it is, $\alpha_{\text {s }}$ only runs slowly (logarithmically) \rightarrow can still gain insight from fractal analogy

Note: I use the terms "conformal" and "scale invariant" interchangeably
Strictly speaking, conformal (angle-preserving) symmetry is more restrictive than just scale invariance
But examples of scale-invariant field theories that are not conformal are rare (eg 6D noncritical self-dual string theory)

Conformal QCD

Bremsstrahlung

Rate of bremsstrahlung jets mainly depends on the RATIO of the jet $\mathrm{p}_{\boldsymbol{t}}$ to the "hard scale"

Conformal QCD in Action

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0.1$

Truncate at fixed order = LO, NLO, ...
But beware the jet-within-a-jet-within-a-jet ...

Example: 100 GeV can be "soft" at the LHC

SUSY pair production at 14 TeV , with Msusy $\approx 600 \mathrm{GeV}$

LHC - spsla-m~600 GeV
Plehn, Rainwater, PS PLB645(2007)217

FIXED ORDER pQCD	$\sigma_{\text {tot }}[\mathrm{pb}]$	$\tilde{g} \tilde{g}$	$\tilde{u}_{L} \tilde{g}$	$\tilde{u}_{L} \tilde{u}_{L}^{*}$	$\tilde{u}_{L} \tilde{u}_{L}$	$T T$
$p_{T, j}>100 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
inclusive $\mathbf{x}+\mathbf{1}$ "jet"	$\rightarrow \sigma_{1 j}$	2.89	2.74	0.136	0.145	0.73
inclusive $\mathbf{x}+\mathbf{2}$ "jets"	$\rightarrow \sigma_{2 j}$	1.09	0.85	0.049	0.039	0.26

$p_{T, j} \nmid 50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

(Computed with SUSY-MadGraph)
o for $X+$ jets much larger than naive estimate
o for 50 GeV jets \approx larger than total cross section \rightarrow not under control

(Parton Distributions)

Hadrons are composite, with time-dependent structure:

Partons within clouds of further partons, constantly emitted and absorbed
 intact, virtualities $k^{2}<$ fluctuations suppresed

M_{h} : mass of hadron
k^{2} : virtuality of fluctuation
\rightarrow Lifetime of fluctuations $\sim 1 / M h$
Hard incoming probe interacts over much shorter time scale ~ 1/Q

On that timescale, partons ~ frozen
Hard scattering knows nothing of the target hadron apart from the fact that it contained the struck parton

(Factorization Theorem)

Example: DIS (Collins, Soper, 1987)

See also electronnucleon scattering in lectures
by K. Assamagan

\rightarrow We really can write the cross section in factorized

$$
\begin{aligned}
& \sigma^{\ell h}=\sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}} \\
& \text { Sum over } \\
& \text { Initial (i) } \\
& \text { and final (f) } \\
& \text { parton flavors } \\
& \begin{array}{cc}
\Phi_{f} \quad & f_{i / h} \\
=\text { PDFs }
\end{array} \\
& \text { = Final-state } \\
& \text { phase space } \\
& \text { Universal } \\
& \text { Constrained } \\
& \text { by fits to data } \\
& \text { Differential partonic } \\
& \text { Hard-scattering } \\
& \text { Matrix Element(s) }
\end{aligned}
$$

Last Ingredient: Loops

PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Unitarity (KLN):

Singular structure at loop level must be equal and opposite to tree level

Kinoshita-Lee-Nauenberg:

Loop $=-\operatorname{Int}($ Tree $)+F$
Neglect $F \rightarrow$ Leading-Logarithmic (LL) Approximation
\rightarrow Virtual (loop) correction:
$2 \operatorname{Re}\left[\mathcal{M}_{F}^{(0)} \mathcal{M}_{F}^{(1) *}\right]=-g_{s}^{2} N_{C}\left|\mathcal{M}_{F}^{(0)}\right|^{2} \int \frac{\mathrm{~d} s_{i j} \mathrm{~d} s_{j k}}{16 \pi^{2} s_{i j k}}\left(\frac{2 s_{i k}}{s_{i j} s_{j k}}+\right.$ less singular terms $)$

Realized by Event evolution in $\mathrm{Q}=$ fractal scale (virtuality, p_{T} formation time, ...)

> Resolution scale $$
t=\ln \left(Q^{2}\right)
$$

$$
\begin{aligned}
\frac{\mathrm{d} N_{F}(t)}{d t}= & -\frac{\mathrm{d} \sigma_{F+1}}{\mathrm{~d} \sigma_{F}} N_{F}(t) \\
& =\text { Approximation to Real Emissions }
\end{aligned}
$$

Probability to remain
"unbranched" from to to t
\rightarrow The "Sudakov Factor"

$$
\begin{aligned}
\frac{N_{F}(t)}{N_{F}\left(t_{0}\right)}= & \Delta_{F}\left(t_{0}, t\right)=\exp \left(-\int \frac{\mathrm{d} \sigma_{F+1}}{\mathrm{~d} \sigma_{F}}\right) \\
& =\text { Approximation to Loop Corrections }
\end{aligned}
$$

Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Based on antenna factorization

- of Amplitudes (exact in both soft and collinear limits)

- of Phase Space (LIPS : 2 on-shell $\rightarrow 3$ on-shell partons, with (E, P) cons)

Resolution Time

Infinite family of continuously deformable Q_{E}
Special cases: transverse momentum, invariant mass, energy

+ Improvements for hard $2 \rightarrow 4$: "smooth ordering"

Radiation functions

Written as Laurent-series with arbitrary coefficients, ant ${ }_{i}$ Special cases for non-singular terms: Gehrmann-Glover, MIN, MAX + Massive antenna functions for massive fermions (c, b, t)

Kinematics maps

Formalism derived for infinitely deformable $\varkappa_{3 \rightarrow 2}$
Special cases: ARIADNE, Kosower, + massive generalizations

Helicities

```
Larkoski, Peskin, PRD }81\mathrm{ (2010) 054010
+ Ongoing, with A. Larkoski (MIT) & J. Lopez-Villarejo (CERN)
```

Traditional parton showers use the standard Altarelli-Parisi kernels, $\mathrm{P}(\mathrm{z})$ = helicity sums/averages over:

$P(z)$	++	-+	+-	--	

Generalize these objects to dipole-antennae

E.g.,

$$
\begin{aligned}
& q \bar{q} \rightarrow q g \bar{q} \\
& ++\rightarrow+++\quad \text { MHV } \\
& ++\rightarrow+-+ \\
& +-\rightarrow++-\quad \text { NMHV } \\
& +-\rightarrow+--\quad \text { P-wave } \\
& +-\rightarrow+
\end{aligned}
$$

\rightarrow Can trace helicities through shower
\rightarrow Eliminates contribution from unphysical helicity configurations
\rightarrow Can match to individual helicity amplitudes rather than helicity sum
\rightarrow Fast! (gets rid of another factor 2^{N})

Shower Types

Traditional vs Coherent vs Global vs Sector vs Dipole

Parton Shower (DGLAP)
Coherent Parton Shower (Herwig [12,40], Pythia6 [11])
Global Dipole-Antenna (ARIADNE [17], GGG [36], WK [32], Vincia)
Sector Dipole-Antenna (LP [41], Vincia)
Partitioned-Dipole Shower (SK [23], NS [42], DTW [24], Pythia8 [38], Sherpa)
$\operatorname{Coll}(I)$
a_{I}
$\Theta_{I} a_{I}$
$a_{I K}+a_{H I}$
$\Theta_{I K} a_{I K}+\Theta_{H I} a_{H I} \quad a_{I K}$
$a_{I, K}+a_{I, H}$

Soft(IK)
$a_{I}+a_{K}$
$\Theta_{I} a_{I}+\Theta_{K} a_{K}$
$a_{I K}$
$a_{I, K}+a_{K, I}$

Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity of the $I K$ pair, respectively, originate in different shower types. (Θ_{I} and Θ_{K} represent angular vetos with respect to partons I and K, respectively, and $\Theta_{I K}$ represents a sector phase-space veto, see text.)

The Denominator

In a traditional parton shower, you would face the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to $n^{\text {th }}$ branching $\propto 2^{n} n$!

$$
(K \sim M+K) \underset{\substack{j \\ 2 \\ 2 \text { terms }}}{\substack{\text { t }}}
$$

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms
(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

$$
2^{n} n!\rightarrow n!
$$

Giele, Kosower, Skands, PRD 84 (2011)

+ Change "shower restart" to Markov criterion:
Given an n-parton configuration, "ordering" scale is

$$
Q_{\text {ord }}=\min \left(Q_{E 1}, Q_{E 2}, \ldots, Q_{E n}\right)
$$

Unique restart scale, independently of how it was produced

+ Matching: $\mathrm{n}!\rightarrow \mathbf{n}$
Given an n-parton configuration, its phase space weight is:
$\left|M_{n}\right|^{2}$: Unique weight, independently of how it was

Matched Markovian Antenna Shower:

 After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 termsParton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

+ Sector anterntuetankosi, Peskin,Phys.Rev. D81 (2010) 054010
$\rightarrow 1$ term at any ordlerpez-Villarejo, Skands, JHEP 1111 (2011) 150

Effective $2 \rightarrow 4$

Generate Branchings without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space Overcounting removed by matching

+ smooth ordering beyond matched multiplicities $\underset{\hat{p}_{\perp}^{2}+p_{\perp}^{2}}{ } P_{\mathrm{LL}} \underset{p_{\perp}^{2}}{\hat{p}_{\perp}^{2} \text { : last burent tranching }}$

Example: Non-Singular Terms

Giele, Kosower, Skands, PRD 84 (2011) 054003

Thrust = LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)

Example: μ_{R}

Giele, Kosower, Skands, PRD 84 (2011) 054003

Thrust = LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)

Fixed Order: Recap

Improve by computing quantum

 corrections, order by order```
(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)
```


## Next-to-Leading Order



$$
\sigma^{\mathrm{NLO}}=\sigma^{\text {Born }}+\int \underset{\rightarrow 1 / \epsilon^{2}+1 / \epsilon+\text { Finite }}{\mathrm{d} \Phi_{F++}\left|\mathcal{M}_{\rightarrow-1}^{(0)}\right|^{2}+\int \mathrm{d} \Phi_{F} 2 \operatorname{Re}\left[\mathcal{R e}_{\rightarrow-1 / \epsilon^{2}-4+\text { Finite }}\left[\mathcal{M}_{F}^{(1)} \mathcal{M}^{(0) *}\right]\right.}
$$

The Subtraction Idea

$$
=\sigma^{\text {Born }}+\int \mathrm{d} \Phi_{F+1} \underbrace{\left(\left|\mathcal{M}_{F+1}^{(0)}\right|^{2}-\mathrm{d} \sigma_{S}^{\mathrm{NLO}}\right)}_{\text {Finite by Universality }}
$$

$$
+\underbrace{\int \mathrm{d} \Phi_{F} 2 \operatorname{Re}\left[\mathcal{M}_{F}^{(1)} \mathcal{M}_{F}^{(0) *}\right]+\int \mathrm{d} \Phi_{F+1} \mathrm{~d} \sigma_{S}^{\mathrm{NLO}}}_{\text {Einita hr VI N }}
$$

Finite by KLN
 "Subtraction Terms" (will return to later)

## (Color Flow in MC Models)

## "Planar Limit"

Equivalent to $\mathrm{N}_{\mathrm{c}} \rightarrow \infty$ : no color interference*
Rules for color flow:
*) except as reflected
by the
implementation of
QCD coherence
effects in the Monte
Carlos via angular or
dipole ordering


For an entire cascade:


Illustrations from: Nason + PS, PDG Review on MC Event Generators, 2012


Coherence of pQCD cascades $\rightarrow$ not much "overlap" between strings
$\rightarrow$ planar approx pretty good
LEP measurements in WW confirm this (at least to order $10 \% \sim 1 / \mathrm{N}_{\mathrm{c}}{ }^{2}$ )

## Hadronization

## One Breakup:




$\overline{\text { Area }}$
$\quad \underset{\text { Law }}{\rightarrow} \operatorname{Prob}\left(m_{q}^{2}, p_{\perp q}^{2}\right) \propto \exp \left(\frac{-\pi m_{q}^{2}}{\kappa}\right) \exp \left(\frac{-\pi p_{\perp q}^{2}}{\kappa}\right) \underset{\text { Lund FF }}{\rightarrow} f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b\left(m_{h}^{2}+p_{\perp h}^{2}\right)}{z}\right)$
Iterated Sequence:


