New Developments in Parton Showers

P. Skands (CERN)

> Work in collaboration with W. Giele, D. Kosower,
> A. Larkoski, J. Lopez-Villarejo (sector showers, helicity-dependence),
> A. Gehrmann-de-Ridder, M. Ritzmann (mass effects, initial-state radiation),
> E. Laenen, L. Hartgring (one-loop corrections)

THEORY

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

+ quark masses and value of $\alpha_{\text {s }}$

Perturbation Theory

Monte Carlo Generators

Calculate Everything \approx solve QCD \rightarrow requires compromise!
Improve Born-level perturbation theory, by including the 'most significant' corrections \rightarrow complete events \rightarrow any observable you want

1. Parton Showers
2. Matching
3. Hadronisation
4. The Underlying Event
5. Soft/Collinear Logarithms
6. Finite Terms, " K "-factors
7. Power Corrections (more if not IR safe)
8. ?
(+ many other ingredients: resonance decays, beam remnants, Bose-Einstein, ...)

Bremssthahling

The harder they stop, the harder the fluctations that continue to become strahlung

Bremsstrahlung

$$
\begin{aligned}
& \mathrm{d} \sigma_{X}=\ldots \\
& \mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \\
& \mathrm{~d} \sigma_{X+2} \sim 2 g^{2} \mathrm{~d} \sigma_{X+1} \frac{\mathrm{~d} s_{a 2}}{s_{a 2}} \frac{\mathrm{~d} s_{2 b}}{s_{2 b}} \\
& \mathrm{~d} \sigma_{X+3} \sim 2 g^{2} \mathrm{~d} \sigma_{X+2} \frac{\mathrm{~d} s_{a 3}}{s_{a 3}} \frac{\mathrm{~d} s_{3 b}}{s_{3 b}}
\end{aligned}
$$

This gives an approximation to infinite-order tree-level cross sections (here "DLA")

But something is not right ...

Total cross section would be infinite ...

Loops and Legs

Summation

Resummation

$$
\begin{aligned}
& \mathrm{d} \sigma_{X}=\ldots \\
& \mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \\
& \mathrm{~d} \sigma_{X+2} \sim 2 g^{2} \mathrm{~d} \sigma_{X+1} \frac{\mathrm{~d} s_{a 2}}{s_{a 2}} \frac{\mathrm{~d} s_{2 b}}{s_{2 b}} \\
& \mathrm{~d} \sigma_{X+3} \sim 2 g^{2} \mathrm{~d} \sigma_{X+2} \frac{\mathrm{~d} s_{a 3}}{s_{a 3}} \frac{\mathrm{~d} s_{3 b}}{s_{3 b}}
\end{aligned}
$$

Unitarity

KLN:

$$
\text { Virt }=-\operatorname{Int}(\text { Tree })+F
$$

In $L L$ showers : neglect F

Imposed by Event evolution:

When (X) branches to $(X+1)$:
Gain one $(X+I)$. Loose one (X).

$$
\sigma_{X+1}(Q)=\sigma_{X ; i n c l}-\sigma_{X ; \operatorname{excl}}(Q)
$$

\rightarrow includes both real and virtual corrections (in LL approx)

Bootstrapped PQCD

Resummation

N

- A (Complete Idiot's) Solution - Combine

1. $[X]_{\text {ME }}+$ showering
2. $[\mathrm{X}+1 \text { jet }]_{\text {ME }}+$ showering
3. ...

Run generator for X (+ shower)
Run generator for X+1 (+ shower)
Run generator for ... (+ shower)
Combine everything into one sample

The Matching Game

- S. Shower off X already contains LL part of all $X+n$

$$
\mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}}
$$

-.S. Adding back full ME for $X+n$ would be overkill

Add event samples, with modified weights

$$
\begin{aligned}
& w_{X}=\left|M_{X}\right|^{2} \\
& w_{X+1}=\left|M_{X+1}\right|^{2}-\operatorname{Shower}\left\{w_{X}\right\} \\
& w_{X+n}=\left|M_{X+n}\right|^{2}-\operatorname{Shower}\left\{w_{X}, w_{X+1}, \ldots, w_{X+n-1}\right\}
\end{aligned}
$$

+ Shower
+ Shower
+ Shower Only CKкw and MLM

HERWIG: for $\mathrm{X}+\mathrm{I}$ @ LO (Shower = 0 in dead zone of angular-ordered shower)
MC@NLO: for X+I @ LO and X @ NLO (note: correction can be negative)
CKKW \& MLM : for all $X+n$ @ LO (force Shower $=0$ above "matching scale" and add ME there) SHERPA (CKKW), ALPGEN (MLM + HW/PY), MADGRAPH (MLM + HW/PY),

PYTHIA8 (CKKW-L from LHE files), ...

The Matching Game

- S. Shower off X already contains LL part of all $X+n$

$$
\mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}}
$$

- §. Adding back full ME for $X+n$ would be overkill

Solution 2: "Multiplicative"

One event sample

$$
w_{X}=\left|M_{X}\right|^{2}
$$

+ Shower
Make a "course correction" to the shower at each order

$$
\begin{array}{ll}
R_{X+1}=\left|M_{X+1}\right|^{2} / \text { Shower }\left\{w_{X}\right\} & + \text { Shower } \\
R_{X+n}=\left|M_{X+n}\right|^{2} / \text { Shower }\left\{w_{X+n-1}\right\} & + \text { Shower }
\end{array}
$$

PYTHIA: for $\mathrm{X}+\mathrm{I}$ @ LO (for color-singlet production and ~all SM and BSM decay processes)
POWHEG: for $\mathrm{X}+\mathrm{I} @$ LO and $\mathrm{X} @$ NLO (note: positive weights) $\longleftrightarrow \xrightarrow{\text { POWHEG Box }}$ HERWG
VINCIA: for all $\mathrm{X}+\mathrm{n}$ @ LO and X @ NLO (only worked out for decay processes so far)

Markov pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
\stackrel{\text { PYTHiL }}{a_{i}} \rightarrow \text { trick } \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

The Denominator

In a traditional parton shower, you would face the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last
\rightarrow proliferation of terms
Number of histories contributing to $\mathrm{n}^{\text {th }}$ branching $\propto \mathbf{2}^{\mathbf{n}} \mathbf{n}$!

$$
(K \sim K+K)
$$

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms After 4 branchings: 384 terms
(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

$$
2^{n} n!\rightarrow n!
$$

Giele, Kosower, Skands, PRD 84 (20II) 054003

(+ generic Lorentzinvariant and on-shell phase-space factorization)

+ Change "shower restart" to Markov criterion:
Given an n-parton configuration, "ordering" scale is

$$
Q_{\text {ord }}=\min \left(Q_{E I}, Q_{E 2}, \ldots, Q_{E n}\right)
$$

Unique restart scale, independently of how it was produced

+ Matching: $\mathbf{n !} \rightarrow \mathbf{n}$
Given an n-parton configuration, its phase space weight is:
$\left|M_{n}\right|^{2}$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms After 4 branchings: 384 terms

+ Sector antennae Larkosi, Peskin,Phys.Rev.D8I (2010) 054010
\rightarrow I term at any order Lopez-Villarejo, Skands, JHEP II I I (201I) I50

Approximations

Q: How well do showers do?

Exp: Compare to data. Difficult to interpret; all-orders cocktail including hadronization, tuning, uncertainties, etc
Th: Compare products of splitting functions to full tree-level matrix elements
Plot distribution of Logio(PS/ME)
Dead Zone: I-2\% of phase space have no strongly ordered paths leading there*
"fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

$2 \rightarrow 4$

Generate Branchings without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space Overcounting removed by matching

+ smooth ordering beyond matched multiplicities

$$
\frac{\hat{p}_{\perp}^{2}}{\hat{p}_{\perp}^{2}+p_{\perp}^{2}} P_{\mathrm{LL}} \quad \begin{array}{lll}
\hat{p}_{\perp}^{2} \text { last branching } \\
p_{\perp}^{2} & \text { current branching }
\end{array}
$$

\rightarrow Better Approximations

Distribution of Logıo(PSLo/MELo) (inverse ~ matching coefficient)

Leading Order, Leading Color, Flat phase-space scan, over all of phase space (no matching scale)

+ Matching (+ full colour)

\rightarrow A very good all-orders starting point

SPEED : milliseconds / Event

MS/EVENT

Monte Carlo

Strategy

$$
Z \rightarrow 3
$$

$$
Z \rightarrow 4
$$

$$
Z \rightarrow 5
$$

$$
Z \rightarrow 6
$$

```
        Pythia 8
    Initialization time ~0
Vincia (sector, \(\mathrm{Q}_{\text {mactch }}=5 \mathrm{GeV}\) )
    Initialization time \(\sim 0\)
Sherpa \(\left(Q_{\text {match }}=5 \mathrm{GeV}\right)\)
    Initialization time \(=\)
```

TS	0.22	$\begin{gathered} \mathrm{Z} \rightarrow \mathrm{qq}(\mathrm{q}=u d s c b)+\text { shower. } \\ \text { Matched and unweighted. Hadronization off } \\ \text { gforrtan/g++ with gcc v.4.4-O2 on single } 3.06 \text { GHz processor with } 4 G B \\ \text { memory } \end{gathered}$		
GKS	0.26	0.50	1.40	6.70
CKKW	5.15*	53.00*	220.00*	400.00*
$\underset{\text { cex }}{\substack{\text { (expect similar } \\ \text { scaling for MLM) }}}$	1.5 minutes	7 minutes	22 minutes	2.2 hours

Generator Versions: Pythia 6.425 (Perugia 201 I tune), Pythia 8.150, Sherpa I.3.0, Vincia I. 026 (without uncertainty bands, NLL/NLC=OFF)

Efficient Matching with Sector Showers

L.Lopez-Villarejo \& PS:JHEP IIII (201I) I50

Uncertainties

Uncertainty Variations

A result is only as good as its uncertainty

Normal procedure:
Run MC 2N+I times (for central + N up/down variations)
Takes $2 \mathrm{~N}+1$ times as long

+ uncorrelated statistical fluctuations

Automate and do everything in one run

VINCIA: all events have weight = I
Compute unitary alternative weights on the fly
\rightarrow sets of alternative weights representing variations (all with $<w\rangle=I$) Same events, so only have to be hadronized/detector-simulated ONCE!

MC with Automatic Uncertainty Bands

Uncertainties

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-color treatments

+ Matching

Differences explicitly matched out
(Up to matched orders)
(Can in principle also include variations of matching scheme...)

	Weight
Nominal	I
Variation	$P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

+ Unitarity

For each failed branching:

$$
P_{2 ; \mathrm{no}}=1-P_{2}=1-\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}
$$

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of renormalization scale (no matching)

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of "finite terms" (no matching)

Putting it Together

VinciaMatching:order $=0$
VinciaMatching:order $=3$

VINCIA STATUS
Hoviver
\#1 GUEST RATED SHOWERHEAD - ALL NEW

NEXT STEPS
MULTI-LEG ONE-LOOP MATCHING
(WITH L. HARTGRING \& E. LAENEN, NIKHEF)
HELICITY-DEPENDENT SHOWERS
(WITH A. LARKOSKI, SLAC, \& J. LOPEZ-VILLAREJO, CERN)
\rightarrow INITIAL-STATE SHOWERS
(WITH W. GIELE, D. KOSOWER, S. MRENNA, M. RITZMANN)
\qquad

Conclusions

- QCD Phenomenology is witnessing a rapid evolution: LO \& NLO matching, better showers, tuning, interfaces ...
- Driven by demand for high precision in complex LHC environment with huge phase space
- BSM Physics
- Generally relies on chains of tools (MC4BSM)
- Sufficient to reach $\mathrm{O}(\mathrm{IO} \mathrm{\%})$ accuracy, with hard work, though must be careful with scale hierarchies, width effects, decay distributions, ...
- Next machine is a long way off \rightarrow must strive to build capacity for yet higher precision, to get max from LHC data.
- Ultimate limit set by solutions to pQCD (getting better) and then the really hard stuff
- Like Hadronization, Underlying Event, Diffraction, ... (\& BSM equivalents?)
- For which fundamentally new ideas may be needed

Simple Solution

Generate Trials without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space
Overcounting removed by matching
(revert to strong ordering beyond matched multiplicities)

(Subleading Singularities)

Isolate double-collinear region: $\alpha_{3}^{2 l^{2}}$

LEP event shapes

PYTHIA 8 already doing a very good job

VINCIA adds uncertainty bands + can look at more exclusive observables?

Multijet resolution scales

4-Jet Angles

4-jet angles

Sensitive to

 polarization effects
Good News

VINCIA is doing reliably well
Non-trivial verification that shower+matching is working, etc.

Higher-order matching needed?

PYTHIA 8 already doing a very good job on these observables

Interesting to look at more exclusive observables, but which ones?

