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“Nothing”
Gluon action density: 2.4x2.4x3.6 fm

QCD Lattice simulation from
D. B. Leinweber, hep-lat/0004025
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Reality is more complicated 

Perturbation Theory

4

High%transverse-
momentum%
interac2on%



Monte Carlo Generators
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Improve Born-level perturbation theory, by including the ‘most significant’ corrections
→ complete events → any observable you want

Calculate Everything ≈ solve QCD → requires compromise!

1. Parton)Showers))
2. Matching)

3. Hadronisa7on)
4. The)Underlying)Event)

1. So?/Collinear)Logarithms)

2. Finite)Terms,)“K”Ifactors)

3. Power)Correc7ons)(more)if)not)IR)safe))

4. ?)

roughly 

(+ many other ingredients: resonance decays, beam remnants, Bose-Einstein, …)



Bremsstrahlung
Charges 
Stopped

Associated field 
(fluctuations) continues

ISRISR
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The harder they stop, the harder the 
fluctations that continue to become strahlung



Bremsstrahlung
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dσ
X$

dσ
X+1 &
dσ

X+2 &
dσ

X+2&

Total cross section would be infinite … 

This gives an approximation to infinite-order 
tree-level cross sections (here “DLA”)

But something is not right … 



Loops and Legs

Summation
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

The Virtual 
corrections 
are missing

Universality (scaling)

Jet-within-a-jet-within-a-jet-...



Resummation
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dσ
X$

dσ
X+1 &
dσ

X+2 &
dσ

X+2&

Unitarity

KLN: 

Virt = - Int(Tree) + F
In LL showers : neglect F

→ includes both real and virtual corrections (in LL approx)

σX+1(Q) = σX;incl– σX;excl(Q) 

This includes both real and 
virtual corrections 

Imposed by Event evolution:  

When (X) branches to (X+1):
Gain one (X+1). Loose one (X). 



Bootstrapped pQCD

Resummation
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

Born
+ Shower

Unitarity

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Exponentiation



Matching
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► A (Complete Idiot’s) Solution – Combine 
1. [X]ME + showering 
2. [X + 1 jet]ME + showering 

3. … 

► Doesn’t work 
•  [X] + shower is inclusive 

•  [X+1] + shower is also inclusive 

≠ 

Run generator for X (+ shower) 

Run generator for X+1 (+ shower) 

Run generator for … (+ shower) 

Combine everything into one sample 

What you 
get 

What you 
want 

Overlapping “bins” One sample 



The Matching Game
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Shower off X 
already contains LL 
part of all X+n

Adding back full ME 
for X+n would be 
overkill

• Solution 1: “Additive” (most widespread)

Add event samples, with modified weights

wX    = |MX|2                                                           + Shower

wX+1 = |MX+1|2 – Shower{wX}                                + Shower

wX+n = |MX+n|2 – Shower{wX,wX+1,...,wX+n-1}         + Shower

HERWIG: for X+1 @ LO (Shower = 0 in dead zone of angular-ordered shower)

MC@NLO: for X+1 @ LO and X @ NLO (note: correction can be negative)

CKKW & MLM : for all X+n @ LO (force Shower = 0 above “matching scale” and add ME there)

SHERPA (CKKW), ALPGEN (MLM + HW/PY), MADGRAPH (MLM + HW/PY), 
PYTHIA8 (CKKW-L from LHE files),  … 

Only CKKW and MLM

Seymour (Herwig), CPC 90 (1995) 95
CKKW (Sherpa), JHEP 0111 (2001) 063

Lönnblad (Ariadne), JHEP 0205 (2002) 046
Frixione-Webber (MC@NLO), JHEP 0206 (2002) 029

+ many more recent ...



The Matching Game
Shower off X 
already contains LL 
part of all X+n

Adding back full ME 
for X+n would be 
overkill

13

• Solution 2: “Multiplicative” 

One event sample

wX    = |MX|2                                                           + Shower

Make a “course correction” to the shower at each order

RX+1 = |MX+1|2/Shower{wX}                                   + Shower

RX+n = |MX+n|2/Shower{wX+n-1}                             + Shower

PYTHIA: for X+1 @ LO (for color-singlet production and ~ all SM and BSM decay processes)

POWHEG: for X+1 @ LO and X @ NLO (note: positive weights)

VINCIA: for all X+n @ LO and X @ NLO (only worked out for decay processes so far)

Only VINCIA

POWHEG Box
HERWIG++

…

Bengtsson-Sjöstrand (Pythia), PLB 185 (1987) 435 + more
Bauer-Tackmann-Thaler (GenEva), JHEP 0812 (2008) 011

Giele-Kosower-Skands (Vincia), PRD84 (2011) 054003



P. Skands - New Developments in Parton Showers

Markov pQCD
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The VINCIA Code 

MC@NLO & POWHEG MLM & CKKW

LO for 1st emission
LL for 2nd emission and beyond

“Matching Scale”
→ hierarchies not matched

Work in Progress

~ PYTHIA 
+ POWHEG This Talk

GKS, PRD84(2011)054003 

GKS, PRD78(2008)014026

Start at Born level
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P. Skands - New Developments in Parton Showers

The Denominator    v
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In a traditional parton shower, you would face 
the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last 
→ proliferation of terms 

Number of histories contributing to nth branching ∝ 2nn!

~ + + + j = 2
→ 4 terms

j = 1
→ 2 terms~( + )

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

ai !
|MF+1|2P
ai|MF |2

1

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)



P. Skands - New Developments in Parton Showers

Matched Markovian Antenna Showers

+ Change “shower restart” to Markov criterion:

Given an n-parton configuration, “ordering” scale is 

Qord = min(QE1,QE2,...,QEn)

Unique restart scale, independently of how it was produced

+ Matching: n! → n
Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was produced
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Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

+ Sector antennae 
→ 1 term at any order

(+ generic Lorentz-
invariant and on-shell 
phase-space factorization)

Antenna showers: one term per parton pair 2nn! → n!

Larkosi, Peskin,Phys.Rev. D81 (2010) 054010
Lopez-Villarejo, Skands, JHEP 1111 (2011) 150

Giele, Kosower, Skands, PRD 84 (2011) 054003 



P. Skands - New Developments in Parton Showers

Approximations
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ⌅PS p�-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ⌅AR kinematics map.

• ARI: p�-ordering using our best imitation of the what the real ARIADNE program does. It uses
p�-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ⌅AR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including �⇤, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p�-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ⌅PS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer

29

S T RO N G  O R D E R I N G

Q: How well do showers do?
Exp: Compare to data. Difficult to interpret; all-orders cocktail including 

hadronization, tuning, uncertainties, etc
Th: Compare products of splitting functions to full tree-level matrix elements

Plot distribution of Log10(PS/ME)
(fourth order)(third order)(second order)

Dead Zone: 1-2% of phase space have no strongly ordered paths leading there*

*fine from strict LL point of view: those points correspond to “unordered” non-log-enhanced configurations



P. Skands - New Developments in Parton Showers

2→4

Generate Branchings without imposing strong ordering
At each step, each dipole allowed to fill its entire phase space

Overcounting removed by matching
+ smooth ordering beyond matched multiplicities
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p� and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z � 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).
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Transverse-Momentum-Ordering (ARIADNE)
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p�, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : ⌃ord PLL ⇤ PimpPLL =

p̂2
�

p̂2
� + p2

�
PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : ⌃ord PLL ⇤ PimpPLL =

p̂2
�

p̂2
� + p2

�
PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : ⌃ord PLL ⇤ PimpPLL =

p̂2
�

p̂2
� + p2

�
PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
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Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ⇥AR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : ⌅ord PLL � ⌅ordPariPLL = ⌅ord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ⌅PS p�-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ⌅AR kinematics map.

• ARI: p�-ordering using our best imitation of the what the real ARIADNE program does. It uses
p�-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ⌅AR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including �⇤, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p�-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ⌅PS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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Figure 16: Smoothly ordered matched parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], full color (summed over color permutations). Compare to
the unmatched shower distributions in figs. 10, 14, and 15.

In fig. 16, we show the weight ratios discussed earlier (which are essentially just the inverses of
PME

n ), for Z ⇥ 5 and Z ⇥ 6 partons, now including matching at each preceding order. For the shower
approximations, we use the default smoothly ordered NLC-improved GGG antennæ, with three different
kinematics maps (solid histogram, thin solid line, and dashed lines, respectively). We also compare to
the same settings as the solid histogram but using the ARIADNE radiation functions instead of the GGG
ones (thick solid lines). Comparing these distributions to those in fig. 14, we see that the differences
between the shower models are largely canceled by the matching to the preceding orders, as expected. At
each order, now only a relatively well-controlled and stable matching correction remains, which does not
appear to exhibit any significant deterioration order by order. Note that we have not applied any phase
space cuts here, and hence we find no evidence for any remaining subleading divergences in the matrix
elements leading to problems in this approach. This is in sharp contrast to slicing- or subtraction-based
approaches, where a non-zero matching scale is obligatory beyond the first matched order.

A note on color factor normalizations. Obviously, if the leading-color pieces are not normalized
the same way in two different approaches, the subleading terms must likewise appear different. This,
e.g., leads to some apparent differences between MADGRAPH and the GGG antennæ. With color and
coupling factors, the MADGRAPH-GGG correspondence for the Z ⇥ qggq̄ antenna is:

g4
sAGGG

4 (0, 1, 2, 3) =
2|M4LC(0, 1, 2, 3)|2

Ĉ2
F |M2(s)|2

, (116)

where the factor 2 on the MADGRAPH matrix element cancels the color averaging factor which is
already present in |M4LC|2, which represents a MADGRAPH matrix element with only one element
non-zero in the color matrix, the one corresponding to the (0, 1, 2, 3) color flow squared. In particular,
note that the LC coefficient in MADGRAPH comes with Ĉ2

F , whereas, in order to construct the full
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Remaining matching 
corrections are small

(fourth order)(third order)
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ⇥AR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : ⌅ord PLL � ⌅ordPariPLL = ⌅ord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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Uncertainty Variations

A result is only as good as its uncertainty
Normal procedure:

Run MC 2N+1 times (for central + N up/down variations)

Takes 2N+1 times as long 

+ uncorrelated statistical fluctuations 

Automate and do everything in one run
VINCIA: all events have weight = 1

Compute unitary alternative weights on the fly
→ sets of alternative weights representing variations (all with <w>=1)

Same events, so only have to be hadronized/detector-simulated ONCE!
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MC with Automatic Uncertainty Bands
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Uncertainties

For each branching, 
recompute weight for:

- Different renormalization scales

- Different antenna functions

- Different ordering criteria

- Different subleading-color treatments

24

Weight

Nominal 1

Variation

for a particular branching, the same branching would have happened with the relative probability

P2 =
⌅s2a2

⌅s1a1
P1 , (118)

in a different model that uses ⌅s2 as its coupling (e.g., with a different renormalization scale or scheme)
and a2 as its radiation function (e.g., with different finite terms, different partitioning of shared poles,
different subleading or higher-order corrections, or even a different ordering criterion).

This, however, is not quite sufficient. Effectively, only the tree-level expansion of the shower would
be affected by keeping track of such relative probabilities down along the shower chain; the Sudakov
factors would remain unmodified. Such a procedure would therefore explicitly break the unitarity that is
so important to resummation applications, leading to possibly exponentially different weights between
the sets, which would be hard to interpret7. More intuitively, a big uncertainty on a very soft branching
happening late in the shower should not be able to significantly change the entire event weight, jets
and all. In the normal shower approach, it is the property of unitarity which keeps such things from
happening; as soon as any correction grows large, its associated Sudakov factor must necessarily become
small soon thereafter, keeping the total size of any correction inside a unit-probability integral.

The main part of our proposal therefore concerns a simple way to restore unitarity explicitly also for
the uncertainty variations, as follows. For each accepted branching, a number of trial branchings have
usually first been generated and discarded, to eliminate the overcounting done by the trial function. In
VINCIA, we have so far not been particularly careful to optimize the choice of trial function (see Section
2.2), and hence we have quite many failed trials. These are relatively cheap to generate, however, so the
code is not significantly slowed by this inefficiency. Moreover, these failed trials actually turn out to be
useful, even essential, in the present context.

Just like eq. (118) expresses the relative probability for a branching to be accepted under two dif-
ferent sets of model parameters, 1 and 2, with 1 playing the role of phase space generator and 2 the
role of uncertainty variation, it is also possible to ask what the probability of a failed trial to have failed
under different circumstances would have been. Thus each failed trial can actually be used to compute
variations on the no-emission probability, i.e., the Sudakov factors.

Specifically, for each trial, the no-emission probability for the model we use as our phase space gen-
erator (which corresponds to the settings chosen by the user in VINCIA, including matching, subleading
corrections, etc.) is

P1;no = 1⇥ P1 , (119)

whereas the one for the alternative model should be

P2;no = 1⇥ P2 = 1⇥ ⌅s2a2

⌅s1a1
P1 . (120)

Thus, by multiplying the relative event weight w2/w1 by P2/P1 for each accepted branching and by
P2;no/P1;no for each failed one, we explicitly restore the unitarity of the set of weights {w2}. In order to
prevent extreme outliers from substantially degrading the statistical precision of the variation samples,
however, we limit the resulting weight adjustments to at most a factor of 2 per branching in the code (in
either direction).

7For example, two models that differ systematically by only a small amount on each branching, say 25%, would, after 20
such branchings, differ by a factor 1.2520 = 100. If they differ by a factor of 2 instead, the result would be a million, clearly
not a reasonable correction to the total event rate.
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small soon thereafter, keeping the total size of any correction inside a unit-probability integral.

The main part of our proposal therefore concerns a simple way to restore unitarity explicitly also for
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usually first been generated and discarded, to eliminate the overcounting done by the trial function. In
VINCIA, we have so far not been particularly careful to optimize the choice of trial function (see Section
2.2), and hence we have quite many failed trials. These are relatively cheap to generate, however, so the
code is not significantly slowed by this inefficiency. Moreover, these failed trials actually turn out to be
useful, even essential, in the present context.

Just like eq. (118) expresses the relative probability for a branching to be accepted under two dif-
ferent sets of model parameters, 1 and 2, with 1 playing the role of phase space generator and 2 the
role of uncertainty variation, it is also possible to ask what the probability of a failed trial to have failed
under different circumstances would have been. Thus each failed trial can actually be used to compute
variations on the no-emission probability, i.e., the Sudakov factors.

Specifically, for each trial, the no-emission probability for the model we use as our phase space gen-
erator (which corresponds to the settings chosen by the user in VINCIA, including matching, subleading
corrections, etc.) is

P1;no = 1⇥ P1 , (119)

whereas the one for the alternative model should be

P2;no = 1⇥ P2 = 1⇥ ⌅s2a2

⌅s1a1
P1 . (120)

Thus, by multiplying the relative event weight w2/w1 by P2/P1 for each accepted branching and by
P2;no/P1;no for each failed one, we explicitly restore the unitarity of the set of weights {w2}. In order to
prevent extreme outliers from substantially degrading the statistical precision of the variation samples,
however, we limit the resulting weight adjustments to at most a factor of 2 per branching in the code (in
either direction).

7For example, two models that differ systematically by only a small amount on each branching, say 25%, would, after 20
such branchings, differ by a factor 1.2520 = 100. If they differ by a factor of 2 instead, the result would be a million, clearly
not a reasonable correction to the total event rate.
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+ Unitarity+ Matching

Differences explicitly matched out 

(Up to matched orders)

(Can in principle also include 
variations of matching scheme…)
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Figure 17: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the renormal-
ization scale. L3 data from ref. [55]. Unmatched.

the result of the variations, all matching is switched off, and hence the uncertainty bands are rather
larger than would be the case for default VINCIA settings. The L3 data (black points) [55] are included
mostly to provide a constant reference across the plots; we postpone discussion of them to the section on
LEP comparisons (Section 8). The top panels of each the plots shows MC compared to data, with both
normalized to unity. The bottom panels show the ratio MC/data, with the uncertainties on the data shown
as yellow bands, the inner (lighter) one corresponding to the statistical component only and the outer
(darker) shade corresponding to statistical plus systematic errors (added linearly, to be conservative).

Comparing Figs. 17 and 18, one observes that the two different variations lead to qualitatively dif-
ferent shapes on the uncertainty predictions. The renormalization scale uncertainty, Fig. 17, produces
an uncertainty band of relatively constant size over the whole range of Thrust, whereas the finite terms,
Fig. 18, only contribute to the uncertainty for large values of ⇤ = 1� T , as expected. Comparing left to
right in both figures, we conclude that both the features and the magnitude of the full uncertainty bands
on the right are well reproduced by the weight variations on the left.

Available Variations: So far, five types of automatic variations have been included in the VINCIA
code, starting from version 1.025, via a simple on/off switch. These uncertainty variations are:

• VINCIA’s default settings. This is obviously not a true uncertainty variation, but is provided as a
useful comparison reference when the user has changed one or more parameters.

• MAX and MIN variations of the renormalization scale. The default variation is by a factor of 2
around p�.

• MAX and MIN variations of the antenna function finite terms. The default variation corresponds
to an integrated ±2 gluons for gluon emission antennae, and an integrated 1

2 splitting, for gluon
splitting, uniformly distributed over the antenna phase space.
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Automatic Uncertainties
Vincia:uncertaintyBands = on

Traditional
Variaton

(two separate runs)

Automatic
Variation

(one run)

Renormalization Scale Uncertainty
~ constant relative size

Variation of renormalization scale (no matching)
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Figure 18: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the antenna-
function finite terms. L3 data from ref. [55]. Unmatched.

• Two variations in the ordering variable, one being closer to strong ordering in p� and the other to
ordering in themD variable.

• MAX and MIN variations of the subleading color corrections. The specific nature of the variation
depends on whether subleading corrections are switched on in the shower or not. If not, the MAX
variation uses CA for all gluon emission antennae and the MIN one ĈF . If on, the correction
described in Section 4.4 is applied, but the correction itself is then modified by ±50% for the
MAX and MIN variations here.

These variations are provided as alternative weight sets for the generated events, which are available
through methods described in the program’s online manual. For more advanced users, some limited
user control over the variations is also included, such as the ability to change the factor of variation of
the renormalization scale.

When combining several variations to compute the total uncertainty, we advise to take just the largest
bin-by-bin deviations (in either direction) as representing the uncertainty. We believe this is better than
adding the individual terms together either linearly or quadratically, since the latter would have to be
supplemented by a treatment of correlations that we don’t know. With the maximal-deviation approach,
we are free to add as many uncertainty variations as we like, without the number of variations by itself
leading to an inflation of the error.

We should also note that, in the VINCIA code, matching coefficients etc. are calculated for each
uncertainty variation separately. The size of each band is therefore properly reduced, as expected, when
switching on corrections that impact that particular source of uncertainty.

Finally, we note that, though the speed of the calculation is typically not significantly affected by
adding uncertainty variations, the code does run slightly faster without them. We therefore advise to
keep them switched off whenever they are not going to be used.
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Automatic Uncertainties

Non-Singular terms only important 
in “hard multi-jet region”

Traditional
Variaton

(two separate runs)

Vincia:uncertaintyBands = on

Automatic
Variation

(one run)

Variation of “finite terms” (no matching)



Putting it Together
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http://projects.hepforge.org/vincia

Next steps

Multi-leg one-loop matching 
(with L. Hartgring & E. Laenen, NIKHEF)

Helicity-dependent Showers 

(with A. Larkoski, SLAC, & J. Lopez-Villarejo, CERN)

→ Initial-State Showers 
(with W. Giele, D. Kosower, S. Mrenna, M. Ritzmann)

VINCIA Status

Plug-in to PYTHIA 8 

Stable and reliable for Final-
State Jets (E.g., LEP)

Automatic matching and 
uncertainty bands

improvements in shower 
(smooth ordering, NLC, Matching, …)

FAST

http://projects.hepforge.org/vincia/
http://projects.hepforge.org/vincia/


Conclusions
• QCD Phenomenology is witnessing a rapid evolution: LO & NLO 

matching, better showers, tuning, interfaces ...

• Driven by demand for high precision in complex LHC environment with huge 
phase space

• BSM Physics

• Generally relies on chains of tools (MC4BSM)

• Sufficient to reach O(10%) accuracy, with hard work, though must be careful 
with scale hierarchies, width effects, decay distributions, … 

• Next machine is a long way off → must strive to build capacity for yet higher 
precision, to get max from LHC data. 

• Ultimate limit set by solutions to pQCD (getting better) and then the 
really hard stuff 

• Like Hadronization, Underlying Event, Diffraction, … (& BSM equivalents?)

• For which fundamentally new ideas may be needed

For more, see the MCnet Review: General-purpose event generators for LHC physics : arXiv:1101.2599 

http://inspirehep.net/record/884202
http://inspirehep.net/record/884202
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P. Skands - New Developments in Parton Showers

Simple Solution

Generate Trials without imposing strong ordering
At each step, each dipole allowed to fill its entire phase space

Overcounting removed by matching
(revert to strong ordering beyond matched multiplicities)
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Phasespace-Ordering
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Figure 24: Phase-space-ordered antenna approximation compared to 2nd order QCD matrix elements.
Note: this roughly corresponds to a mass-ordered parton shower without coherence. Although the
double-soft limit is eventually reached, there is a large overcounting over most of phase space, reflecting
a lack of coherence. Also, the double counting extends into the double-collinear region at the top of the
lower left-hand plot. This ordering, therefore, does not lead to the correct multiple-collinear singular
limit.
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Transverse-Momentum-Ordering (ARIADNE)
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p�, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Dead Zone Overcounting



P. Skands - New Developments in Parton Showers

(Subleading Singularities)

Isolate double-collinear region:

Z→4 : [q,g,g,qbar] with mgg = mZ 
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Smooth Transverse-Momentum-Ordering (VINCIA)
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p� and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z � 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).
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Energy-Ordering (DM)
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Figure 28: Energy-Ordered antenna approximation compared to 2nd order QCD matrix elements, using
a definition of energy a la Dokshitzer-Marchesini (DM). Although a small dead zone in the unordered
region still exists (0.6% of the sampled points), there remains a very large overcounting over significant
parts of phase space, including the double-collinear region mentioned before, at the top of the lower
left-hand plot. We conclude that this variable does not lead to the correct multiple-collinear singular
limit.
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LEP event shapes
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Figure 20: Comparison to the L3 light-flavor data set [55] (black points) at the Z pole for the 1�T (left),
C (middle), and D (right) event shape variables. VINCIAis shown in thin blue lines, with shaded light-
blue bands representing the perturbative uncertainty estimate. The middle pane on each plot illustrates
the relative composition of the VINCIA uncertainty band. For comparison, the PYTHIA8 result is shown
with a thick red line with open circles.

8 Comparison to LEP Data

To keep questions of mass effects separate (the implementation of which will be reported on in a separate
paper [51]), we shall here mainly compare to a useful data set presented by the L3 collaboration [55], in
which the contributions from light flavors (defined as u, d, s, c) has been separated from that of events
containing b quarks.

Unfortunately, however, the L3 light-flavor data set does not contain jet observables. We therefore
include comparisons also to ALPEH and DELPHI jet observables that include all flavors, using a pre-
liminary implementation of mass effects in VINCIA [51]. Since the largest correction specific to b quarks
is simply the B meson decay, for which we rely on PYTHIA’s string hadronization and hadron decay
model, we believe these comparisons are still meaningful, even if we must postpone a full discussion of
them to the follow-up study in ref. [51].

In Fig. 20, we compare default VINCIA and PYTHIA to the L3 light-flavor data for the Thrust (left)
and the C (middle) andD (right) event shape parameters [55]. Dashed vertical lines indicate the bound-
aries between the 3- and 4-jet regions for the Thrust and C parameter (the right-most dashed line on the
Thrust plot indicates the boundary of the 5-jet region). The D parameter measures the deviation from
planar events and is a 4-jet observable over its entire range. Despite substantial differences in the shower
modeling, matching level, and hadronization tune parameters, the two models give almost identical re-
sults. Further, since PYTHIA is already giving a very good description of this data, there is little for the
additional matching in VINCIA to improve on here.

Still on Fig. 20, VINCIA’s uncertainty bands give about a 20% uncertainty over most of the observ-
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PYTHIA 8 already doing a very good job
VINCIA adds uncertainty bands + can look at more exclusive observables?



Multijet resolution scales

y45 = scale at which 5th jet becomes resolved ~ “scale of 5th jet”
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Figure 23: Comparison to ALEPH jet resolution measurements [56] (black points) at the Z pole. VIN-
CIAis shown in thin blue lines, with shaded light-blue bands representing the perturbative uncertainty
estimate. The middle pane on each plot illustrates the relative composition of the VINCIA uncertainty
band. For comparison, the PYTHIA8 result is shown with a thick red line with open circles.

from matching to the 4-parton matrix elements, and both codes are able to describe the 4-jet angles
within a roughly 5% margin, which is comparable to the experimental precision.

Finally, in Fig. 23, we compare to the jet resolutions measured by the ALEPH experiment [56].
Firstly, note that pure PYTHIA is basically able to describe all the distributions, within the experimental
accuracy, despite its being matched only to Z � 3 partons. On the one hand, this is good, since it
implies that the PYTHIA 8 shower is delivering a quite good approximation to QCD also beyond the
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Figure 22: Comparison to DELPHI 4-jet angle measurements (black points) at the Z pole. VINCIAis
shown in thin blue lines, with shaded light-blue bands representing the perturbative uncertainty estimate.
The middle pane on each plot illustrates the relative composition of the VINCIA uncertainty band. For
comparison, the PYTHIA8 result is shown with a thick red line with open circles.

better understanding of the full uncertainties. All we can say at this level is that the charged-multiplicity
distribution appears to suffer from a larger perturbative uncertainty than the fragmentation spectrum.

A further set of variables that is interesting in the context of differential multi-jet production are the
so-called four-jet angles, which were also measured at LEP. Not having found a public data repository
containing this particular data, however, we instead resorted to extracting the data point values from the
HERWIG++ source code [35], where it is encoded for validation and tuning purposes. A comparison
between this data and default VINCIA and PYTHIA is shown in Fig. 22. Again, it is clear that PYTHIA
itself is already doing a very good job. Since PYTHIA is not matched to 4-jet matrix elements and
also does not contain explicit spin correlations in the shower, this may at first be surprising. However,
PYTHIA does correlate the production and decay planes of gluons in the shower, and thereby includes
the leading effect of gluon polarization. The VINCIA shower, on the other hand, contains no polarization
effects a priori. In VINCIA’s case, the effective correlations of the four-jet angles are instead coming
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Interesting to look at more exclusive observables, but which ones?

4-jet angles
Sensitive to 
polarization effects

Good News
VINCIA is doing 
reliably well

Non-trivial verification 
that shower+matching 
is working, etc. 

Higher-order 
matching needed?

PYTHIA 8 already 
doing a very good job 
on these observables


