New Developments in Parton Showers

P. Skands (CERN)

Work in collaboration with W. Giele, D. Kosower, A. Larkoski, J. Lopez-Villarejo (sector showers, helicity-dependence), A. Gehrmann-de-Ridder, M. Ritzmann (mass effects, initial-state radiation), E. Laenen, L. Hartgring (one-loop corrections)

$$\mathcal{L} = \bar{\psi}_q^i (i\gamma^\mu) (D_\mu)_{ij} \psi_q^j - m_q \bar{\psi}_q^i \psi_{qi} - \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu}$$

+ quark masses and value of α_s

"Nothing" Gluon action density: 2.4x2.4x3.6 fm QCD Lattice simulation from D. B. Leinweber, hep-lat/0004025

2,2

 $(D_{\mu})_{ij} \psi_q^j - m_q \overline{\psi}_q^i \psi_{qi} - \frac{1}{A} F_{\mu}^a$

 $F^{a\mu\nu}$

IELP

462

Perturbation Theory

Monte Carlo Generators

Calculate Everything \approx solve QCD \rightarrow requires compromise!

Improve Born-level perturbation theory, by including the `most significant' corrections \rightarrow complete events \rightarrow any observable you want

- 1. Parton Showers
- 2. Matching
- 3. Hadronisation
- 4. The Underlying Event

- 1. Soft/Collinear Logarithms
- 2. Finite Terms, "K"-factors
- **3.** Power Corrections (more if not IR safe)

(+ many other ingredients: resonance decays, beam remnants, Bose-Einstein, ...)

4. ?

Bremsstrahlung

Charges Stopped

ISR

The harder they stop, the harder the fluctations that continue to become strahlung

Bremsstrahlung

$$\mathrm{d}\sigma_X = \dots \xrightarrow{e^{t}}_{e^{t}} \underbrace{\mathsf{v}}_{e^{t}}$$

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

$$\mathrm{d}\sigma_{X+2} \sim 2g^2 \mathrm{d}\sigma_{X+1} \frac{\mathrm{d}s_{a2}}{s_{a2}} \frac{\mathrm{d}s_{2b}}{s_{2b}}$$

$$\mathrm{d}\sigma_{X+3} \sim 2g^2 \mathrm{d}\sigma_{X+2} \frac{\mathrm{d}s_{a3}}{s_{a3}} \frac{\mathrm{d}s_{3b}}{s_{3b}}$$

This gives an approximation to infinite-order tree-level cross sections (here "DLA")

But something is not right ...

Total cross section would be infinite ...

Loops and Legs

Resummation

Unitarity

KLN: Virt = -Int(Tree) + FIn LL showers : neglect F $\mathrm{d}\sigma_X = \dots \xrightarrow{\tilde{e}^{\star}} (\tau)$

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

$$\mathrm{d}\sigma_{X+2} \sim 2g^2 \mathrm{d}\sigma_{X+1} \frac{\mathrm{d}s_{a2}}{s_{a2}} \frac{\mathrm{d}s_{2b}}{s_{2b}}$$

$$\mathrm{d}\sigma_{X+3} \sim 2g^2 \mathrm{d}\sigma_{X+2} \frac{\mathrm{d}s_{a3}}{s_{a3}} \frac{\mathrm{d}s_{3b}}{s_{3b}}$$

Imposed by Event evolution:

When (X) branches to (X+I): Gain one (X+I). Loose one (X). $\sigma_{X+1}(Q) = \sigma_{X;incl} - \sigma_{X;excl}(Q)$

→ includes both real and virtual corrections (in LL approx)

Bootstrapped pQCD

Matching

A (Complete Idiot's) Solution – Combine

- 1. [X]_{ME} + showering
- 2. $[X + 1 jet]_{ME}$ + showering
- 3. ...

Run generator for X (+ shower) Run generator for X+1 (+ shower) Run generator for ... (+ shower) Combine everything into one sample

The Matching Game

 Shower off X already contains LL part of all X+n

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

 Adding back full ME for X+n would be overkill

Solution I: "Additive" (most widespread) Add event samples, with modified weights $w_X = |M_X|^2$ $w_{X+1} = |M_{X+1}|^2 - Shower{w_X}$ $w_{X+n} = |M_{X+n}|^2 - Shower{w_X,w_{X+1},...,w_{X+n-1}}$ Seymour (Herwig), CPC 90 (1995) 95 CKKW (Sherpa), JHEP 0111 (2001) 063 Lönnblad (Ariadne), JHEP 0205 (2002) 046 Frixione-Webber (MC@NLO), JHEP 0206 (2002) 029 + many more recent ... + Shower + Shower

HERWIG: for $X+I \otimes LO$ (Shower = 0 in dead zone of angular-ordered shower)

MC@NLO: for X+I @ LO and X @ NLO (note: correction can be negative)

CKKW & MLM : for all X+n @ LO (force Shower = 0 above "matching scale" and add ME there) SHERPA (CKKW), ALPGEN (MLM + HW/PY), MADGRAPH (MLM + HW/PY), PYTHIA8 (CKKW-L from LHE files), ...

The Matching Game

Shower off Xalready contains LL part of all X+n

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

Adding back full ME ••• for X+n would be overkill

Solution 2: "Multiplicative" Bengtsson-Sjöstrand (Pythia), PLB 185 (1987) 435 + more Bauer-Tackmann-Thaler (GenEva), JHEP 0812 (2008) 011 Giele-Kosower-Skands (Vincia), PRD84 (2011) 054003 **One** event sample $w_X = |M_X|^2$ + Shower Make a "course correction" to the shower at each order $R_{X+1} = |M_{X+1}|^2 / Shower \{w_X\}$ + Shower ► $R_{X+n} = |M_{X+n}|^2 / Shower \{w_{X+n-1}\}$ + Shower **Only VINCIA** PYTHIA: for X+1 @ LO (for color-singlet production and ~ all SM and BSM decay processes) POWHEG: for X+I @ LO and X @ NLO (note: positive weights) VINCIA: for all X+n @ LO and X @ NLO (only worked out for decay processes so far)

Markov pQCD

The Denominator $a_i \rightarrow \sum_{i=1}^{|M_{F+1}|^2} a_i |M_F|^2$

In a traditional parton shower, you would face the following problem:

Existing parton showers are *not* really Markov Chains

Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to n^{th} branching $\propto 2^{n}n!$

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

 $2^{n}n! \rightarrow n!$

Giele, Kosower, Skands, PRD 84 (2011) 054003

+ Change "shower restart" to Markov criterion:

Given an *n*-parton configuration, "ordering" scale is

 $Q_{\text{ord}} = min(Q_{E1}, Q_{E2}, \dots, Q_{En})$

Unique restart scale, independently of how it was produced

+ Matching: $n! \rightarrow n$

Given an *n*-parton configuration, its phase space weight is:

 $|M_n|^2$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

+ **Sector** antennae

 \rightarrow I term at *any* order

Larkosi, Peskin, Phys. Rev. D81 (2010) 054010 Lopez-Villarejo, Skands, JHEP 1111 (2011) 150 Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Approximations

Q: How well do showers do?

Exp: Compare to data. Difficult to interpret; all-orders cocktail including hadronization, tuning, uncertainties, etc

Th: Compare products of splitting functions to full tree-level matrix elements

Plot distribution of Log₁₀(PS/ME)

Dead Zone: I-2% of phase space have no strongly ordered paths leading there*

*fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

$2 \rightarrow 4$

Generate Branchings without imposing strong ordering

P. Sk

Better Approximations

Distribution of Log₁₀(PS_{LO}/ME_{LO}) (inverse ~ matching coefficient)

+ Matching (+ full colour)

SPEED : milliseconds / Event

MS/EVENT			Matched through:		
Monte Carlo	Strategy	Z→3	Z→4	Z→5	Z→6
Pythia 8 Initialization time ~ 0	TS	0.22	$Z \rightarrow qq (q=udscb) + shower.$ Matched and unweighted. Hadronization off gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory		
Vincia (sector, Q _{match} = 5 GeV) Initialization time ~ 0	GKS	0.26	0.50	1.40	6.70
Sherpa (Q _{match} = 5 GeV)	CKKW (expect similar	5.15*	53.00*	220.00*	400.00*
Initialization time =	scaling for MLM)	1.5 minutes	7 minutes	22 minutes	2.2 hours

Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

<u>Efficient Matching with Sector Showers</u> J. Lopez-Villarejo & PS : JHEP 1111 (2011) 150

Uncertainties

Uncertainty Variations

A result is only as good as its uncertainty

- Normal procedure:
 - Run MC 2N+1 times (for central + N up/down variations)
 - Takes 2N+1 times as long
 - + uncorrelated statistical fluctuations

Automate and do everything in one run

- VINCIA: all events have weight = I
- Compute unitary alternative weights on the fly
 - \rightarrow sets of alternative weights representing variations (all with $\langle w \rangle = I$) Same events, so only have to be hadronized/detector-simulated ONCE!

MC with Automatic Uncertainty Bands

Uncertainties

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-color treatments

+ Matching

Differences explicitly matched out

(Up to matched orders)

(Can in principle also include variations of matching scheme...)

	Weight		
Nominal	I		
Variation	$P_2 = \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$		

+ Unitarity

For each *failed* branching:

$$P_{2;no} = 1 - P_2 = 1 - \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$$

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of renormalization scale (no matching)

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of "finite terms" (no matching)

Putting it Together

VinciaMatching:order = 0

VinciaMatching:order = 3

VINCIA STATUS

NEXT STEPS

MULTI-LEG ONE-LOOP MATCHING (WITH L. HARTGRING & E. LAENEN, NIKHEF)

Helicity-dependent Showers

(with A. Larkoski, SLAC, & J. Lopez-Villarejo, CERN)

→ INITIAL-STATE SHOWERS

(with W. Giele, D. Kosower, S. Mrenna, M. Ritzmann)

Conclusions

- QCD Phenomenology is witnessing a rapid evolution: LO & NLO matching, better showers, tuning, interfaces ...
 - Driven by demand for high precision in complex LHC environment with huge phase space
- BSM Physics
 - Generally relies on chains of tools (MC4BSM)
 - Sufficient to reach O(10%) accuracy, with hard work, though must be careful with scale hierarchies, width effects, decay distributions, ...
 - Next machine is a long way off → must strive to build capacity for yet higher precision, to get max from LHC data.
- Ultimate limit set by solutions to pQCD (getting better) and then the really hard stuff
 - Like Hadronization, Underlying Event, Diffraction, ... (& BSM equivalents?)
 - For which fundamentally new ideas may be needed

For more, see the MCnet Review: General-purpose event generators for LHC physics : arXiv:1101.2599

Backup Slides

Simple Solution

Generate Trials without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space

Overcounting removed by matching

(revert to strong ordering beyond matched multiplicities)

LEP event shapes

PYTHIA 8 already doing a very good job

VINCIA adds uncertainty bands + can look at more exclusive observables?

Multijet resolution scales

 y_{45} = scale at which 5th jet becomes resolved ~ "scale of 5th jet"

4-Jet Angles

4-jet angles

Sensitive to polarization effects

Good News

VINCIA is doing reliably well

Non-trivial verification that shower+matching is working, etc.

Higher-order matching needed?

PYTHIA 8 already doing a very good job on these observables

Interesting to look at more exclusive observables, but which ones?