Monte Carlo Methods

Peter Skands

CERN - Dept of Theoretical Physics

Topics

Lecture I:

Numerical Integration Monte Carlo methods Importance Sampling The Veto Algortihm

+ This afternoon Practical Exercises: PYTHIA 8 kickstart (check the instructions)

Lecture 2:

Application of these methods to simulations of particle physics: Monte Carlo Event Generators

Why Integrals?

Scattering Experiments

LHC detector Cosmic-Ray detector Neutrino detector X-ray telescope
\rightarrow Integrate interaction cross sections over specific regions

Predicted number of counts
 = integral over solid angle
 $$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

Differential solid angle element

$$
\mathrm{d} \Omega=\sin \theta \mathrm{d} \theta \mathrm{~d} \phi
$$

Differential scattering cross section $\mathrm{d} \sigma$ (\sim differential scattering probability / interaction probability / ...)

Particle Physics Example

ALICE : One of the 4 experiments at the Large Hadron Collider at CERN

\longrightarrow More complicated integrals ...

Why Numerical?

Let's look at something simpler ...

14 Jun 2000:
4-jet event in ALEPH at LEP
(a Higgs
candidate)

Now compute the
backgrounds ...

Why Numerical?

Part of $Z \rightarrow 4$ jets ..

5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-gluon-gluon-antiquark at leading and subleading colour, A_{4}^{0} and \tilde{A}_{4}^{0} and quark-antiquark-quark-antiquark for non-identical quark flavours B_{4}^{0} as well as the identical-flavour-only contribution C_{4}^{0}. The quark-antiquark-quark-antiquark final state with identical quark flavours is thus described by the sum of antennae for non-identical flavour and identical-flavour-only. The antennae for the $q g g \bar{q}$ final state are:

$$
\begin{align*}
A_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & a_{4}^{0}(1,3,4,2)+a_{4}^{0}(2,4,3,1) \tag{5.27}\\
\tilde{A}_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & \tilde{a}_{4}^{0}(1,3,4,2)+\tilde{a}_{4}^{0}(2,4,3,1)+\tilde{a}_{4}^{0}(1,4,3,2)+\tilde{a}_{4}^{0}(2,3,4,1), \\
a_{4}^{0}(1,3,4,2)= & \frac{1}{s_{1234}}\left\{\frac{1}{2 s_{13} s_{24} s_{34}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+s_{14}^{2}+s_{23}^{2}\right]\right. \\
& +\frac{1}{2 s_{13} s_{24} s_{134} s_{234}}\left[3 s_{12} s_{34}^{2}-4 s_{12}^{2} s_{34}+2 s_{12}^{3}-s_{34}^{3}\right] \\
& +\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right] \\
& +\frac{3}{2 s_{13} s_{24}}\left[2 s_{12}+s_{14}+s_{23}\right]+\frac{1}{s_{13} s_{34}}\left[4 s_{12}+3 s_{23}+2 s_{24}\right] \\
& +\frac{1}{s_{13} s_{134}^{2}}\left[s_{12} s_{34}+s_{23} s_{34}+s_{24} s_{34}\right] \\
& +\frac{1}{s_{13} s_{134} s_{234}}\left[3 s_{12} s_{24}+6 s_{12} s_{34}-4 s_{12}^{2}-3 s_{24} s_{34}-s_{24}^{2}-3 s_{34}^{2}\right] \\
& +\frac{1}{s_{13} s_{134}}\left[-6 s_{12}-3 s_{23}-s_{24}+2 s_{34}\right] \\
& +\frac{1}{s_{24} s_{34} s_{134}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+2 s_{14} s_{23}+s_{14}^{2}+s_{23}^{2}\right] \\
& +\frac{1}{s_{24} s_{134}}\left[-4 s_{12}-s_{14}-s_{23}+s_{34}\right]+\frac{1}{s_{34}^{2}}\left[s_{12}+2 s_{13}-2 s_{14}-s_{34}\right] \\
& +\frac{1}{s_{34}^{2} s_{134}^{2}}\left[2 s_{12} s_{14}^{2}+2 s_{14}^{2} s_{23}+2 s_{14}^{2} s_{24}\right]-\frac{2 s_{12}^{2} s_{14} s_{24}}{s_{34}^{2} s_{134} s_{234}} \\
& +\frac{1}{s_{34}^{2} s_{134}}\left[-2 s_{12} s_{14}-4 s_{14} s_{24}+2 s_{14}^{2}\right] \\
& +\frac{1}{s_{34} s_{134} s_{234}}\left[-2 s_{12} s_{14}-4 s_{12}^{2}+2 s_{14} s_{24}-s_{14}^{2}-s_{24}^{2}\right] \\
& +\frac{1}{s_{34} s_{134}}\left[-8 s_{12}-2 s_{23}-2 s_{24}\right]+\frac{1}{s_{134}^{2}}\left[s_{12}+s_{23}+s_{24}\right] \\
& \left.+\frac{3}{2 s_{134} s_{234}}\left[2 s_{12}+s_{14}-s_{24}-s_{34}\right]+\frac{1}{2 s_{134}}+\mathcal{O}(\epsilon)\right\}
\end{align*}
$$

$$
\begin{aligned}
\tilde{a}_{4}^{0}(1,3,4,2)= & \frac{1}{s_{1234}}\left\{\frac{1}{s_{13} s_{24} s_{134} s_{234}}\left[\frac{3}{2} s_{12} s_{34}^{2}-2 s_{12}^{2} s_{34}+s_{12}^{3}-\frac{1}{2} s_{34}^{3}\right]\right. \\
& +\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right] \\
& +\frac{s_{12}^{3}}{+}\left[\underline{1} s_{10} c_{14}+c^{2}\right\rceil
\end{aligned}
$$

This is one of the simplest processes ... computed at lowest order in the theory.

$$
+\frac{s_{13} s_{134} s_{234}}{s_{13} s_{134}\left(s_{13}+s_{23}\right)}\left[s_{12} s_{24}+s_{12} s_{34}+2 s_{12}^{2}\right]
$$

Now compute and add the quantum

corrections ...

$$
\begin{aligned}
& +\frac{1}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{14}+s_{24}\right)\left(s_{13}+s_{14}\right)} \\
& +\frac{1}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{13}+s_{14}\right)}\left[s_{12} s_{24}+2 s_{12}^{2}\right] \\
& +\frac{1}{1}\left\lceil s_{12} s_{23}+2 s_{12}^{2}\right\rceil
\end{aligned}
$$

Then maybe worry about simulating the detector too ...

[^0]
Numerical Integration

Riemann Sums

Numerical Integration in 1D

Midpoint (rectangular) Rule:

Fixed-Grid n-point
Quadrature Rules

Divide into N "bins" of size Δ
Approximate $f(x) \approx$ constant in each bin Sum over all rectangles inside your region

I function evaluation per bin

Numerical Integration in 1D

Trapezoidal Rule:

Fixed-Grid n-point
Quadrature Rules
Approximate $f(x) \approx$ linear in each bin Sum over all trapeziums inside your region

Numerical Integration in 1D

Simpson's Rule:

Fixed-Grid n-point
Quadrature Rules

Approximate $\mathrm{f}(\mathrm{x}) \approx$ quadratic in each bin Sum over all "Simpsons" inside your region

3 function evaluations per bin

Convergence Rate

The most important question:

How long do I have to wait?
How many evaluations do I need to calculate for a given precision?

Uncertainty (after n evaluations)	$n_{\text {neval }} /$ bin	Approx Conv. Rate (in ID)
Trapezoidal Rule (2-point)	2	$\mathrm{I} / \mathrm{N}^{2}$
Simpson's Rule (3-point)	3	$\mathrm{I} / \mathrm{N}^{4}$
... m-point (Gauss quadrature)	m	$\mathrm{I} / \mathrm{N}^{2 \mathrm{~m}-1}$

See, e.g., Numerical Recipes
See, e.g., F. James, "Monte Carlo
Theory and Practice"

Higher Dimensions

m-point rule in I dimension

... in 2 dimensions

E.g., to evaluate a 12 -point rule in 10 dimensions, need 1000 billion evaluations per bin

Convergence Rate

+ Convergence is slower in higher Dimensions!

\rightarrow More points for less precision

Uncertainty (after n evaluations)	$n_{\text {eval }} /$ bin	Approx Conv. Rate (in D dim)
Trapezoidal Rule (2-point)	2^{D}	$\mathrm{I} / \mathrm{n}^{2 / D}$
Simpson's Rule (3-point)	3^{D}	$\mathrm{I} / \mathrm{n}^{4 / D}$
... m-point (Gauss rule)	m^{D}	$\mathrm{I} / \mathrm{n}^{(2 \mathrm{~m}-\mathrm{I}) / \mathrm{D}}$

See, e.g., Numerical Recipes
See, e.g., F. James, "Monte Carlo Theory and Practice"

A Monte Carlo technique: is any technique making use of random numbers to solve a problem

Convergence:

Calculus: $\{A\}$ converges to B if an n exists for which $\left|A_{i>n}-B\right|<\varepsilon$, for any $\varepsilon>0$

Monte Carlo: $\{A\}$ converges to B if n exists for which the probability for $\left|A_{i>n}-B\right|<\varepsilon$, for any $\varepsilon>0$, is $>\mathrm{P}$, for any $\mathrm{P}[0<\mathrm{P}<1]$
"This risk, that convergence is only given with a certain probability, is inherent in Monte Carlo calculations and is the reason why this technique was named after the world's most famous gambling casino. Indeed, the name is doubly appropriate because the style of gambling in the Monte Carlo casino, not to be confused with the noisy and tasteless gambling houses of Las Vegas and Reno, is serious and sophisticated."
F. James, "Monte Carlo theory and practice", Rept. Prog. Phys. 43 (1980) 1145

Random Numbers and Monte Carlo

Example I: simple function (=constant); complicated boundary

Example: you want to know the area of this

 shape:Now get a few friends, some balls, and throw random shots inside the circle
(PS: be careful to make your shots truly random)

Count how many shots hit the shape inside and how many miss

Random Numbers

I will not tell you how to write a Random-number generator. (For that, see the references at the end.)

Instead, I assume that you can write a computer code and link to a random-number generator, from a library
E.g., ROOT includes one that you can use if you like.

PYTHIA also includes one

From the PYTHIA 8 HTML documentation, under "Random Numbers":

Random numbers R uniformly distributed in $0<R<1$ are obtained with Pythia8: :Rndm::flat();

+ Other methods for exp, x*exp, ID Gauss, 2D Gauss.

Random Numbers and Monte Carlo

Example 2: complicated function; simple boundary

The integral is then \approx

Start from overestimate,

$$
f_{\max }
$$

Generate uniformly distributed random points between a and $\mathrm{b} \quad \frac{f\left(x_{i}\right)}{f_{\text {max }}}=P_{\text {hit }}$

Justification

I. Law of large numbers

For a function, f, of random variables, x_{i},

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\substack{i=1 \\ \text { Monte Carlo Estimate }}}^{n} f\left(x_{i}\right)=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x
$$

For infinite n:
Monte Carlo is a consistent estimator

2. Central limit theorem

The sum of n independent random variables (of finite expectations and variances) is asymptotically Gaussian
(no matter how the individual random variables are distributed)

For finite n :
The Monte Carlo estimate is Gauss distributed around the true value

Convergence

MC = Monte Carlo
MC convergence is Stochastici $\frac{1}{\sqrt{n}}$ in any dimension

Uncertainty (after n evaluations)	$n_{\text {eval }} /$ bin	Approx Conv. Rate (in ID)	Approx Conv. Rate (in D dim)
Trapezoidal Rule (2-point)	2^{D}	$1 / n^{2}$	$1 / \mathrm{n}^{2 / D}$
Simpson's Rule (3-point)	3^{D}	$1 / \mathrm{n}^{4}$	$1 / \mathrm{n}^{4 / \mathrm{D}}$
... m-point (Gauss rule)	m^{D}	$1 / \mathrm{n}^{2 \mathrm{~m}-1}$	$\mathrm{I} / \mathrm{n}^{(2 \mathrm{~m}-\mathrm{I}) / \mathrm{D}}$
Monte Carlo	I	$1 / \mathrm{n}^{1 / 2}$	$1 / \mathrm{n}^{1 / 2}$

[^1]
Importance Sampling

Peaked Functions

Precision on integral dominated by the points with $f \approx f_{\text {max }}$ (i.e., peak regions)
\rightarrow slow convergence if high, narrow peaks

Stratified Sampling

Functions: Breit-Wigner

\rightarrow Make it twice as
likely to throw points in the peak

Choose:

For: | $[0,1]$ | \rightarrow Region A |
| ---: | :--- |
| $[1,2]$ | \rightarrow Region B |
| $6 * R_{1} \in[2,4]$ | \rightarrow Region C |
| $[4,5]$ | \rightarrow Region D |
| $0:-0$ | $[5,6]$ |

\rightarrow faster convergence for same number of function evaluations

Adaptive Sampling

\rightarrow Can even design algorithms that do this automatically as they run
(not covered here)
\rightarrow Adaptive sampling

Importance Sampling

Functions: Breit-Wigner

\rightarrow or throw points according to some smooth peaked function for which you have, or can construct, a random number generator (here: Gauss)
E.g.,VEGAS algorithm, by G. Lepage

Why does this work?

I)You are inputting knowledge: obviously need to know where the peaks are to begin with ... (say you know, e.g., the location and width of a resonance)
2)Stratified sampling increases efficiency by combining n-point quadrature with the MC method, with further gains from adaptation
3)Importance sampling:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} \frac{f(x)}{g(x)} \mathrm{d} G(x)
$$

Effectively does flat MC with changed integration variables

Fast convergence if

$$
f(x) / g(x) \approx 1
$$

The Veto Algorithm

How we do Monte Carlo

Take your system

Set of radioactive nuclei
Set of hard scattering processes
Set of resonances that are going to decay

Set of particles coming into your detector
Set of cosmic photons traveling across the galaxy
Set of molecules

How we do Monte Carlo

Take your system

Generate a "trial" (event/decay/interaction/...)
Not easy to generate random numbers distributed according to exactly the right distribution?
May have complicated dynamics, interactions ...
\rightarrow use a simpler "trial" distribution

Flat with some stratification
Or importance sample with simple overestimating function (for which you can generate random \#s)

How we do Monte Carlo

Take your system

Generate a "trial" (event/decay/interaction/...)

Accept trial with probability $f(x) / g(x)$
$f(x)$ contains all the complicated dynamics
$g(x)$ is the simple trial function
If accept: replace with new system state
If reject: keep previous system state
no dependence on g in final result only affects convergence rate

And keep going: generate next trial ...

How we do Monte Carlo

Take your system

Generate a "trial" (event/deca

 Accept trial with probability $f(x) / g(x)$ $f(x)$ contains all the complicated dynamics $g(x)$ is the simple trial functionIf accept: replace with new system st:
If reject: keep previous system state
no dependence on g in final result only affects convergence rate

Sounds deceptively simple,but ...
 with it, you can integrate

arbitrarily complicated functions (in particular chains of nested functions), over arbitrarily complicated regions, in arbitrarily many dimensions ...

And keep goingt generate next trial ...

Example: Number of students who will get hit by a car during the next 3 weeks

Complicated Function:

Time-dependent

Traffic density during day, week-days vs week-ends
(simulates non-trivial time evolution of system)
No two students are the same
Need to compute probability for each and sum
(simulates having several distinct types of "evolvers")

Multiple outcomes:

Hit \rightarrow keep walking, or go to hospital?
Multiple hits = Product of single hits, or more complicated?

Monte Carlo Approach

Approximate Traffic

Simple overestimate:
highest recorded density
of most careless drivers,

driving at highest recorded speed
etc. (If this becomes too slow (computing time), try more clever "stratifications", adaptations, and/or importance sampling)

Approximate Student

by most accident-prone Left- and Right-hand traffic student (overestimate)

Hit Generator

Off we go...

Throw random accidents according to:

Hit Generator

Trial Generator: (generate t_{e})

Simple
Overestimate
(Also generate trial x_{e}, uniformly in Kumasi)

Accept with probability

$$
\mathrm{P}_{\mathrm{accept}}=\frac{\alpha_{i}(x, t) \rho_{i}(x, t) \rho_{C}(x, t)}{\left(\alpha_{L, \max } N_{L}+\alpha_{R, \text { max }} N_{R}\right) \rho_{\mathrm{cmax}}}
$$

\rightarrow True integral = number of accepted hits (note: we didn't really treat multiple hits $\ldots \rightarrow$ Markov Chain)

Summary - Lecture 1

Quantum Scattering Problems are common to many areas of physics:
To compute expectation value of observable: integrate over phase space

Complicated functions \rightarrow Numerical Integration

High Dimensions \rightarrow Monte Carlo (stochastic) convergence is fastest + Additional power by stratification and/or importance sampling

Additional Bonus \rightarrow Veto algorithm \rightarrow direct simulation of arbitrarily complicated reaction chains \rightarrow next lecture

Recommended Reading

F. James
 Monte Carlo Theory and Practice Rept.Prog.Phys. 43 (1980) p. $1 / 45$

S.Weinzierl

Topical lectures given at the Research School Subatomic physics, Amsterdam, June 2000
Introduction to Monte Carlo Methods e-Print: hep-ph/0006269

S. Teukolsky, B. Flannery, W. Press, T.Vetterling Numerical Recipes (in fortran, c. ...) http://www.nr.com/

LHC@home 2.0

Test4Theory - A Virtual Atom Smasher

http://lhcathome2.cem.ch/

Over 400 billion simulated collision events

Test4Theory

I 0,000 Volunteers wanted a virtual atom smasher

(to help do high-energy theoretical-physics calculations)

Problem: Lots of different machine architectures

\rightarrow Use Virtualization (CernVM)
Provides standardized computing environment (in our case Scientific Linux) on any machine

Exact replica of our normal working environment \rightarrow no worries

Sending Jobs and Retrieving output

Using BOINC platform for volunteer clouds
But can also use other distributed computing resources

See Volunteer Clouds and citizen cyberscience for LHC physics, by the LHC@home 2.0 team, C.Aguado Sanchez et al., CHEP 20 IO, J.Phys.Conf.Ser. 33 I (20II) 062022.

Last 24 Hours: 2853 machines

See Volunteer Clouds and citizen cyberscience for LHC physics, by the LHC@home 2.0 team, C.Aguado Sanchez et al., CHEP 20 IO, J.Phys.Conf.Ser. 33 I (20II) 062022.

Last 24 Hours: 2853 machines

See Volunteer Clouds and citizen cyberscience for LHC physics, by the LHC@home 2.0 team, C.Aguado Sanchez et al., CHEP 20I0, J.Phys.Conf.Ser. 33 I (20II) 062022.

[^0]: + Additional Subleading Terms ..

[^1]: + can re-use previously generated points (\approx nesting)

