6th MC for BSM Workshop, Cornell, Ithaca, March 2012

MC Overview

Peter Skands

(CERN-TH)

Count what is Countable Measure what is Measurable
(and keep working up the beam)

THEORY

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

+ quark masses and value of $\alpha_{\text {s }}$

Perturbation Theory

Perturbation Theory

\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

\Rightarrow The Way of the Chicken
- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision $=$ higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD

\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision $=$ higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD
- Not everything gives leptons
- Need to be a lucky chicken ...

\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision $=$ higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD
- Not everything gives leptons
- Need to be a lucky chicken ...
- The unlucky chicken
- Put all its eggs in one basket and didn't solve QCD

\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision = higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD
- Not everything gives leptons
- Need to be a lucky chicken ...
- The unlucky chicken
- Put all its eggs in one basket and didn't solve QCD

Monte Carlo Generators

Calculate Everything \approx solve QCD \rightarrow requires compromise!
Improve Born-level perturbation theory, by including the 'most significant' corrections \rightarrow complete events \rightarrow any observable you want

Monte Carlo Generators

Calculate Everything \approx solve QCD \rightarrow requires compromise!
Improve Born-level perturbation theory, by including the 'most significant' corrections \rightarrow complete events \rightarrow any observable you want

1. Parton Showers
2. Matching
3. Hadronisation
4. The Underlying Event
5. Soft/Collinear Logarithms
6. Finite Terms, " K "-factors
7. Power Corrections (more if not IR safe)
8. ?
(+ many other ingredients: resonance decays, beam remnants, Bose-Einstein, ...)

Main Workhorses

HERWIG, PYTHIA and SHERPA intend to offer a convenient framework for LHC physics studies, but with slightly different emphasis:

PYTHIA (successor to JETSET, begun in 1978):

- originated in hadronization studies: the Lund string
- leading in development of multiple parton interactions
- pragmatic attitude to showers \& matching
- the first multipurpose generator: machines \& processes

HERWIG (successor to EARWIG, begun in 1984):

- originated in coherent-shower studies (angular ordering)
- cluster hadronization \& underlying event pragmatic add-on
- large process library with spin correlations in decays

SHERPA (APACIC++/AMEGIC++, begun in 2000):

- own matrix-element calculator/generator
- extensive machinery for CKKW matching to showers
- PYTHIA-like MPI model + HERWIG-like hadronization model

Main Workhorses

HERWIG, PYTHIA and SHERPA intend to offer a convenient framework for LHC physics studies, but with slightly different emphasis:

PYTHIA (successor to JETSET, begun in 1978):

- originated in hadronization studies: the Lund string
- leading in development of multiple parton interactions
- pragmatic attitude to showers \& matching
- the first multipurpose generator: machines \& processes

HERWIG (successor to EARWIG, begun in 1984):

- originated in coherent-shower studies (angular ordering)
- cluster hadronization \& underlying event pragmatic add-on
- large process library with spin correlations in decays

SHERPA (APACIC++/AMEGIC++, begun in 2000):

- own matrix-element calculator/generator
- extensive machinery for CKKW matching to showers

Bremssthahlung

Charges Stopped

$$
\because \% \text { Associated field }
$$

Bremsstrahlung

The harder they stop, the harder the fluctations that continue to become strahlung

Bremsstrahlung

Conformal QCD (a.k.a. Bjorken scaling)

Rate of bremsstrahlung jets mainly depends on the RATIO of the jet p_{T} to the "hard scale"

Soft/Collinear enhancements DIVERGENT for $p_{T} \ll m_{x}$

See, e.g.,
Plehn, Rainwater, PS: PLB645(2007)217
Plehn, Tait: 0810.2919 [hep-ph] Alwall, de Visscher, Maltoni: JHEP 0902(2009)017

Computing Bremsstrahlung

1. Fixed-order QCD

Perturbation theory must be valid
$\rightarrow \alpha_{\mathrm{s}}$ must be small
\rightarrow All $Q_{i} \gg \Lambda_{Q C D}$

Single-scale: abensence of enhancements from soft/collinear singular (conformal) dynamics

$$
\rightarrow \text { All } Q_{i} / Q_{\mathrm{j}} \approx 1
$$

\rightarrow All resolved scales >> $\Lambda_{\text {QCD }}$ AND no large hierarchies

Fixed-Order QCD

All resolved scales $\gg \Lambda_{Q C D}$ AND no large hierarchies

Trivially untrue for QCD
We're colliding, and observing, hadrons \rightarrow small scales
We want to consider high-scale processes \rightarrow large scale differences
\rightarrow A Priori, no perturbatively calculable observables in hadron-hadron collisions

Resummed QCD

All resolved scales $\gg \Lambda_{\text {QCD }}$ AND no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales
We want to consider high-scale processes \rightarrow large scale differences
\rightarrow A Priori, no perturbatively calcisiable observables in hadron-hadron collisions

Resummed QCD

All resolved scales >> $\Lambda_{\text {QCD }}$ AND no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales
We want to consider high-scale processes \rightarrow large scale differences

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections
\rightarrow Initial-State Showers in MC

FFs: needed to compute (semi-)exclusive cross sections
\rightarrow Final-State Showers (+ hadronization) in MC

Resummed QCD

All resolved scales >> $\Lambda_{Q C D}$ AND no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales
We want to consider high-scale processes \rightarrow large scale differences

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections
\rightarrow Initial-State Showers in MC

FFs: needed to compute (semi-)exclusive cross sections
\rightarrow Final-State Showers (+ hadronization) in MC

All resolved scales $\gg \Lambda_{\text {QCD }}$ AND X Infrared Safe

Bremsstrahlung

$$
\mathrm{d} \sigma_{X}=\ldots
$$

Bremsstrahlung

$$
\begin{aligned}
& \mathrm{d} \sigma_{X}=\ldots \\
& \mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}}
\end{aligned}
$$

Bremsstrahlung

$$
\begin{aligned}
& \mathrm{d} \sigma_{X}=\ldots \\
& \mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}}
\end{aligned}
$$

Bremsstrahlung

$$
\begin{aligned}
& \mathrm{d} \sigma_{X}=\ldots \\
& \mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \\
& \mathrm{~d} \sigma_{X+2} \sim 2 g^{2} \mathrm{~d} \sigma_{X+1} \frac{\mathrm{~d} s_{a 2}}{s_{a 2}} \frac{\mathrm{~d} s_{2 b}}{s_{2 b}}
\end{aligned}
$$

Bremsstrahlung

$$
\begin{aligned}
& \mathrm{d} \sigma_{X}=\ldots \\
& \mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \\
& \mathrm{~d} \sigma_{X+2} \sim 2 g^{2} \mathrm{~d} \sigma_{X+1} \frac{\mathrm{~d} s_{a 2}}{s_{a 2}} \frac{\mathrm{~d} s_{2 b}}{s_{2 b}}
\end{aligned}
$$

Bremsstrahlung

$$
\begin{aligned}
& \mathrm{d} \sigma_{X}=\ldots \\
& \mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \\
& \mathrm{~d} \sigma_{X+2} \sim 2 g^{2} \mathrm{~d} \sigma_{X+1} \frac{\mathrm{~d} s_{a 2}}{s_{a 2}} \frac{\mathrm{~d} s_{2 b}}{s_{2 b}} \\
& \mathrm{~d} \sigma_{X+3} \sim 2 g^{2} \mathrm{~d} \sigma_{X+2} \frac{\mathrm{~d} s_{a 3}}{s_{a 3}} \frac{\mathrm{~d} s_{3 b}}{s_{3 b}}
\end{aligned}
$$

Bremsstrahlung

$$
\begin{aligned}
& \mathrm{d} \sigma_{X}=\ldots \\
& \mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \\
& \mathrm{~d} \sigma_{X+2} \sim 2 g^{2} \mathrm{~d} \sigma_{X+1} \frac{\mathrm{~d} s_{a 2}}{s_{a 2}} \frac{\mathrm{~d} s_{2 b}}{s_{2 b}} \\
& \mathrm{~d} \sigma_{X+3} \sim 2 g^{2} \mathrm{~d} \sigma_{X+2} \frac{\mathrm{~d} s_{a 3}}{s_{a 3}} \frac{\mathrm{~d} s_{3 b}}{s_{3 b}}
\end{aligned}
$$

This gives an approximation to infinite-order tree-level cross sections (here "DLA")

Bremsstrahlung

$$
\begin{aligned}
& \mathrm{d} \sigma_{X}=\ldots \\
& \mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \\
& \mathrm{~d} \sigma_{X+2} \sim 2 g^{2} \mathrm{~d} \sigma_{X+1} \frac{\mathrm{~d} s_{a 2}}{s_{a 2}} \frac{\mathrm{~d} s_{2 b}}{s_{2 b}} \\
& \mathrm{~d} \sigma_{X+3} \sim 2 g^{2} \mathrm{~d} \sigma_{X+2} \frac{\mathrm{~d} s_{a 3}}{s_{a 3}} \frac{\mathrm{~d} s_{3 b}}{s_{3 b}}
\end{aligned}
$$

This gives an approximation to infinite-order tree-level cross sections (here "DLA")

But something is not right ...

Total cross section would be infinite ...

Loops and Legs

Summation

Resummation

$$
\begin{aligned}
& \mathrm{d} \sigma_{X}=\ldots \\
& \mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \\
& \mathrm{~d} \sigma_{X+2} \sim 2 g^{2} \mathrm{~d} \sigma_{X+1} \frac{\mathrm{~d} s_{a 2}}{s_{a 2}} \frac{\mathrm{~d} s_{2 b}}{s_{2 b}} \\
& \mathrm{~d} \sigma_{X+3} \sim 2 g^{2} \mathrm{~d} \sigma_{X+2} \frac{\mathrm{~d} s_{a 3}}{s_{a 3}} \frac{\mathrm{~d} s_{3 b}}{s_{3 b}}
\end{aligned}
$$

Unitarity

KLN:

$$
\text { Virt }=-\operatorname{Int}(\text { Tree })+F
$$

In $L L$ showers : neglect F

Imposed by Event evolution:

When (X) branches to $(X+1)$:
Gain one $(X+I)$. Loose one (X).

$$
\sigma_{X+1}(Q)=\sigma_{X ; i n c l}-\sigma_{X ; \operatorname{excl}}(Q)
$$

\rightarrow includes both real and virtual corrections (in LL approx)

Bootstrapped PQCD

Resummation

Bootstrapped PQCD

Resummation

Matching

- A (Complete Idiot's) Solution - Combine

1. $[\mathrm{X}]_{\text {ME }}+$ showering
2. $[\mathrm{X}+1 \text { jet }]_{\text {ME }}+$ showering
3. ...

Run generator for X (+ shower)
Run generator for $\mathrm{X}+1$ (+ shower)
Run generator for ... (+ shower)
Combine everything into one sample

Matching

- A (Complete Idiot's) Solution - Combine

1. $[\mathrm{X}]_{\text {ME }}+$ showering
2. $[\mathrm{X}+1 \text { jet }]_{\text {ME }}+$ showering
3. ...

- Doesn't work

Run generator for X (+ shower)
Run generator for X+1 (+ shower)
Run generator for ... (+ shower)
Combine everything into one sample

- $[X]+$ shower is inclusive
- $[\mathrm{X}+1]+$ shower is also inclusive

The Matching Game

- S. Shower off X already contains LL part of all $X+n$

$$
\mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}}
$$

- S. Adding back full ME for $X+n$ would be overkill

The Matching Game

- S. Shower off X already contains LL part of all $X+n$

$$
\mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}}
$$

- S. Adding back full ME for $X+n$ would be overkill

Add event samples, with modified weights

$$
\begin{array}{ll}
w_{X}=\left|M_{X}\right|^{2} & + \text { Shower } \\
w_{X+1}=\left|M_{X+1}\right|^{2}-\text { Shower }\left\{w_{X}\right\} & + \text { Shower } \\
w_{X+n}=\left|M_{X+n}\right|^{2}-\text { Shower }\left\{w_{X}, w_{X+1}, \ldots, w_{X+n-1}\right\} & + \text { Shower }
\end{array}
$$

HERWIG: for $\mathrm{X}+\mathrm{I}$ @ LO (Shower = 0 in dead zone of angular-ordered shower)
MC@NLO: for $\mathrm{X}+\mathrm{I}$ @ LO and $\mathrm{X} @ \mathrm{NLO}$ (note: correction can be negative)
CKKW \& MLM : for all X+n @ LO (force Shower = 0 above "matching scale" and add ME there) SHERPA (CKKW), ALPGEN (MLM + HW/PY), MADGRAPH (MLM + HW/PY),

PYTHIA8 (CKKW-L from LHE files), ...

The Matching Game

- \mathcal{G}. Shower off X already contains LL part of all $X+n$
$\mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}}$
-f. Adding back full ME for $X+n$ would be overkill

The Matching Game

-.S. Shower off X already contains LL part of all $X+n$

$$
\mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}}
$$ for $X+n$ would be overkill

Solution 2: "Multiplicative"

One event sample

$$
w_{X}=\left|M_{X}\right|^{2} \quad+\text { Shower }
$$

Make a "course correction" to the shower at each order

$$
\begin{array}{ll}
R_{X+1}=\left|M_{X+1}\right|^{2} / \text { Shower }\left\{w_{X}\right\} & + \text { Shower } \\
R_{X+n}=\left|M_{X+n}\right|^{2} / \text { Shower }\left\{w_{X+n-1}\right\} & + \text { Shower }
\end{array}
$$

PYTHIA: for $\mathrm{X}+\mathrm{I}$ @ LO (for color-singlet production and ~all SM and BSM decay processes)

VINCIA: for all $\mathrm{X}+\mathrm{n}$ @ LO and X @ NLO (only worked out for decay processes so far)

SPEED : milliseconds / Event

MS/EVENT

Monte Carlo

Strategy

$$
Z \rightarrow 3
$$

$$
Z \rightarrow 4
$$

$$
Z \rightarrow 5
$$

$$
Z \rightarrow 6
$$

```
        Pythia 8
    Initialization time ~0
Vincia (sector, \(\mathrm{Q}_{\text {mactch }}=5 \mathrm{GeV}\) )
    Initialization time \(\sim 0\)
Sherpa \(\left(Q_{\text {match }}=5 \mathrm{GeV}\right)\)
    Initialization time \(=\)
```

TS	0.22	$\begin{gathered} \mathrm{Z} \rightarrow \mathrm{qq}(\mathrm{q}=u d s c b)+\text { shower. } \\ \text { Matched and unweighted. Hadronization off } \\ \text { gforrtan/g++ with gcc v.4.4-O2 on single } 3.06 \text { GHz processor with } 4 G B \\ \text { memory } \end{gathered}$		
GKS	0.26	0.50	1.40	6.70
CKKW	5.15*	53.00*	220.00*	400.00*
$\underset{\text { cex }}{\substack{\text { (expect similar } \\ \text { scaling for MLM) }}}$	1.5 minutes	7 minutes	22 minutes	2.2 hours

Generator Versions: Pythia 6.425 (Perugia 201 I tune), Pythia 8.150, Sherpa I.3.0, Vincia I. 026 (without uncertainty bands, NLL/NLC=OFF)

Efficient Matching with Sector Showers

L.Lopez-Villarejo \& PS:JHEP IIII (201I) I50

Additional Sources of Particle Production

$$
\begin{gathered}
\mathrm{Q}_{\mathrm{F}} \gg \Lambda_{\mathrm{QCD}} \\
\mathrm{ME}+\mathrm{ISR} / \mathrm{FSR} \\
+ \text { perturbative MPI }
\end{gathered}
$$

$$
\begin{gathered}
+ \\
\text { Stuff at } \\
\mathrm{Q}_{\mathrm{F}} \sim \Lambda_{\mathrm{OCD}}
\end{gathered}
$$

Multiple (perturbative) parton-parton Interactions occurring in each single hadron-hadron collision \rightarrow underlying event
(distinct from pile-up caused by high lumi)

Additional Sources of Particle Production

$$
\begin{gathered}
\mathrm{Q}_{\mathrm{F}} \gg \Lambda_{\mathrm{QCD}} \\
\mathrm{ME}+\mathrm{ISR} / \mathrm{FSR} \\
+ \text { perturbative MPI }
\end{gathered}
$$

Multiple (perturbative) parton-parton Interactions occurring in each single hadron-hadron collision \rightarrow underlying event
(distinct from pile-up caused by high lumi)

Hadronization

Hadronization

The problem:

- Given a set of partons resolved at a scale of $\sim 1 \mathrm{GeV}$ (the shower + MPI cutoff), need a "mapping" from this set onto a set of on-shell colour-singlet hadronic states.
- I.e., a fully exclusive fragmentation function defined at $\mathrm{Q}_{\mathrm{Had}} \sim \mathrm{I} \mathrm{GeV}$

Hadronization

The problem:

- Given a set of partons resolved at a scale of $\sim 1 \mathrm{GeV}$ (the shower + MPI cutoff), need a "mapping" from this set onto a set of on-shell colour-singlet hadronic states.
- I.e., a fully exclusive fragmentation function defined at $\mathrm{Q}_{\mathrm{Had}} \sim \mathrm{I} \mathrm{GeV}$

MC models do this in three steps
I. Map partons onto continuum of highly excited hadronic states (called 'strings' or 'clusters')
2. Iteratively map strings/clusters onto discrete set of primary hadrons (string breaks / cluster splittings / cluster decays)
3. Sequential decays into secondary hadrons (e.g., rho > pi pi, Lambda > n pi0, pi0 > gamma gamma, ...)

Hadronization

The problem:

- Given a set of partons resolved at a scale of \sim I GeV (the shower + MPI cutoff), need a "mapping" from this set onto a set of on-shell colour-singlet hadronic states.
- I.e., a fully exclusive fragmentation function defined at $\mathrm{Q}_{\mathrm{Had}} \sim \mathrm{I} \mathrm{GeV}$

MC models do this in three steps
I. Map partons onto continuum of highly excited hadronic states (called 'strings' or 'clusters')
2. Iteratively map strings/clusters onto discrete set of primary hadrons (string breaks / cluster splittings / cluster decays)
3. Sequential decays into secondary hadrons (e.g., rho > pi pi, Lambda > n pi0, pi0 > gamma gamma, ...)

From Partons to Strings

From Partons to Strings

```
Short Distances ~ pQCD
```


Partons

Long Distances \sim Linear Confinement

Strings (Flux Tubes), Hadrons

$$
F(r) \approx \mathrm{const}=\kappa \approx 1 \mathrm{GeV} / \mathrm{fm} \quad \Longleftrightarrow \quad V(r) \approx \kappa r
$$

- Motivates a model:
- Separation of transverse and longitudinal degrees of freedom
- Simple description as I+I dimensional worldsheet - string with Lorentz invariant formalism

The (Lund) String Model

Map:

- Quarks > String Endpoints
- Gluons > Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break constant per unit area > AREA LAW

Gluon = kink on string, carrying energy and momentum

Simple space-time picture
 Details of string breaks more complicated

Conclusions

- QCD Phenomenology is witnessing a rapid evolution: LO \& NLO matching, better showers, tuning, interfaces ...
- Driven by demand for high precision in complex LHC environment with huge phase space
- BSM Physics
- Generally relies on chains of tools (MC4BSM)
- Sufficient to reach $\mathrm{O}(\mathrm{IO} \mathrm{\%})$ accuracy, with hard work, though must be careful with scale hierarchies, width effects, decay distributions, ...
- Next machine is a long way off \rightarrow must strive to build capacity for yet higher precision, to get max from LHC data.
- Ultimate limit set by solutions to pQCD (getting better) and then the really hard stuff
- Like Hadronization, Underlying Event, Diffraction, ... (\& BSM equivalents?)
- For which fundamentally new ideas may be needed

