Peter Skands CERN Theoretical Physics

Constraints on MC models from forward multiplicity observables

TOTEM Collaboration Meeting, Dec 6 2011, CERN

Terminology

$\sigma_{tot} \approx$		EXPERIMENT		THEORY MODELS
ELASTIC	₽₽→₽₽	QED+QCD	~	(*QED = ∞)
SINGLE DIFFRACTION	рр→р+gap+X	Fiducial region, identified proton, and/or observable gap	≠	SD model: Small gaps suppressed but not zero
DOUBLE DIFFRACTION	pp→X+gap+X		≠	DD model: Small gaps suppressed but not zero
INELASTIC NON-DIFFRACTIVE	pp→X (no gap)		¥	Large gaps suppressed but not zero

(+ multi-gap diffraction)

Min-Bias, Zero Bias, Single-Gap, etc.

- = Experimental trigger conditions (hardware-dependent)
- Corrected to hardware-independent reference conditions

"Theory" for Min-Bias?

Really = Model for ALL INELASTIC incl diffraction (model-dependent)

Impose model-independent reference conditions to suppress or enhance diffractive components

... in minimum-bias, we typically do not have a hard scale, wherefore *all* observables depend significantly on IR physics ... PS, "Tuning MC Generators: the Perugia tunes", PRD82(2010)074018

QCD Models

Multi-Parton Interactions

Color Flow in MC Models

"Planar Limit"

- Equivalent to $N_C \rightarrow \infty$: no color interference^{*}
- Rules for color flow:

For an entire cascade:

```
*) except as reflected by
the implementation of
QCD coherence effects in
the Monte Carlos via
angular or dipole ordering
```

Illustrations from: Nason + PS, PDG Review on *MC Event Generators*, 2012

Coherence of pQCD cascades \rightarrow not much "overlap" between strings \rightarrow planar approx pretty good LEP measurements in WW confirm this (at least to order 10% ~ 1/N_c²)

Color Connections

Each MPI (or cut Pomeron) exchanges color between the beams

The colour flow determines the hadronizing string topology

- Each MPI, even when soft, is a color spark
- Final distributions crucially depend on color space

Questions

Different models

Color Connections

Each MPI (or cut Pomeron) exchanges color between the beams

- The colour flow determines the hadronizing string topology
 - Each MPI, even when soft, is a color spark
 - Final distributions crucially depend on color space

Questions

Different models

make different ansätze

Color Reconnections?

Color Reconnections?

PYTHIA Models

PYTHIA Models

Diffraction (in PYTHIA 8)

Navin, arXiv:1005.3894

TOTEM Collaboration Meeting, Dec 6 2011, CERN

What Works*

*) if you use an up-to-date tune. Here comparing to PY6 default (~ Tune A) to show changes.

Underlying Event & Jet Shapes

PS: yes, we **should** update the PYTHIA 6 defaults (tune A) ...

What Kind of Works

*) if you use an up-to-date tune. Here comparing to PY6 default (~ Tune A) to show changes.

Minimum-Bias Multiplicities

(here showing as inclusive as possible)

2

PS: yes, we **should** update the PYTHIA 6 defaults (tune A)...

Some Pre-LHC Forward Constraints

UA5 up to $|\eta| < 5.0$

(only below 900 GeV) (only below 900 GeV) (only $dN/d\eta$, only at 1800 GeV) 1800 GeV ppbar 900 GeV pobar Minimum Bias Minimum Bias 900 GeV ppbar Minimum Bias ⁴⁵up/sp 10⁻¹ dN_{ch}/dŋ ٩ (UA5 NSD, |η| < 5.0, all p_) Charged Particle η Distribution (|η| < 3.5) Forward-Backward Correlation b_{en} vs Δη () 0.7 CDF LIAS UA5 Herwig++ (UE-EE-3-7000) Herwig++ (UE-EE-3-7000) Pythia 6 (350:P2011) Pythia 6 (350:P2011) Pythia 6 (350:P2011) 0.6 Pythia 6 (def) Pythia 8 Pythia 8 Pythia 6 (Z1) 10 Sherpa Sherpa Pythia 8 0.5 5 10 0.4 Forward-Backward Correlation 10-4 0.3 dN_{ch}/dn P(N_{ch}) Hoping for LHC measurements soon Definition of "NSD" not totally clear to me Exact trigger definition not totally clear to me 3 0.2 See Wraight & PS, EPJC71(2011) 10⁻⁵ CDF 1990 S2089246 UA5_1989_S1926373 UA5 1988 S1867512 Herwig++ 2.5.2, Pythia 6.426, Pythia 8.157, Sherpa 1.3.1 Herwig++ 2.5.2, Pythia 6.426, Pythia 8.157, Sherpa 1.3.1 Pythia 6.425, Pythia 8.153 0.1 2 1+ 100 Central gap size δη Ratio to CDF Ratio to UA5 Ratio to UA5 1.5 1.5 1.5 ATLAS, CMS Ratio not plotted TOTEM (for annoying technical reason) TOTEM ALICE **FMD** 0.5 0.5 0.5 2 50 100 2 4

CDF **VTPC** up to |η|<3.5

Plots from mcplots.cern.ch

UA5 up to $|\eta| < 5.0$

Forward-Backward Correlation

See, e.g., Wraight & PS, "Forward-Backward Correlations and Event Shapes as probes of Minimum-Bias Event Properties", EPJ C71 (2011) 1628

Components of b_{FB}

See, e.g., Wraight & PS, "Forward-Backward Correlations and Event Shapes as probes of Minimum-Bias Event Properties", EPJ C71 (2011) 1628

$$= \frac{\sigma(n_b, n_f)}{\sigma(n_b)\sigma(n_f)} = \frac{\langle n_b n_f \rangle - \langle n_f \rangle^2}{\langle n_f^2 \rangle - \langle n_f \rangle^2}$$

b

Diffraction → uncorrelated fluctuations

 \rightarrow expect to see higher correlation in diff-suppressed samples than in diff-enhanced ones

Figure 10: Inclusive *b* correlation distribution for tune DW minimum bias sub-processes. Lower pane: ratio to the distribution of the $low-p_{\perp}$ figure 8: Inclusive *b* correlation distribution for tune DW particle production mechanisms: $low-p_{\perp}$, hard process (HARD), radiative production (RAD) and multi-parton interactions (MPI). Lower pane: ratio to the low- p_{\perp} distribution.

Warning: Model-dependent examples, but illustrate the principle

LHCb Results shown at MPI, November 2011, DESY (Hamburg)

Charged multiplicity distribution in unbiased events, in 2.0<n<4.5

(also showed result with > 1 hard track \rightarrow less diffraction, could also be done by requiring high multiplicity)

Beyond η =4.5, we do not know what the distribution looks like

CMS Results shown at MPI, November 2011, DESY (Hamburg)

Forward energy flow

(this analysis also comes with several cuts/regions designed to enhance/suppress diffraction \rightarrow multi-dimensional constraints)

Summary

Monte Carlo Event Generators

Aim to describe complete event structure

The MPI that produce the underlying event (UE) in the **central** region also disturb the beam remnant in the **forward** region

→ correlations between central and fwd fragmentation

Current MC constraints sum inclusively over FWD region \rightarrow blind spot

If there are **big elephants** there, the central constraints would need to be thoroughly re-evaluated

Diffraction

Is not a big elephant for the UE or central physics program (mainly non-diff)

But important for fwd physics + all MCs in active development (Hard diffraction model in Pythia 8, POMWIG-type model in Herwig++, KMR model in Sherpa) \rightarrow need good constraints: \rightarrow study both diff-enhanced and diff-suppressed triggered samples