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Terminology

Min-Bias, Zero Bias, Single-Gap, etc.

= Experimental trigger conditions (hardware-dependent) 

Corrected to hardware-independent reference conditions 

“Theory” for Min-Bias?

Really = Model for ALL INELASTIC incl diffraction (model-dependent)

Impose model-independent reference conditions to suppress or enhance diffractive components

2

THEORY MODELS

ELASTIC  pp→pp

SINGLE DIFFRACTION

DOUBLE DIFFRACTION

INELASTIC NON-DIFFRACTIVE

 pp→p+gap+X

 pp→X+gap+X

 pp→X (no gap)

QED+QCD (*QED = ∞)

SD model: 
Small gaps suppressed but not zero

DD model:
Small gaps suppressed but not zero

Large gaps suppressed but not zero

σtot ≈ EXPERIMENT

Fiducial region,
identified proton,

and/or 
observable gap

~

≠

≠

≠

… in minimum-bias, we typically do not have a hard scale, wherefore all observables depend 
significantly on IR physics … 

MB hit

PS, “Tuning MC Generators: the Perugia tunes”, PRD82(2010)074018

(+ multi-gap diffraction)
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QCD Models

3

Quarks, Gluons
pQCD

2→2 (Rutherford) 

Hadrons
Optical Theorem

pp→pp

0 ∞5 GeVΛQCD

DijetsElastic Min-Bias

A) Start from pQCD. Extend towards Infrared.
HERWIG/JIMMY, PYTHIA, SHERPA, EPOS

Hard Pomeron?

B) Start from Optical Theorem & Unitarity. Extend towards Ultraviolet.
PHOJET, DPMJET, QGSJET, SIBYLL, … 

Pomerons: Diffraction
Cut Pomerons: Non-diffractive (soft)

Color Screening
Regularization of pQCD

Elastic & Diffractive
Treated as separate class

No predictivity

Unitarity
Multiple 2→2

(MPI)

A

B

Note: PHOJET & DPMJET use string fragmentation (from PYTHIA) → some overlap

PYTHIA uses string fragmentation, HERWIG & SHERPA use cluster fragmentation

Strings span 
entire rapidity 
region → 
Constraints in 
forward region 
impact global 
description.
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Bahr, Butterworth, Seymour: arXiv:0806.2949 [hep-ph]  

Multi-Parton Interactions

4

pQCD  
2→2

= Sum of

≈ Rutherford
(t-channel gluon)

!"#$%&'()*+,'*,-
./.,)&0.%
")&,'(12/)%

Becomes larger 
than total pp 
cross section? 

At p⊥ ≈ 5 GeV
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Lesson from 
bremsstrahlung in 
pQCD: divergences
→ fixed-order 
unreliable, but 
resummation → 
pQCD still ok 

(unitarity)

Dijet Cross Section
vs pT cutoff

→ Resum dijets?
Yes → MPI!

A) Start from pQCD. Extend towards Infrared.
HERWIG/JIMMY, PYTHIA, SHERPA

⇒ 

to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This affects the final-state activity in a
more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 → 2 scattering almost go on shell at low p⊥,
causing the differential cross sections to become very large, behaving roughly as

dσ2→2 ∝
dt

t2
∼ dp2

⊥
p4
⊥

. (1.13)

This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in σ2→2 but only once in σtot, and so
on. In the limit that all the interactions are independent and equivalent, one would have

σ2→2(p⊥min) = �n�(p⊥min) σtot , (1.14)

with �n�(p⊥min) giving the average of a Poisson distribution in the number of parton-parton
interactions above p⊥min per hadron-hadron collision,

Pn(p⊥min) = (�n�(p⊥min))
n exp (−�n�(p⊥min))

n!
. (1.15)

This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p⊥min → 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 → 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p⊥
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p⊥, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG

models, instead the uncorrelated estimate of �n� above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⊥ and
x, is color screening; if the wavelength ∼ 1/p⊥ of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⊥ → 0, hence leading to suppressed interactions. This
provides an infrared cutoff for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cutoff would be the proton size,
p⊥min ≈ �/rp ≈ 0.3 GeV ≈ ΛQCD, but empirically this appears to be far too low. In current
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Color Flow in MC Models

“Planar Limit”

Equivalent to NC→∞: no color interference*

Rules for color flow:

For an entire cascade:

6

Figure 1.1: Color development of a shower in e+e− annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay Υ→ ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably affect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order αem ln Q/me, or even of order αem ln Q/me ln Eγ/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut off below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not affected by it.

7

Illustrations from: Nason + PS, 
PDG Review on MC Event Generators, 2012

Figure 1.1: Color development of a shower in e+e− annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay Υ→ ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably affect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order αem ln Q/me, or even of order αem ln Q/me ln Eγ/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut off below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not affected by it.

7

String #1 String #2 String #3

Example: Z0 → qq

Coherence of pQCD cascades → not much “overlap” between strings 
→ planar approx pretty good

LEP measurements in WW confirm this (at least to order 10% ~ 1/Nc2 )

*) except as reflected by 
the implementation of 
QCD coherence effects in 
the Monte Carlos via 
angular or dipole ordering
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Color Connections

7

! The colour flow determines the hadronizing string topology 
•  Each MPI, even when soft, is a color spark 

•  Final distributions crucially depend on color space 

Que
sti

ons

Different models make different ansätze

Each MPI (or cut Pomeron) exchanges color between the beams

1

2

3

4

2

# of
strings

FWD

FWD

CTRL
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Color Connections

8

! The colour flow determines the hadronizing string topology 
•  Each MPI, even when soft, is a color spark 

•  Final distributions crucially depend on color space 

Que
sti

ons

Different models make different ansätze

Each MPI (or cut Pomeron) exchanges color between the beams

1

2

3

5

3

FWD

FWD

CTRL

# of
strings

Forward region (and forward-backward + forward-central correlations) 
sensitive to beam-remnant break-up!
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Color Reconnections?

9

Rapidity

NC → ∞

Multiplicity ∝ NMPI

Some ideas: 
Hydro? (EPOS)

E-dependent string parameters? (DPMJET)
“Color Ropes”?
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Color Reconnections?

10

Rapidity

Do the systems really form
and hadronize independently?

Multiplicity ∝ NMPI
<

Can Gaps be Created?

My view:
Universality is ok (a string is a string)

Problem is 3 ≠ ∞

More ideas: 
Coherent string formation?

Color reconnections?
String dynamics?

(challenge to separate from genuine diffraction)
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PYTHIA Models
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pT-ordered PYTHIA 6

pT-ordered PYTHIA 8

Q-ordered PYTHIA 6 Tune A DW(T)
D6(T)

Tune S0
Tune S0A

D…-Pro

S…-Pro

Pro-Q2O

ATLAS MC09
Perugia 0

(+ Variations)

Tune 1
2C
2M

4C, 4Cx
A1, AU1
A2, AU2

Q2-LHC ?

AMBT1
Z1, Z2

Perugia 2010

AUET2B?
Perugia 2011
(+ Variations)

2002 2006 2008 2009 2010 2011

A
DW, 

D6, ...  
S0, S0A MC09(c)

Pro-…, Perugia 0, 
Tune 1, 2C, 2M

AMBT1
Perugia 

2010
Perugia 

2011
Z1, Z2 4C, 4Cx

AUET2B, 
A2, AU2

LEP ✔ ✔ ✔ ✔ ✔

TeV MB ✔ ✔ ✔ ✔ ✔ (✔) ?

TeV UE ✔ ✔ ✔ ✔ ✔ ✔ (✔) ✔?

TeV DY ✔ ✔  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

LHC MB ✔ ✔ ✔ ✔ ?

LHC UE ✔ ✔ ✔

LHC data

Main Data Sets included in each Tune (no guarantee that all subsets ok)

(default)
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PYTHIA Models

12

pT-ordered PYTHIA 6

pT-ordered PYTHIA 8

Q-ordered PYTHIA 6 Tune A DW(T)
D6(T)

Tune S0
Tune S0A

D…-Pro

S…-Pro

Pro-Q2O

ATLAS MC09
Perugia 0

(+ Variations)

Tune 1
2C
2M

4C, 4Cx
A1, AU1
A2, AU2

Q2-LHC ?

AMBT1
Z1, Z2

Perugia 2010

AUET2B?
Perugia 2011
(+ Variations)

2002 2006 2008 2009 2010 2011

A
(default)

DW, 
D6, ...  

S0, S0A MC09(c)
Pro-…, Perugia 0, 

Tune 1, 2C, 2M
AMBT1

Perugia 
2010

Perugia 
2011

Z1, Z2 4C, 4Cx
AUET2B, 
A2, AU2

LEP ✔ ✔ ✔ ✔ ✔

TeV MB ✔ ✔ ✔ ✔ ✔ (✔) ?

TeV UE ✔ ✔ ✔ ✔ ✔ ✔ (✔) ✔?

TeV DY ✔ ✔  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

LHC MB ✔ ✔ ✔ ✔ ?

LHC UE ✔ ✔ ✔

LHC data

Main Data Sets included in each Tune (no guarantee that all subsets ok)

(default)
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Diffraction (in PYTHIA 8)

13

PYTHIA 8 Status
Diffraction

! Comparisons to PYTHIA 6 and PHOJET have been made
e.g. p⊥ distribution of single diffractive events
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Figure 13:Richard Corke (Lund University) January 2010 16 / 18

SD

and σel = σ2
tot/16πBel. The elastic slope parameter is parameterized by

Bel = BAB
el (s) = 2bA + 2bB + 4s� − 4.2 , (115)

with s given in units of GeV and Bel in GeV
−2

. The constants bA,B are bp = 2.3, bπ,ρ,ω,φ =

1.4, bJ/ψ = 0.23. The increase of the slope parameter with c.m. energy is faster than

the logarithmically one conventionally assumed; that way the ratio σel/σtot remains well-

behaved at large energies.

The diffractive cross sections are given by

dσsd(XB)(s)

dt dM2
=

g3IP

16π
βAIP β2

BIP

1

M2
exp(Bsd(XB)t) Fsd ,

dσsd(AX)(s)

dt dM2
=

g3IP

16π
β2

AIP βBIP
1

M2
exp(Bsd(AX)t) Fsd ,

dσdd(s)

dt dM2
1 dM2

2

=
g2
3IP

16π
βAIP βBIP

1

M2
1

1

M2
2

exp(Bddt) Fdd . (116)

The couplings βAIP are related to the pomeron term XABs�
of the total cross section

parameterization, eq. (112). Picking a reference scale
√

sref = 20 GeV, the couplings are

given by βAIPβBIP = XAB s�
ref . The triple-pomeron coupling is determined from single-

diffractive data to be g3IP ≈ 0.318 mb
1/2

; within the context of the formulae in this

section.

The spectrum of diffractive masses M is taken to begin 0.28 GeV ≈ 2mπ above the

mass of the respective incoming particle and extend to the kinematical limit. The simple

dM2/M2
form is modified by the mass-dependence in the diffractive slopes and in the Fsd

and Fdd factors (see below).

The slope parameters are assumed to be

Bsd(XB)(s) = 2bB + 2α�
ln

�
s

M2

�
,

Bsd(AX)(s) = 2bA + 2α�
ln

�
s

M2

�
,

Bdd(s) = 2α�
ln

�

e4
+

ss0

M2
1 M2

2

�

. (117)

Here α�
= 0.25 GeV

−2
and conventionally s0 is picked as s0 = 1/α�

. The term e4
in Bdd is

added by hand to avoid a breakdown of the standard expression for large values of M2
1 M2

2 .

The bA,B terms protect Bsd from breaking down; however a minimum value of 2 GeV
−2

is still explicitly required for Bsd, which comes into play e.g. for a J/ψ state (as part of a

VMD photon beam).

The kinematical range in t depends on all the masses of the problem. In terms of

the scaled variables µ1 = m2
A/s, µ2 = m2

B/s, µ3 = M2
(1)/s (= m2

A/s when A scatters

elastically), µ4 = M2
(2)/s (= m2

B/s when B scatters elastically), and the combinations

C1 = 1− (µ1 + µ2 + µ3 + µ4) + (µ1 − µ2)(µ3 − µ4) ,

C2 =

�
(1− µ1 − µ2)

2 − 4µ1µ2

�
(1− µ3 − µ4)

2 − 4µ3µ4 ,

C3 = (µ3 − µ1)(µ4 − µ2) + (µ1 + µ4 − µ2 − µ3)(µ1µ4 − µ2µ3) , (118)

one has tmin < t < tmax with

tmin = −s

2
(C1 + C2) ,

tmax = −s

2
(C1 − C2) = −s

2

4C3

C1 + C2
=

s2C3

tmin
. (119)
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Diffractive Cross Section Formulæ:PYTHIA 8 Status
Diffraction

! New framework for high-mass diffractive events (with Sparsh Navin)
! Follows the approach of Pompyt (P. Bruni, A. Edin and G. Ingelman)
! Total diffractive cross sections parameterised as before

! Introduce pomeron flux fIP/p(xIP, t)

xIP =
EIP
Ep

, t = (pi − p′

i )
2
, M2

X = xIPs

! Factorise proton-pomeron hard scattering

fp1/p(x1,Q2) fp2/IP(x2,Q2)
dσ̂
dt̂

pi

pj

p
′

i

xg

x
LRG

X

! Existing PYTHIA machinery used to simulate interaction
! Initialise MPI framework for a set of different diffractive
mass values; interpolate in between

Richard Corke (Lund University) January 2010 14 / 18

PYTHIA 8 Status
Diffraction

! MX ≤ 10GeV: original longitudinal string description used
! MX > 10GeV: new perturbative description used
! Four parameterisations of the pomeron flux available
! Five choices for pomeron PDFs

! Q2-independent parameterisations, xIP f (xIP) = N xaIP (1− xIP)b
! Pion PDF (one built in, others through LHAPDF)
! H1 NLO fits: 2006 Fit A, 2006 Fit B and 2007 Jets

! Single and double diffraction included
! Central diffraction a future possibility
! Still to be tuned

Richard Corke (Lund University) January 2010 15 / 18

Partonic Substructure in Pomeron:

Follows the  Ingelman-
Schlein approach of 

Pompyt

Diffraction
Ingelman-Schlein: Pomeron as hadron with partonic content
Diffractive event = (Pomeron flux) × (IPp collision)

p
p

IP

p

Used e.g. in
POMPYT
POMWIG
PHOJET

1) σSD and σDD taken from existing parametrization or set by user.
2) Shape of Pomeron distribution inside a proton, fIP/p(xIP, t)
gives diffractive mass spectrum and scattering p⊥ of proton.
3) At low masses retain old framework, with longitudinal string(s).
Above 10 GeV begin smooth transition to IPp handled with full pp
machinery: multiple interactions, parton showers, beam remnants, . . . .
4) Choice between 5 Pomeron PDFs.
Free parameter σIPp needed to fix 〈ninteractions〉 = σjet/σIPp.
5) Framework needs testing and tuning, e.g. of σIPp.

Diffraction
Ingelman-Schlein: Pomeron as hadron with partonic content
Diffractive event = (Pomeron flux) × (IPp collision)

p
p

IP

p

Used e.g. in
POMPYT
POMWIG
PHOJET

1) σSD and σDD taken from existing parametrization or set by user.
2) Shape of Pomeron distribution inside a proton, fIP/p(xIP, t)
gives diffractive mass spectrum and scattering p⊥ of proton.
3) At low masses retain old framework, with longitudinal string(s).
Above 10 GeV begin smooth transition to IPp handled with full pp
machinery: multiple interactions, parton showers, beam remnants, . . . .
4) Choice between 5 Pomeron PDFs.
Free parameter σIPp needed to fix 〈ninteractions〉 = σjet/σIPp.
5) Framework needs testing and tuning, e.g. of σIPp.

Diffraction
Ingelman-Schlein: Pomeron as hadron with partonic content
Diffractive event = (Pomeron flux) × (IPp collision)

p
p

IP

p

Used e.g. in
POMPYT
POMWIG
PHOJET

1) σSD and σDD taken from existing parametrization or set by user.
2) Shape of Pomeron distribution inside a proton, fIP/p(xIP, t)
gives diffractive mass spectrum and scattering p⊥ of proton.
3) At low masses retain old framework, with longitudinal string(s).
Above 10 GeV begin smooth transition to IPp handled with full pp
machinery: multiple interactions, parton showers, beam remnants, . . . .
4) Choice between 5 Pomeron PDFs.
Free parameter σIPp needed to fix 〈ninteractions〉 = σjet/σIPp.
5) Framework needs testing and tuning, e.g. of σIPp.

(incl full MPI+showers for       system)

Diffraction
Ingelman-Schlein: Pomeron as hadron with partonic content
Diffractive event = (Pomeron flux) × (IPp collision)

p
p

IP

p

Used e.g. in
POMPYT
POMWIG
PHOJET

1) σSD and σDD taken from existing parametrization or set by user.
2) Shape of Pomeron distribution inside a proton, fIP/p(xIP, t)
gives diffractive mass spectrum and scattering p⊥ of proton.
3) At low masses retain old framework, with longitudinal string(s).
Above 10 GeV begin smooth transition to IPp handled with full pp
machinery: multiple interactions, parton showers, beam remnants, . . . .
4) Choice between 5 Pomeron PDFs.
Free parameter σIPp needed to fix 〈ninteractions〉 = σjet/σIPp.
5) Framework needs testing and tuning, e.g. of σIPp.

Navin, arXiv:1005.3894

PYTHIA 8

PY6
No diffr jets

PY8 & PHOJET

include diffr jets
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What Works*

15

*) if you use an up-to-date tune. Here comparing to PY6 default (~ Tune A) to show changes.

Underlying Event & Jet Shapes

UE
ΣpT (TRNS)

∆φ
pTlead > 5 GeV Jet Shape

30 < pT < 40, All y
(softest jet bin available)

PS: yes, we should update the PYTHIA 6 defaults (tune A) ... 

Plots from mcplots.cern.ch
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What Kind of Works*

16

*) if you use an up-to-date tune. Here comparing to PY6 default (~ Tune A) to show changes.

Minimum-Bias Multiplicities

PS: yes, we should update the PYTHIA 6 defaults (tune A)... 

Central
Charged

Multiplicity
Distribution

η distribution

(here showing as 
inclusive as possible)

Diffractive

Plots from mcplots.cern.ch
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Some Pre-LHC Forward Constraints

17

CDF VTPC up to |η|<3.5
(only dN/dη, only at 1800 GeV)

UA5 up to |η|<5.0
(only below 900 GeV)

dNch/dη P(Nch)
Definition of “NSD” not totally clear to meExact trigger definition not totally clear to me

Forward-Backward
Correlation 

Hoping for LHC measurements soon
See Wraight & PS, EPJC71(2011)1628 

ATLAS, CMS

ALICE 
FMD

UA5 up to |η|<5.0
(only below 900 GeV)

TOTEMTOTEM
Ratio not plotted

(for annoying technical reason)

Plots from mcplots.cern.ch
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Forward-Backward Correlation

18

ATLAS, CMS

ALICE 
FMD

TOTEM

ALICE 
FMD

ALICE FMD
(One-Sided)

Models with:

Lots of MPI (each give little multiplicity)
→ High long-distance Correlations

Few MPI (each gives more multiplicity)
→ Low long-distance Correlations}

}

+
Diffraction → uncorrelated fluctuations
→ expect to see higher correlation in diff-

suppressed samples than in diff-enhanced ones

(e.g., by placing cuts on number of central tracks?)

See, e.g., Wraight & PS, “Forward-Backward Correlations and Event Shapes 
as probes of Minimum-Bias Event Properties”, EPJ C71 (2011) 1628 

Sensitive to balance between MPI (long-distance) 
and radiation (short-distance, tuned on ctrl observables)
+ color correlations (string-shortening) + diffraction
→ Use multiplicity distribution as cross-checkAdditional plots in PS, arXiv:0803.0678
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hope to constrain the modeling better, we nonetheless wish
to point out that it is, in our opinion, grossly misleading to
characterize order 10% differences as large.
Indeed, the small differences between tunes are high-

lighted by the zero-suppressed Y-axis in the plot. Thus, while
there is clearly some sensitivity to central vs. forward pro-
duction mechanisms in this distribution, its ability to dis-
criminate between models is still limited. Agreement be-
tween each tune is generally good, especially in the most
easily observable region, |η| < 2.5. We conclude that addi-
tional, linearly independent, information on the structure of
events in η, could provide valuable additional constraints.

5 Forward-Backward Correlations

We come now to the main part of this report, in which we
study several types of forward-backward correlations, b, for
different production mechanisms, cuts, and correlation re-
gions.
The purpose of these distributions is to enhance the dis-

criminating power between models, and to reveal their prop-
erties more clearly, as compared to what can be achieved
with the list of observables discussed in section 4. In par-
ticular, the collinear singularity structure of bremsstrahlung
corrections in perturbative QCD causes initial- and final-
state shower activity to generate strong but primarily short-
range correlations, spanning at most a few rapidity units,
whereas coloured exchanges between the beam hadrons (e.g.,
MPI) can generate correlations that are weaker but which
span the entire rapidity range between the remnants. Thus,
the shapes and normalizations of the b distributions contain
valuable information on the relative dominance of differ-
ent particle production mechanisms, information which we
argue is linearly independent from that contained in the cur-
rent “standard” distributions.
This section is divided as follows: we first consider a

standard inclusive “minimum-bias” b correlation in section
5.1, illustrating how it is affected by different choices of bin
size and by p⊥ cuts; in section 5.2, we illustrate the sensitiv-
ity of this correlation to different particle production mech-
anisms, using the HARD, RAD, and MPI samples defined
above, and to contamination by diffractive processes (SD,
DD). In this way, we gain a map of how different cuts and
different process mixtures affect the correlations, which we
hope will be useful for future reference. We shall seek to
extract further information by defining also a set of b cor-
relations that are sensitive to the azimuthal structure of the
events, which will be the focus of section 5.3. We shall re-
fer to these latter observables, which are essentially binned
double-differential η-φ correlations, as “twisted” b correla-
tions.

5.1 Inclusive b Correlation

The standard b correlation is defined as:
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Figure 4: b correlation for selected events with various pseudo-
rapidity bin sizes, ∆η. The single-point correlation for a bin size of
∆η=5.0 (red) is shown covering the whole η-region.

b =
σ(nb, nf )

σ(nb)σ(nf )
=

〈nbnf 〉 − 〈nf〉
2

〈

n2
f

〉

− 〈nf 〉
2

, (2)

where nf (nb) is the activity in a specific forward (back-
ward) region of the detector. “Activity” can be measured
by a number of observables in the detector, e.g., energy,
charged-particle multiplicity (inclusively or above a given
p⊥ threshold), momentum sum, etc. Here, we shall focus
on the charged-particle multiplicity, as has also been done
in most previous studies, though we emphasize that, e.g.,
calorimetric energy sums, could also be interesting to ex-
plore (see, e.g., [3]).
The “forward” and “backward” regions are defined by

bins of a specific size in η — typically chosen to be be-
tween 0.1 and 1.0 unit wide in η — which are separated by
some variable distance and arranged symmetrically around
a midpoint which is usually taken to be the centre of the
detector, ηc = 0, corresponding to the CM of the colliding
hadrons. Although we shall not do so here, we note that cor-
relations between the central and forward region are also of
interest and can be probed, for example, by fixing one bin in
the central region and letting the other slide into the forward
or backward region, corresponding to choosing ηc $= 0. A
study somewhat along these latter lines has been performed
by UA5 [29] and could also be interesting to maximize us-
age of the asymmetric coverage of the ALICE FMD.
The optimum bin size to use in eqn. (2) is a function of

statistics and of the η-range observed. If the bin size is too
small, genuine correlations will be washed out by statistical
fluctuations. With too large a bin size, the resolving power
of the correlation over the limited η-range will be lost.
Figure 4 contains a comparison of the b correlation vs.

η (specifically the η value of the centre of the forward bin,
with the backward one located at −η) for varying bin sizes
from 0.03 to 5 units wide, without imposing any p⊥ cuts
at this point. Obviously, the largest sizes are too coarse to
discern much structure in the correlation distribution. Mid-
range bin sizes,∆η=1.0, 0.5 and 0.25 exhibit best the trends
over the η-range; for this particular model (DW), a high cor-
relation at low η can be distinguished from a mid-η plateau
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Figure 10: Inclusive b correlation distribution for tune DW minimum
bias sub-processes. Lower pane: ratio to the distribution of the low-p⊥

sample.

However, we also see an interesting effect of combining
the samples, namely that the correlations in the combined
sample are stronger than in any of the individual compo-
nents. It seems that, by mixing in less correlated diffrac-
tive components, we have actually enhanced the final cor-
relations. What is going on? This effect can be illustrated
by imagining we have two separate distributions, A and B
(in our case represented, e.g., by the diffractive and non-
diffractive samples). Imagine further that the fluctuations
inside each sample are purely statistical, for illustration,
such that the correlation strength inside each sample is zero.
What will happen when we look at the combination A+B?
If the mean of A is smaller than that of B, then every event
of type A will look like it fluctuated down, systematically,
from the mean of A + B, and conversely for the B sample.
In their combination, therefore, we will see a non-zero cor-
relation if the mean values are different. Since the diffrac-
tive and non-diffractive event samples have very different
average multiplicities (see table 3) this effect will lead to
an increase in the correlations in the combined sample, as
observed in fig. 10.

5.3 ‘Twisted’ b Correlations

We now turn to the dependence on azimuth of the forward-
backward correlation strengths. A related type of correla-
tions sensitive to both η and azimuthal φ were recently
highlighted by the CMS experiment [31] and have stimu-
lated quite a lot of interest due to the observation of the so-
called “ridge effect” in high-multiplicity events. The cor-
relations presented in this report are somewhat simpler in
spirit, and our focus is not primarily on high multiplicities,
but we note that it could be an interesting follow-up study
to determine whether twisted b-correlations could also be
used to shed more light on the ridge.
We shall study the φ dependence of the b-correlations in

two ways. The first is based only on the detector geometry.

As this is independent of the event shape, no preference is
given to any particular direction. The second method gives
preference to the direction of the leading charged particle
in the event. This will bias the zero point in φ to coincide
with the most active part of the event.
In each case, we divide the φ-plane into three regions

of size ∆φ = 2/3π. For the detector-defined geometry,
we define a parallel, an opposite, and a transverse region.
(Note: we use “parallel” and “opposite” here, to distinguish
the geometry from Field’s “towards” and “away” regions,
the latter of which we take to be defined relative to the di-
rection of a lead particle or jet and not by the absolute de-
tector geometry.) Quite arbitrarily, we define
– A parallel region covering the region−π < φ < −1/3π
in absolute azimuth,

– An opposite region covering 0 < φ < 2/3π,
– A transverse region occupying the region between these,
i.e., the slices −1/3π < φ < 0 and 2/3π < φ < π.

In calculating the correlation between η − φ regions the
comparison is always to the parallel case on one side. We
are aware that this is quite crude and that one could increase
statistics by integrating over the location of the arbitrary az-
imuthal zero point, but point out that this is intended merely
as a first exploration of the properties of ‘twisted’ correla-
tions.
The terms of the b correlation expression now refer to

η-bins with a φ-dependence. Hence, the correlation expres-
sion must include this new degree of freedom. Since all re-
gions are a priori equivalent, the normalizing terms in b,
〈nf 〉

2 and
〈

n2
f

〉

, are taken simply from the parallel one.
Only the product of activity in corresponding bins of η − φ
are sensitive to the variation in φ region. The new expres-
sion, btwist

φ , for the correlation becomes:

btwist

φ =

〈

nb,φnf,‖

〉

−
〈

nf,‖

〉2

〈

n2

f,‖

〉

−
〈

nf,‖

〉2
. (3)

Figures 11 and 12 show the three different types of cor-
relations we can obtain for the detector-based geometry,
for PYTHIA tunes DW and Perugia 0, respectively. As ex-
pected, both models exhibit a peak in the correlation at low
η in the parallel region, illustrating that the low-η corre-
lation is also most pronounced at low∆φ. Beyond the first
bin in η, however, the opposite correlation is strongest. This
follows from momentum conservation, smeared out over η.
The correlation with the transverse region is as close as we
can come to defining an “underlying event” in an otherwise
featureless minimum-bias event without a reference direc-
tion.
The difference in correlation strength between the three

regions are not extremely large in absolute terms, however.
This leads us to consider whether there is a way to en-
hance the differences while remaining in a minimum-bias
context. By choosing the zero point of the φ coordinate,
event by event, to be the direction of the leading (hardest)

ND

SD

DD

See, e.g., Wraight & PS, “Forward-Backward Correlations and Event Shapes 
as probes of Minimum-Bias Event Properties”, EPJ C71 (2011) 1628 

Diffraction → uncorrelated fluctuations
→ expect to see higher correlation in diff-suppressed samples than in diff-enhanced ones
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Figure 7: Inclusive b correlation distribution for selected low-p⊥

PYTHIA tunes. Lower pane: Ratio to the DW distribution.

their older counterparts, with a crossover point somewhere
around |η| = 1 − 2.
There are further differences in the b correlation dis-

tributions especially within the old model class. DW has
the most distinctive shape of the old models, with a clear
plateau-like structure at mid-η which is not as pronounced
for any of the other models. This is consistent with the
dN/dη distribution being higher for this tune for |η| > 3
than for any of the other models, cf. fig. 3. Due to this sig-
nificant shape difference, the Q20 distribution, for instance,
lies above DW at low η, but then drops below it at high η.
It should therefore be clear that a measurement of the shape
of this distribution out to as high η as possible would yield
valuable information.

5.2 Physical Sources of Correlations

To investigate the sensitivity to the different sources of par-
ticle production in more detail, we now turn to the HARD,
RAD, and MPI samples, as compared to the default low-
p⊥ sample which has all the physics components switched
on. The results for one tune of the old model (DW) and
one of the new (Perugia 0) are shown in figs. 8 and 9, re-
spectively. In both cases, and also for the other tunes not
shown here, the general trend is for the MPI component to
dominate the distributions. Again, this has partly to be un-
derstood in the light of the MPI component generating the
largest part of the multiplicity, see table 4, such that sta-
tistical fluctuations are relatively more important when that
component is switched off, as in the RAD and HARD sam-
ples.
As discussed above, however, one notes that the HARD

component by itself only produces very short-range corre-
lations, that drop off quickly to zero. Adding parton show-
ers, in the RAD samples, extends the reach of these corre-
lations somewhat further in η, including a small tail toward
very large η, presumably generated by initial-state radiation
from the beams.
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Figure 8: Inclusive b correlation distribution for tune DW particle pro-
duction mechanisms: low-p⊥, hard process (HARD), radiative pro-
duction (RAD) and multi-parton interactions (MPI). Lower pane: ratio
to the low-p⊥ distribution.
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Figure 9: Inclusive b correlation distribution for tune Perugia 0 parti-
cle production mechanisms: low-p⊥, hard process (HARD), radiative
production (RAD) and multi-parton interactions (MPI). Lower pane:
ratio to the low-p⊥ distribution.

Interestingly, the behaviour of the MPI component is
somewhat different between the two kinds of models. In the
old model, fig. 8, the MPI component becomes completely
dominant at large η and there has the same magnitude as
the low-p⊥ sample itself. In the new model, fig. 9, the MPI
component alone drops off and is eclipsed by the shower
component at the highest values of η, indicating a qualita-
tive difference between the models, consistent with the new
model deriving more of its total particle production from
shower-related activity.
The effects of diffractive components, a non-zero con-

tamination of which may be present especially in very in-
clusive minimum-bias measurements, are illustrated in fig.
10. The correlations in the SD and DD samples are intrinsi-
cally shorter-range than those of their non-diffractive coun-
terparts, consistent with diffractive systems having a limited
extension in rapidity.
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hope to constrain the modeling better, we nonetheless wish
to point out that it is, in our opinion, grossly misleading to
characterize order 10% differences as large.
Indeed, the small differences between tunes are high-

lighted by the zero-suppressed Y-axis in the plot. Thus, while
there is clearly some sensitivity to central vs. forward pro-
duction mechanisms in this distribution, its ability to dis-
criminate between models is still limited. Agreement be-
tween each tune is generally good, especially in the most
easily observable region, |η| < 2.5. We conclude that addi-
tional, linearly independent, information on the structure of
events in η, could provide valuable additional constraints.

5 Forward-Backward Correlations

We come now to the main part of this report, in which we
study several types of forward-backward correlations, b, for
different production mechanisms, cuts, and correlation re-
gions.
The purpose of these distributions is to enhance the dis-

criminating power between models, and to reveal their prop-
erties more clearly, as compared to what can be achieved
with the list of observables discussed in section 4. In par-
ticular, the collinear singularity structure of bremsstrahlung
corrections in perturbative QCD causes initial- and final-
state shower activity to generate strong but primarily short-
range correlations, spanning at most a few rapidity units,
whereas coloured exchanges between the beam hadrons (e.g.,
MPI) can generate correlations that are weaker but which
span the entire rapidity range between the remnants. Thus,
the shapes and normalizations of the b distributions contain
valuable information on the relative dominance of differ-
ent particle production mechanisms, information which we
argue is linearly independent from that contained in the cur-
rent “standard” distributions.
This section is divided as follows: we first consider a

standard inclusive “minimum-bias” b correlation in section
5.1, illustrating how it is affected by different choices of bin
size and by p⊥ cuts; in section 5.2, we illustrate the sensitiv-
ity of this correlation to different particle production mech-
anisms, using the HARD, RAD, and MPI samples defined
above, and to contamination by diffractive processes (SD,
DD). In this way, we gain a map of how different cuts and
different process mixtures affect the correlations, which we
hope will be useful for future reference. We shall seek to
extract further information by defining also a set of b cor-
relations that are sensitive to the azimuthal structure of the
events, which will be the focus of section 5.3. We shall re-
fer to these latter observables, which are essentially binned
double-differential η-φ correlations, as “twisted” b correla-
tions.

5.1 Inclusive b Correlation

The standard b correlation is defined as:
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Figure 4: b correlation for selected events with various pseudo-
rapidity bin sizes, ∆η. The single-point correlation for a bin size of
∆η=5.0 (red) is shown covering the whole η-region.

b =
σ(nb, nf )

σ(nb)σ(nf )
=

〈nbnf 〉 − 〈nf〉
2

〈

n2
f

〉

− 〈nf 〉
2

, (2)

where nf (nb) is the activity in a specific forward (back-
ward) region of the detector. “Activity” can be measured
by a number of observables in the detector, e.g., energy,
charged-particle multiplicity (inclusively or above a given
p⊥ threshold), momentum sum, etc. Here, we shall focus
on the charged-particle multiplicity, as has also been done
in most previous studies, though we emphasize that, e.g.,
calorimetric energy sums, could also be interesting to ex-
plore (see, e.g., [3]).
The “forward” and “backward” regions are defined by

bins of a specific size in η — typically chosen to be be-
tween 0.1 and 1.0 unit wide in η — which are separated by
some variable distance and arranged symmetrically around
a midpoint which is usually taken to be the centre of the
detector, ηc = 0, corresponding to the CM of the colliding
hadrons. Although we shall not do so here, we note that cor-
relations between the central and forward region are also of
interest and can be probed, for example, by fixing one bin in
the central region and letting the other slide into the forward
or backward region, corresponding to choosing ηc $= 0. A
study somewhat along these latter lines has been performed
by UA5 [29] and could also be interesting to maximize us-
age of the asymmetric coverage of the ALICE FMD.
The optimum bin size to use in eqn. (2) is a function of

statistics and of the η-range observed. If the bin size is too
small, genuine correlations will be washed out by statistical
fluctuations. With too large a bin size, the resolving power
of the correlation over the limited η-range will be lost.
Figure 4 contains a comparison of the b correlation vs.

η (specifically the η value of the centre of the forward bin,
with the backward one located at −η) for varying bin sizes
from 0.03 to 5 units wide, without imposing any p⊥ cuts
at this point. Obviously, the largest sizes are too coarse to
discern much structure in the correlation distribution. Mid-
range bin sizes,∆η=1.0, 0.5 and 0.25 exhibit best the trends
over the η-range; for this particular model (DW), a high cor-
relation at low η can be distinguished from a mid-η plateau
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!!!!!!!!!Charged particle multiplicities (3)!

21.11.2011, MPI@LHC                                               22                                                        D. Volyanskyy

"#!probability to have nch in an unbiased event
 

"#!probability to have nch in a hard interaction
      event (at least one track with pT > 1 GeV)

"#!good agreement between Perugia NOCR prediction and real data (black solid line)

! !""#$%! !""#$%
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Charged multiplicity distribution in unbiased events, in 2.0<η<4.5

ATLAS min-bias tune

Results shown at MPI, November 2011, DESY (Hamburg)

Beyond η=4.5, we do not know what the distribution looks like

(also showed result with > 1 hard track → less diffraction, could also be done by requiring high multiplicity)
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Forward Energy Flow in Minimum Bias Events
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Forward energy flow

7 TEV900 GeV

MPI

Identical models at η=3 → differences at η=5

Results shown at MPI, November 2011, DESY (Hamburg)

(this analysis also comes with several cuts/regions designed to enhance/suppress diffraction → multi-dimensional constraints)
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Summary

Aim to describe complete event structure

The MPI that produce the underlying event (UE) in the central region also 
disturb the beam remnant in the forward region

→ correlations between central and fwd fragmentation

Current MC constraints sum inclusively over FWD region → blind spot

If there are big elephants there, the central constraints would need to be 
thoroughly re-evaluated

Diffraction

Is not a big elephant for the UE  or central physics program (mainly non-diff)

But important for fwd physics + all MCs in active development (Hard diffraction 

model in Pythia 8, POMWIG-type model in Herwig++, KMR model in Sherpa) → need good 
constraints:  → study both diff-enhanced and diff-suppressed triggered samples
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