Winter Workshop on Recent QCD Advances at the LHC, Les Houches, F


## Peter Skands (CERN)

## QCD in PYTHIA

Multiple Parton Interactions (MPI)
Regularise cross section with $p_{\perp 0}$ as free parameter

$$
\text { IR Regularization } \frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} p_{\perp}^{2}} \propto \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}\right)}{p_{\perp}^{4}} \rightarrow \frac{\alpha_{s}^{2}\left(p_{\perp 0}^{2}+p_{\perp}^{2}\right)}{\left(p_{\perp 0}^{2}+p_{\perp}^{2}\right)^{2}}
$$

with energy dependence

$$
\text { Energy Scaling } p_{\perp 0}\left(E_{\mathrm{CM}}\right)=p_{\perp 0}^{\mathrm{ref}} \times\left(\frac{E_{\mathrm{CM}}}{E_{\mathrm{CM}}^{\mathrm{ref}}}\right)^{\underline{\epsilon}}
$$



See, e.g., new MCnet Review: "General-purpose event generators for LHC physics", arXiv: I IOI. 2599

## From Tevatron to LHC

Tevatron tunes appear to be "low" on LHC data

Problem for "global" tunes.
Poor man's short-term solution: dedicated LHC tunes


## Tunes of PYTHIA 8

Tuning PYTHIA 8 and 4C, see:
Hadron Collisions: cannot use PYTHIA 6 tunes (e.g., not"Perugia", ZI, etc). Need PYTHIA 8 ones. Tension between Tevatron and LHC?






## Tuning vs Testing Models

## TEST models

Tune parameters in several complementary regions

Consistent model $\rightarrow$ same parameters

Model breakdown $\rightarrow$ nonuniversal parameters



Evolution of $\operatorname{PARP}(78)$ with $\sqrt{s}$
Pythia 6

$\sqrt{s} / \mathrm{GeV}$

## Nota Bene

# Crucial Task for run at 2.8 TeV Make systematic studies to map/ resolve Tevatron/LHC tension 

Measure regions that interpolate between Tevatron and LHC<br>E.g., start from same phase-space region as CDF $|\eta|<1.0 \quad$ pT $>0.4 \mathrm{GeV}$

## Diffraction

## Diffractive Cross Section Formulæ:

$\frac{\mathrm{d} \sigma_{\mathrm{sd}(A X)}(s)}{\mathrm{d} t \mathrm{~d} M^{2}}=\frac{g_{3 \mathbb{P}}}{16 \pi} \beta_{A \mathbb{P}}^{2} \beta_{B \mathbb{P}} \frac{1}{M^{2}} \exp \left(B_{\mathrm{sd}(A X)} t\right) F_{\mathrm{sd}}$
$\frac{\mathrm{d} \sigma_{\mathrm{dd}}(s)}{\mathrm{d} t \mathrm{~d} M_{1}^{2} \mathrm{~d} M_{2}^{2}}=\frac{g_{3 \mathbb{P}}^{2}}{16 \pi} \beta_{A \mathbb{P}} \beta_{B \mathbb{P}} \frac{1}{M_{1}^{2}} \frac{1}{M_{2}^{2}} \exp \left(B_{\mathrm{dd}} t\right) F_{\mathrm{dd}}$

## Partonic Substructure in Pomeron:

Follows the Ingelman-Schlein approach of Pompyt



- $M_{X} \leq 10 \mathrm{GeV}$ : original longitudinal string description used

PYTHIA 8 - $M_{X}>10 \mathrm{GeV}$ : new perturbative description used (incl full MPl+showers for Pp system)
Choice between 5 Pomeron PDFs. Free parameter $\sigma_{\mathbb{P} \mathfrak{p}}$ needed to fix $\left\langle n_{\text {interactions }}\right\rangle=\sigma_{\text {jet }} / \sigma_{\mathbb{P} p}$.

## Diffraction

## Framework needs testing and tuning

E.g., interplay between non-diffractive and diffractive components

+ LEP tuning used directly for diffractive modeling
Hadronization preceded by shower at LEP, but not in diffraction $\rightarrow$ dedicated diffraction tuning of fragmentation pars?



## Event Shapes

## CMS: Transverse Thrust



Matched codes exhibit interesting features away from the data.

Inconsistent Matching?
Inconsistent to tune without matching?
Highlights need to better understand interplay of
tuning and matching


## Jet Shapes

## Jet shapes ~ shower shapes

"Perugia 2010": used (approximate) CDF jet shape measurements


## Underlying Event

## Compromise between Tevatron and LHC?

"Perugia 2010" : Larger UE at Tevatron $\rightarrow$ better at LHC


(next iteration: fusion between Perugia 2010 and AMBTI, $Z 1$ ?)

## Underlying Event



## New Developments in PYTHIA 8

## Can choose $2^{\text {nd }}$ MPI scattering

- TwoJets (with TwoBJets as subsample)
- PhotonAndJet, TwoPhotons
- Charmonium, Bottomonium (colour octet framework)
- SingleGmZ, SingleW, GmZAndJet, WAndJet
- TopPair, SingleTop


## Rescattering

```
See the PYTHIA 8 online
    documentation, under
"A Second Hard Process"
```



An explicit model available in PYTHIA 8


Same order in $\alpha_{\mathrm{s}}, \sim$ same propagators, but

- one PDF weight less $\Rightarrow$ smaller $\sigma$


## X-Dependent Proton Size

## Default in PYTHIA (and all other MC*)

Factorization of longitudinal and transverse degrees of freedom

$$
f(x, b)=f(x) \times g(b)
$$

OK for inclusive measurements, but:
Physics: Shape $=$ delta function at 0 for $x \rightarrow 1$
Can also be seen in lattice studies at high x
Gribov theory: high $s \leftrightarrow$ low $x \Rightarrow$ Growth of total cross section $\leftrightarrow$ size grows $\alpha \ln (I / x)$
BFKL "intuition":"random walk" in $x$ from few high-x partons at small b diffuse to larger b at smaller x (More formal: Balitsky/JIMWLK and Color Glass Condensates)

## A Model for Phenomenological Studies

Basic assumption: Mass distribution $=$ Gaussian. Make width $x$-dependent

$$
\rho(r, x) \propto \frac{1}{a^{3}(x)} \exp \left(-\frac{r^{2}}{a^{2}(x)}\right) \quad a(x)=a_{0}\left(1+a_{1} \ln \frac{1}{x}\right)
$$

Constrain by requiring $a_{1}$ responsible for growth of cross section

## Summary

## PYTHIA6 is winding down

Supported but not developed
Still main option for current run (sigh)

Recommended for PYTHIA 6:
Global: "Perugia 2010" (MSTP(5)=327)

+ LHC MB:"AMBTI" (MSTP(5)=340)
+ LHC UE "ZI" (MSTP(5)=34I)

But not after long shutdown 2013!

## PYTHIA8 is the natural successor

Already several improvements over PYTHIA6 on soft physics
(including modern range of PDFs (CTEQ6, LO*, etc) in standalone version)
Though still a few things not yet carried over (such as ep, some SUSY, etc)
If you want new features (e.g., x-dependent proton size, rescattering, $\Psi^{\prime}$, MadGraph-5 andVINCIA interfaces, ...) then be prepared to use PYTHIA8
Provide Feedback, both what works and what does not
Do your own tunes to data and tell outcome
There is no way back!

Recommended for PYTHIA 8: "Tune 4C" (Tune:pp = 5)


## Additional Slides

## Diffraction, Identified Particles, Baryon Transport, Tunes

## The Bedestal Cficct

anul Millific PartoriPartoil literactions


## The Pedestan Effect

anit Mulinple Partoli-Partol Rniteractions


## The Bedestal Effect

anul Millific PartoriPartoil lnteractions

```
JET > 5 GeV
```


## Statistically biases

 the selection towards more central events with more MPł

The assumed shape of the proton affects the rise and <UE>/<MB>


## Tuning of PYTHIA 8

Tuning to e+e- closely related to $\mathrm{p} \perp$-ordered PYTHIA 6.4. A few iterations already. First tuning by Professor (Hoeth) $\rightarrow$ FSR ok?





## (Identified Particles)

## Interesting discrepancies in strange sector



+ problems with $\Lambda / K$ and $s$ spectra also at LEP?
Grows worse (?) for multi-strange baryons
Flood of LHC data now coming in!

Interesting to do systematic LHC vs LEP studies

## PYTHIA 8 Tune Parameters

| Parameter | Tune 2C | Tune 2M | Tune 4C |
| :--- | :---: | :---: | :---: |
| SigmaProcess:alphaSvalue | 0.135 | 0.1265 | 0.135 |
| SpaceShower:rapidityOrder | on | on | on |
| SpaceShower:alphaSvalue | 0.137 | 0.130 | 0.137 |
| SpaceShower:pTORef | 2.0 | 2.0 | 2.0 |
| MultipleInteractions:alphaSvalue | 0.135 | 0.127 | 0.135 |
| MultipleInteractions:pTORef | 2.320 | 2.455 | 2.085 |
| MultipleInteractions:ecmPow | 0.21 | 0.26 | 0.19 |
| MultipleInteractions:bProfile | 3 | 3 | 3 |
| MultipleInteractions:expPow | 1.60 | 1.15 | 2.00 |
| BeamRemnants:reconnectRange | 3.0 | 3.0 | 1.5 |
| SigmaDiffractive:dampen | off | off | on |
| SigmaDiffractive:maxXB | N/A | N/A | 65 |
| SigmaDiffractive:maxAX | N/A | N/A | 65 |
| SigmaDiffractive:maxXX | N/A | N/A | 65 |

R. Corke \& TS, arXiv:1011.1759 [hep-ph]

## Strangeness Tunable Paramters

## Flavor Sector

(These do not affect pT spectra, apart from via feed-down)

|  | Main Quantity | PYTHIA 6 | PYTHIA 8 |
| :---: | :---: | :---: | :---: |
| s/u | $\mathrm{K} / \pi$ | PARJ(2) | StringFlav:probStoUD |
| Baryon/Meson | $\mathrm{p} / \pi$ | PARJ(I) | StringFlav:probQQtoQ |
| Additional Strange Baryon Suppr. | $\Lambda / \mathrm{p}$ | PARJ(3) | StringFlav:probSQtoQQ |
| Baryon-3/2 / Baryon-I/2 | $\Delta / \mathrm{p}, \ldots$ | PARJ(4), <br> PARJ(I8) | StringFlav:probQQItoQQ0 <br> StringFlav:decupletSup |
| Vector/Scalar (non-strange) | Irho/ $\pi$ | PARJ(II) | StringFlav:mesonUDvector |
| Vector/Scalar (strange) | $\mathrm{K}^{*} / \mathrm{K}$ | PARJ(I2) | StringFlav:mesonSvector |

Note: both programs have options for c and b, for special baryon production (leading and "popcorn") and for higher excited mesons. PYTHIA 8 more flexible than PYTHIA 6. Big uncertainties, see documentation.

> For pT spectra, main parameters are shower folded with: longitudinal and transverse fragmentation function (Lund a and $b$ parameters and $p_{T}$ broadening (PARJ(41,42,21)), with possibility for larger a for Baryons in PYTHIA 8, see "Fragmentation" in online docs).

## UE Contribution to Jet Shapes



## Belyyol Tralisporl

## LESS than Perugia-SOFT

(at least for protons, in central region)

## But MORE than Perugia-0

(at least for
Lambdas, in forward region)



