Introduction to QCD

1. Fundamentals of QCD
2. PDFs, Fixed-Order QCD, and Jet Algorithms
3. Parton Showers and Event Generators
4. QCD in the Infrared

Slides posted at:
www.cern.ch/skands/slides

Lecture Notes:
P. Skands, arXiv:1207.2389
Factorization Summary

Factorization: expresses the independence of long-wavelength (soft) emission on the nature of the hard (short-distance) process.

\[
\frac{d\sigma}{dX} = \sum_{a,b} \sum_f \int \hat{X}_f f_a(x_a, Q_i^2) f_b(x_b, Q_i^2) d\hat{X}_f D(\hat{X}_f \rightarrow X, Q_i^2, Q_f^2)
\]

- Sum over long-wavelength histories leading to \(a\) with \(x_a\) at the scale \(Q_i^2\) (ISR)
- Sum over long-wavelength histories from \(\hat{X}_f\) at \(Q_f^2\) to \(X\) (FSR and Hadronization)

\(f(x, Q_i)\)

\(\sim\)

\(\vec{p}_j = x \vec{P}_{\text{proton}}\)

\(\hat{\sigma}\)

\(\hat{X}\)

\(D\)

\(X\)

Parton distribution functions (PDF)

Fragmentation Function (FF)

Illustration by M. Mangano

\(+\) (At H.O. each of these defined in a specific scheme, usually \(\overline{\text{MS}}\))
Parton Densities

Image Credits: D. Leinweber
Parton Densities

\[\vec{p}_j = x \vec{P}_{\text{proton}} \]

Parton distribution functions (PDF)
- sum over long-wavelength histories leading to a with \(x_a \) at the scale \(Q_i^{(\text{ISR})} \)

Shape of \(f(x) \) unknown (non-perturbative)
Different groups (CTEQ, MSTW, NNPDF, etc) use different ansätze

→ fit to measurements
Evolve to fixed small reference scale \(Q \approx m_{\text{proton}} \)

LHC Coverage
\(x \) and \(Q^2 \)
Changing Q^2 ~ changing the scale at which we look at the parton (zooming in/out on the fractal)

However, setting the factorisation scale $\mu = Q$ is our choice; unphysical

Require cross section independent of μ (at calculated order) \rightarrow RGE

$$
\frac{dq(x, \mu^2)}{d \ln \mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 dz \, p_{qq}(z) \frac{q(x/z, \mu^2)}{z} - \frac{\alpha_s}{2\pi} \int_0^1 dz \, p_{qq}(z) \, q(x, \mu^2)
$$

p_{qq} is real $q \leftarrow q$ splitting kernel: $p_{qq}(z) = C_F \frac{1 + z^2}{1 - z}$

A gain-loss equation

First term: some partons flow from higher $x' = x/z$ to x (POSITIVE)
Second term: some partons at x flow to lower $x' = z x$ (NEGATIVE)

Note: In this form, it looks pretty crazy for $z \rightarrow 1$
Awkward to write real and virtual parts separately. Use more compact notation:

\[
\frac{dq(x, \mu^2)}{d \ln \mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 dz \ P_{qq}(z) \frac{q(x/z, \mu^2)}{z} \ , \quad P_{qq} = C_F \left(\frac{1 + z^2}{1 - z} \right)_+
\]

This involves the plus prescription:

\[
\int_0^1 dz \ [g(z)]_+ f(z) = \int_0^1 dz \ g(z) f(z) - \int_0^1 dz \ g(z) f(1)
\]

\(z = 1\) divergences of \(g(z)\) cancelled if \(f(z)\) sufficiently smooth at \(z = 1\)

\[
\frac{df_i(x_i, \mu_F^2)}{d \ln \mu_F^2} = \sum_j \int_{x_i}^1 \frac{dx_j}{x_j} f_j(x_j, \mu_F^2) \frac{\alpha_s}{2\pi} P_{j \rightarrow ik} \left(\frac{x_i}{x_j} \right)
\]
The (LO) DGLAP Evolution Kernels

\[
\frac{df_i(x_i, \mu_F^2)}{d \ln \mu_F^2} = \sum_j \int_{x_i}^1 \frac{dx_j}{x_j} f_j(x_j, \mu_F^2) \frac{\alpha_s}{2\pi} P_{j \to ik} \left(\frac{x_i}{x_j} \right)
\]

Note: these are just the LO (one-loop) ones

\[
\begin{align*}
P_{q \to qg}(z) &= C_F \frac{1 + z^2}{1 - z}, \\
P_{g \to gg}(z) &= N_C \frac{(1 - z(1 - z))^2}{z(1 - z)}, \\
P_{g \to q\bar{q}}(z) &= T_R (z^2 + (1 - z)^2), \\
P_{q \to q\gamma}(z) &= e_q^2 \frac{1 + z^2}{1 - z}, \\
P_{\ell \to \ell\gamma}(z) &= e_\ell^2 \frac{1 + z^2}{1 - z},
\end{align*}
\]

Relate measurements at different Q^2
Extrapolate to new energies (eg LHC)
(Note: extrapolation in x more tricky …)
Evolution in Q^2 by DGLAP

(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

Require cross section independent of μ_F (at calculated order) \rightarrow RGE

$$\frac{df_i(x, \mu^2_F)}{d \ln \mu^2_F} = \ldots$$

$\mu_F^2 = Q^2 = (2 \text{ GeV})^2$

$\mu_F^2 = Q^2 = (100 \text{ GeV})^2$
LO vs NLO

\[\sigma^{hh} = \sum_i \sum_f \int d\xi \int d\Phi f_i(h)(x_i, Q^2) \]

\[Q^2 = (10 \text{ GeV})^2 \]

The “best fit” depends on the matrix elements you use when doing the fit

NLO matrix elements contain low-\(x\) enhancements (they are larger than LO × DGLAP)

\[\rightarrow \text{need less low-}x\ \text{PDFs} \]

(\(+\) momentum conservation

\[\rightarrow \text{more partons at high } x \]

\[\rightarrow \text{larger cross sections} \]
(Advanced) PDF Uncertainties

Much debate recently on PDF errors

 Attempt to propagate experimental errors through PDF fits → 68% CL

But “tensions” between different data sets

→ 90%, or something else?

+ Different groups (CTEQ, MSTW, NNPDF, etc) use different ansätze for shape of f(x) at low-Q boundary

Still, good to ≈ 10% even for LO gluon in 10^{-4} < x < 10^{-1} (bigger errors at lower Q^2)
QCD at Fixed Order

Distribution of observable: O

In production of $X +$ anything

$$\left. \frac{d\sigma}{dO} \right|_{\text{ME}} = \sum_{k=0} \int d\Phi_{X+k} \left| \sum_{\ell=0} M_{X+k}^{(\ell)} \right|^2 \delta \left(\mathcal{O} - \mathcal{O}(\{p\}_{X+k}) \right)$$

- Cross Section differentially in O
- Sum over identical amplitudes, then square
- Matrix Elements for $X+k$ at (ℓ) loops
- Momentum configuration
- Evaluate observable → differential in O
- Truncate at $k = 0, \ell = 0$
- → Born Level = First Term
- Lowest order at which X happens
Loops and Legs

Another representation

Loops

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X+1</td>
<td>X+2</td>
<td>X+3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legs

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Born

Born (1882-1970)
Nobel Prize 1954
Loops and Legs

Another representation

X X+1 ...

X X+1 X+2 X+3 ...

Born X+1 X+2 X+3 ...

Loops

Legs

Note: X+1 jet observables only correct at LO

X @ NLO
(includes X+1 @ LO)
Loops and Legs

Another representation

X @ NNLO
(includes X+1 @ NLO)
(includes X+2 @ LO)

Note: X+2 jet observables only correct at LO

Note: X+1 jet observables only correct at NLO
Cross sections at LO

Born:

\[\sigma_{\text{Born}} = \int |M_X^{(0)}|^2 \]

Born + n

\[\sigma_{X+1}^{\text{LO}}(R) = \int_R |M_{X+1}^{(0)}|^2 \]

Infrared divergent (cf Lecture 1) \(\rightarrow \) Must be regulated

\(R = \text{some Infrared Safe phase space region} \)

(Often a cut on \(p_\perp > n \text{ GeV} \))

Careful not to take it too low!

if \(\sigma(X+n) \approx \sigma(X) \) you got a problem
perturbative expansion not reliable
(see example on slide 23 of first lecture)
Cross sections at NLO

NLO:

\[\sigma_{X}^{\text{NLO}} = \int |M_{X}^{(0)}|^2 + \int |M_{X+1}^{(0)}|^2 + \int 2\text{Re}[M_{X}^{(1)} M_{X}^{(0)*}] \]

(\text{note: this is not the 1-loop diagram squared})

KLN Theorem (Kinoshita-Lee-Nauenberg)

Sum over ‘degenerate quantum states’:

Singularities cancel at complete order (only finite terms left over)

\[\sigma_{\text{NLO}}(e^+e^- \rightarrow q\bar{q}) = \sigma_{\text{LO}}(e^+e^- \rightarrow q\bar{q}) \left(1 + \frac{\alpha_s(E_{\text{CM}})}{\pi} + \mathcal{O}(\alpha_s^2)\right) \]
The Subtraction Idea

How do I get finite\{Real\} and finite\{Virtual\}?

First step: classify IR singularities using universal functions

EXAMPLE: factorization of amplitudes in the soft limit

\[
|\mathcal{M}_{n+1}(1, \cdots, i, j, k, \cdots, n + 1)|^2 \xrightarrow{g_s \to 0} g_s^2 c_{ijk} S_{ijk} |\mathcal{M}_n(1, \cdots, i, k, \cdots, n + 1)|^2
\]

Universal “Soft Eikonal”

\[
S_{ijk}(m_I, m_K) = \frac{2s_{ik}}{s_{ij}s_{jk}} - \frac{2m^2_I}{s_{ij}^2} - \frac{2m^2_K}{s_{jk}^2}
\]

\[s_{ij} \equiv 2p_i \cdot p_j\]
The Subtraction Idea

Add and subtract IR limits (SOFT and COLLINEAR)

\[d\sigma_{NLO} = \int d\Phi_{m+1} (d\sigma_{NLO}^R - d\sigma_{NLO}^S) + \left[\int d\Phi_{m+1} d\sigma_{NLO}^S + \int d\Phi_m d\sigma_{NLO}^V \right] \]

Choice of subtraction terms:

Singularities mandated by gauge theory

Non-singular terms: up to you (added and subtracted, so vanish)

\[
\frac{|M(Z^0 \rightarrow q_i g_j \bar{q}_k)|^2}{|M(Z^0 \rightarrow q_I \bar{q}_K)|^2} = g_s^2 2C_F \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} \right) \right]
\]

\[
\frac{|M(H^0 \rightarrow q_i g_j \bar{q}_k)|^2}{|M(H^0 \rightarrow q_I \bar{q}_K)|^2} = g_s^2 2C_F \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right]
\]

Dipoles (Catani-Seymour)

Global Antennae
(Gehrmann, Gehrmann-de Ridder, Glover)

Sector Antennae
(Kosower)

...
Structure of $\sigma(\text{NNLO})$

$$\sigma_X^{\text{NNLO}} = \sigma_X^{\text{NLO}} + \int \left(|M_X^{(1)}|^2 + 2\text{Re}[M_X^{(2)} M_X^{(0)*}] \right) + \int 2\text{Re}[M_{X+1}^{(1)} M_{X+1}^{(0)*}] + \int |M_{X+2}^{(0)}|^2$$

- **I-Loop × I-Loop**
- **I-Loop × Real (X+1)**
- **Two-Loop × Born Interference**
- **Real × Real (X+2)**
Part of Z → 4 jets ...

5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-antiquark-antiquark at leading and subleading colour, \(A_1^0 \) and \(A_1^0 \) and quark-antiquark-quark-antiquark for non-identical quark flavours \(B_1^0 \) as well as the identical-flavour-only contribution \(C_1^0 \). The quark-antiquark-quark-antiquark final state with identical quark flavour is thus described by the sum of antennae for non-identical flavour and identical-flavour-only. The antennae for the \(q{ar q}{ar q} \) final state are:

\[
\begin{align*}
A_1^0(1, q, 3, q, 2) &= a_1^0(1, 3, 4, 2) + a_1^0(2, 4, 3, 1), \\
A_1^0(1, q, 3, q, 2) &= \frac{1}{s_{134}} \left\{ \frac{1}{2s_{12} s_{234}} \left[2s_{12} s_{14} + 2s_{12} s_{23} + 2s_1^2 + s_1^2 + s_2^2 \right] \\
&\quad+ \frac{1}{s_{12} s_{234}} \left[3s_{12} s_{34} - 4s_1^2 s_{34} + 2s_1^2 - s_2^2 \right] \\
&\quad+ \frac{1}{s_{12} s_{234}} \left[3s_{12} s_{23} - 3s_{12} s_{34} + 4s_1^2 s_{23} + s_2^2 + s_2^2 + s_2^2 \right] \\
&\quad+ \frac{1}{s_{12} s_{234}} \left[2s_{12} + s_1 + s_2 + \frac{1}{s_{1234}} \left[4s_{12} + 3s_{23} + 2s_{24} \right] \\
&\quad+ \frac{1}{s_{1234}} \left[s_{12} s_{34} + s_{23} s_{34} + s_{24} s_{34} \right] \\
&\quad+ \frac{1}{s_{1234}} \left[3s_{12} s_{24} + 6s_{12} s_{34} - 4s_1^2 - 3s_{24} s_{34} - s_2^2 - 3s_2^2 \right] \\
&\quad+ \frac{1}{s_{1234}} \left[-6s_{12} - 3s_{23} - s_2 + 2s_{24} \right] \\
&\quad+ \frac{1}{s_{1234}} \left[2s_{12} s_{14} + 2s_{12} s_{23} + 2s_1^2 + 2s_{14} s_{23} + s_1^2 + s_2^2 \right] \\
&\quad+ \frac{1}{s_{1234}} \left[-4s_{12} - s_1 - s_2 + s_3 + \frac{1}{s_{1234}} \left[s_{12} + 2s_{13} - 2s_{14} - s_3 \right] \\
&\quad+ \frac{1}{s_{1234}} \left[2s_{12} s_{14}^2 + 2s_{14} s_{23} + 2s_1^2 s_{14} + 2s_{14} s_{23} \right] \\
&\quad+ \frac{1}{s_{1234}} \left[-2s_{12} s_{14} - 4s_{14} s_{24} + 2s_{14} \right] \\
&\quad+ \frac{1}{s_{1234}} \left[-2s_{12} s_{14} - 4s_1^2 s_{14} + 4s_{14} s_{24} - s_2^2 - s_2^2 \right] \\
&\quad+ \frac{1}{s_{1234}} \left[-8s_{12} - 2s_{23} - 2s_{24} + \frac{1}{s_{1234}} \left[s_{12} + s_{23} + s_{24} \right] \\
&\quad+ \frac{3}{s_{1234}} \left[2s_{12} + s_1 - s_2 - s_3 \right] + \frac{1}{s_{1234}} + O(\epsilon) \right\}. \\
\end{align*}
\]

(5.28)

\[
\begin{align*}
\bar{a}_2^0(1, 3, 4, 2) &= \frac{1}{s_{1234}} \left\{ \frac{1}{s_{13} s_{24} s_{134} s_{234}} \left[\frac{3}{s_{1234}} - 2s_{12} s_{34} - s_1^2 - \frac{1}{2} \right] \\
&\quad+ \frac{1}{s_{13} s_{24} s_{134} s_{234}} \left[3s_{12} s_{23} - 3s_{12} s_{34} + 4s_1^2 - s_{23} s_{34} + s_2^2 + s_2^2 \right] \\
&\quad+ \frac{1}{s_{13} s_{24} s_{134} s_{234}} \left[s_{12} - s_{23} - s_{24} + 1 \right] \left[\begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right] \right\}. \\
\end{align*}
\]

(5.27)

This is one of the simplest processes ... computed at tree level.

\[
\begin{align*}
\frac{1}{s_{13} s_{134} s_{234}} &= \left(\begin{array}{c} 1 \\ \vdots \end{array} \right) \\
\frac{1}{s_{13} s_{134} s_{234}} &= \left(\begin{array}{c} 1 \\ \vdots \end{array} \right) \\
\end{align*}
\]

Now compute and add the quantum corrections ...

\[
\begin{align*}
\frac{1}{s_{13} s_{134} s_{234}} s_{13} s_{24} s_{134} s_{234} &\left(\begin{array}{c} 1 \\ \vdots \end{array} \right) \left(\begin{array}{c} 1 \\ \vdots \end{array} \right) \left(\begin{array}{c} 1 \\ \vdots \end{array} \right) \left(\begin{array}{c} 1 \\ \vdots \end{array} \right) \\
\frac{1}{s_{13} s_{134} s_{234}} s_{13} s_{24} s_{134} s_{234} &\left(\begin{array}{c} 1 \\ \vdots \end{array} \right) \left(\begin{array}{c} 1 \\ \vdots \end{array} \right) \left(\begin{array}{c} 1 \\ \vdots \end{array} \right) \left(\begin{array}{c} 1 \\ \vdots \end{array} \right) \\
\end{align*}
\]

Then maybe worry about simulating the detector too ...

\[
\begin{align*}
\text{Additional Subleading Terms ...}
\end{align*}
\]

(5.29)
Riemann Sums

\[
\int_a^b f(x)\,dx = \lim_{n \to \infty} \sum_{i=1}^n f(t_i)(x_{i+1} - x_i)
\]

Midpoint Rule
Sample Points = 6
Numerical Quadrature
Approximation = 2.059280

B. Riemann, (1826-1866)
Higher Dimensions

m-point rule in 1 dimension

... in 2 dimensions

... in D dimensions

Fixed-Grid (Product) Rules scale exponentially with D

→ m function evaluations per bin

→ m^2 evaluations per bin

→ m^D per bin

n-particle phase space grows like 3n-4

e.g. D_3=5 D_4=8 D_5=11
Numerical Precision

Convergence is slower in higher Dimensions!

→ More points for less precision

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>N</th>
<th>Approx Conv. Rate (in D dim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapezoidal Rule (2-point)</td>
<td>2</td>
<td>1/N</td>
</tr>
<tr>
<td>Simpson’s Rule (3-point)</td>
<td>3</td>
<td>1/N</td>
</tr>
<tr>
<td>… m-point (Gauss rule)</td>
<td>m</td>
<td>1/N</td>
</tr>
</tbody>
</table>

See, e.g., “Numerical Recipes”

See, e.g., F. James, “Monte Carlo Theory and Practice”
A Monte Carlo technique: is any technique making use of random numbers to solve a problem

Convergence:

Calculus: \{A\} converges to B if an n exists for which
\[|A| \]

Monte Carlo: \{A\} converges to B if n exists for which
the probability for
\[|A| \]
is > P, for any P[0<P<1]

“This risk, that convergence is only given with a certain probability, is inherent in Monte Carlo calculations and is the reason why this technique was named after the world’s most famous gambling casino. Indeed, the name is doubly appropriate because the style of gambling in the Monte Carlo casino, not to be confused with the noisy and tasteless gambling houses of Las Vegas and Reno, is serious and sophisticated.”

F. James, “Monte Carlo theory and practice”, Rept. Prog. Phys. 43 (1980) 1145
MC convergence is Stochastic!

\[\frac{1}{\sqrt{n}} \] in any dimension

<table>
<thead>
<tr>
<th>Uncertainty (after n function evaluations)</th>
<th>n</th>
<th>Approx Conv. Rate (in 1D)</th>
<th>Approx Conv. Rate (in D dim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapezoidal Rule (2-point)</td>
<td>2</td>
<td>1/N</td>
<td>1/N</td>
</tr>
<tr>
<td>Simpson’s Rule (3-point)</td>
<td>3</td>
<td>1/N</td>
<td>1/N</td>
</tr>
<tr>
<td>… m-point (Gauss rule)</td>
<td>m</td>
<td>1/N</td>
<td>1/N</td>
</tr>
<tr>
<td>Monte Carlo</td>
<td>1</td>
<td>1/N</td>
<td>1/N</td>
</tr>
</tbody>
</table>

+ many ways to optimize: stratification, adaptation, ...
+ gives “events” → iterative solutions (but note: not the only reason)
+ interfaces to detector simulation & propagation codes
You want: to know the area of this shape:

Assume you know the area of this shape:

\[\pi R^2 \] (an overestimate)

Now get a few friends, some balls, and throw random shots inside the circle (but be careful to make your shots truly random)

Count how many shots hit the shape inside and how many miss

\[A_\star \approx \frac{N_{\text{hit}}}{N_{\text{throws}}} \times \pi R^2 \]

+ I’ll stop talking about it now. More in next Lecture
Random Numbers

I will not tell you how to write a Random-number generator (interesting topic & history in its own right)

Instead, if you want to play with one, link to a random-number generator, from a library

E.g., ROOT includes one that you can use if you like.
PYTHIA also includes one

From the PYTHIA 8 HTML documentation, under “Random Numbers”:

Random numbers R uniformly distributed in $0 < R < 1$ are obtained with

```cpp
Pythia8::Rndm::flat();
```

+ Other methods for exp, $x^*\text{exp}$, 1D Gauss, 2D Gauss.
Jets as Projections

Projections to jets provides a universal view of event

Illustrations by G. Salam
There is no unique or “best” jet definition

YOU decide how to look at event

The construction of jets is inherently ambiguous

1. Which particles get grouped together?
 JET ALGORITHM (+ parameters)

2. How will you combine their momenta?
 RECOMBINATION SCHEME
 (e.g., ‘E’ scheme: add 4-momenta)

Ambiguity complicates life, but gives flexibility in one’s view of events → Jets non-trivial!
Types of Algorithms

1. Sequential Recombination

Take your 4-vectors. Combine the ones that have the lowest 'distance measure'

Different names for different distance measures

- Durham k_T: \(\Delta R_{ij}^2 \times \min(k_{Ti}^2, k_{Tj}^2) \)
- Cambridge/Aachen: \(\Delta R_{ij}^2 \)
- Anti-k_T: \(\Delta R_{ij}^2 / \max(k_{Ti}^2, k_{Tj}^2) \)
- ArClus (3→2): \(p_\perp^2 = s_{ij}s_{jk} / s_{ijk} \)

→ New set of (n-1) 4-vectors

Iterate until A or B (you choose which):

A: all distance measures larger than something
B: you reach a specified number of jets

Look at event at:

- specific resolution
- specific \(n_{jets} \)
Why \(k_T \) (or \(p_T \) or \(\Delta R \))?

Attempt to (approximately) capture universal jet-within-jet-within-jet... behavior

Approximate full matrix element

\[
\frac{|M_{X+1}^{(0)}(s_{i1}, s_{1k}, s)|^2}{|M_X^{(0)}(s)|^2} = 4\pi\alpha_s C_F \left(\frac{2s_{ik}}{s_{i1}s_{1k}} + \ldots \right)
\]

by Leading-Log limit of QCD → universal dominant terms

\[
\frac{d\sigma_{i1}d\sigma_{1k}}{s_{i1}s_{1k}} \rightarrow \frac{dp_1^2}{p_1^2} \frac{dz}{z(1-z)} \rightarrow \frac{dE_1}{\min(E_i, E_1)} \frac{d\theta_{i1}}{\theta_{i1}} \quad (E_1 \ll E_i, \theta_{i1} \ll 1), \ldots
\]

Rewritings in soft/collinear limits

“smallest” \(k_T \) (or \(p_T \) or \(\theta_{ij} \), or ...) → largest Eikonal
2. “Cone” type

Take your 4-vectors. Select a procedure for which “test cones” to draw

Different names for different procedures

Seeded: start from hardest 4-vectors (and possibly combinations thereof, e.g., CDF midpoint algorithm) = “seeds”

Unseeded: smoothly scan over entire event, trying everything

Sum momenta inside test cone \rightarrow new test cone direction

Iterate until stable (test cone direction $=$ momentum sum direction)

Warning: seeded algorithms are INFRARED UNSAFE
Definition

An observable is infrared safe if it is insensitive to

SOFT radiation:
Adding any number of infinitely soft particles (zero-energy) should not change the value of the observable

COLLINEAR radiation:
Splitting an existing particle up into two comoving particles (conserving the total momentum and energy) should not change the value of the observable
Safe vs Unsafe Jets

May look pretty similar in experimental environment ...
But it’s not nice to your theory friends ...

Unsafe: badly divergent in pQCD \rightarrow large IR corrections:

$$\text{IR Sensitive Corrections } \propto \alpha_s^n \log^m \left(\frac{Q_{UV}^2}{Q_{IR}^2} \right), \quad m \leq 2n$$

Even if we have a hadronization model with which to compute these corrections, the dependence on it \rightarrow larger uncertainty

Safe \rightarrow IR corrections power suppressed:

$$\text{IR Safe Corrections } \propto \frac{Q_{IR}^2}{Q_{UV}^2}$$

Can still be computed (MC) but can also be neglected (pure pQCD)

Let’s look at a specific example …
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞.

Slides from G. Salam
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞.

-- Slides from G. Salam --
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞.

ICPR iteration issue
Iterative Cone Progressive Removal
ICPR iteration issue
Iterative Cone Progressive Removal

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞.

Slides from G. Salam
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞.

Slides from G. Salam
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞.
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \(\implies \) perturbative calculations give ∞
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞.

Slides from G. Salam
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞.

Slides from G. Salam
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞.

Slides from G. Salam
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞.

Slides from G. Salam
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞.

Slides from G. Salam
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Rightarrow perturbative calculations give ∞.

ICPR iteration issue
Iterative Cone Progressive Removal

Slides from G. Salam
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe ➞ perturbative calculations give \(\infty \)
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \(\Rightarrow\) perturbative calculations give \(\infty\)
Consequences of Collinear Unsaftety

Real life does not have infinities, but pert. infinity leaves a real-life trace

\[\alpha_s^2 + \alpha_s^3 + \alpha_s^4 \times \infty \rightarrow \alpha_s^2 + \alpha_s^3 + \alpha_s^4 \times \ln p_t/\Lambda \rightarrow \alpha_s^2 + \alpha_s^3 + \alpha_s^3 \]

BOTH WASTED
Use IR Safe algorithms

To study short-distance physics

These days, ≈ as fast as IR unsafe algos and widely implemented (e.g., FASTJET), including

“Cone-like”: SiSCones, Anti-\(k_T\), …

“Recombination-like”: \(k_T\), Cambridge/Aachen, Anti-\(k_T\), …

Then use IR Sensitive observables

E.g., number of tracks, identified particles, …

To explicitly check hadronization and models of IR physics

More about IR in lecture on soft QCD …
1. Fundamentals of QCD
2. PDFs, Fixed-Order QCD, and Jet Algorithms
3. Parton Showers and Event Generators
4. QCD in the Infrared

Slides posted at:
www.cern.ch/skands/slides

Lecture Notes:
P. Skands, arXiv:1207.2389
Supplementary Slides
Uncalculated Orders

Naively $O(\alpha_s)$ - True in e^+e^-!

\[
\sigma_{\text{NLO}}(e^+e^- \rightarrow q\bar{q}) = \sigma_{\text{LO}}(e^+e^- \rightarrow q\bar{q}) \left(1 + \frac{\alpha_s(E_{\text{CM}})}{\pi} + O(\alpha_s^2)\right)
\]

Generally larger in hadron collisions

Typical “K” factor in pp ($= \sigma_{\text{NLO}}/\sigma_{\text{LO}}$) $\approx 1.5 \pm 0.5$

Why is this? Many pseudoscientific explanations

- Explosion of # of diagrams ($n_{\text{Diagrams}} \approx n!$)
- New initial states contributing at higher orders (E.g., $gq \rightarrow Zq$)
- Inclusion of low-x (non-DGLAP) enhancements
- Bad (high) scale choices at Lower Orders, …

Theirs not to reason why // Theirs but to do and die

Tennyson, The Charge of the Light Brigade
Why scale variation ~ uncertainty?

Scale dependence of calculated orders must be canceled by contribution from uncalculated ones (+ non-pert)

\[
\alpha_s(Q^2) = \alpha_s(m_Z^2) \frac{1}{1 + b_0 \alpha_s(m_Z) \ln \frac{Q^2}{m_Z^2} + \mathcal{O}(\alpha_s^2)}
\]

\[b_0 = \frac{11N_C - 2n_f}{12\pi}\]

→ \((\alpha_s(Q'^2) - \alpha_s(Q^2)) |M|^2 = \alpha_s^2(Q^2)|M|^2 + \ldots\)

→ Generates terms of higher order, but proportional to what you already have (\(|M|^2\)) → a first naive* way to estimate uncertainty

*warning: some theorists believe it is the only way … but be agnostic! There are other things than scale dependence …
(Factorization: Caveats)

1. The proof only includes the first term in an operator product expansion in “twist” = mass dimension - spin

 ▫ Strictly speaking, only valid for $Q^2 \to \infty$. Neglects corrections of order

 \[
 \text{Higher Twist : } \frac{\left[\ln \left(\frac{Q^2}{\Lambda^2} \right) \right]^{m<2n}}{Q^{2n}}
 \]

 (n=2 for DIS)

2. The proof only applies to inclusive cross sections

 In e^+e^-, in DIS, and in Drell-Yan. For everything else: factorization ansatz

3. Scheme dependence

 In practice limited to MSbar + variations of Q_F

4. Interpretation of PDFs as parton number densities

 Is only valid at Leading Order
Peaked Functions

Precision on integral dominated by the points with $f \approx f_{\text{max}}$ (i.e., peak regions)

→ slow convergence if high, narrow peaks
Stratified Sampling

→ Make it twice as likely to throw points in the peak

Choose:
- $[0,1] \rightarrow \text{Region A}$
- $[1,2] \rightarrow \text{Region B}$
- $6*R_1 \in [2,4] \rightarrow \text{Region C}$
- $[4,5] \rightarrow \text{Region D}$
- $[5,6] \rightarrow \text{Region E}$

→ faster convergence for same number of function evaluations
Adaptive Sampling

→ Can even design algorithms to do this automatically as they run (not covered here)

→ Adaptive sampling
Importance Sampling

→ or throw points according to some smooth peaked function for which you have, or can construct, a random number generator (here: Gauss)

E.g., VEGAS algorithm, by G. Lepage
1) You are inputting knowledge: obviously need to know where the peaks are to begin with ... (say you know, e.g., the location and width of a resonance)

2) Stratified sampling increases efficiency by combining fixed-grid methods with the MC method, with further gains from adaptation

3) Importance sampling:

\[\int_{a}^{b} f(x) \, dx = \int_{a}^{b} \frac{f(x)}{g(x)} \, dG(x) \]

Effectively does flat MC with changed integration variables

Fast convergence if \(f(x)/g(x) \approx 1 \)
How we do Monte Carlo

Take your system

Set of radioactive nuclei
Set of hard scattering processes
Set of resonances that are going to decay
Set of particles coming into your detector
Set of cosmic photons traveling across the galaxy
Set of molecules
...

How we do Monte Carlo

Take your system

Generate a “trial” (event/decay/interaction/…)

Not easy to generate random numbers distributed according to exactly the right distribution?
May have complicated dynamics, interactions …
→ use a simpler “trial” distribution

Flat with some stratification

Or importance sample with simple overestimating function (for which you can generate random #s)
Take your system

Generate a “trial” (event/decay/interaction/…)

Accept trial with probability \(\frac{f(x)}{g(x)} \)
- \(f(x) \) contains all the complicated dynamics
- \(g(x) \) is the simple trial function

If accept: replace with new system state
If reject: keep previous system state

no dependence on \(g \) in final result - only affects convergence rate

And keep going: generate next trial …
How we do Monte Carlo

Take your system

Generate a “trial” (event/decay/interaction/…)

Accept trial with probability \(\frac{f(x)}{g(x)} \)

- \(f(x) \) contains all the complicated dynamics
- \(g(x) \) is the simple trial function

If accept: replace with new system state
If reject: keep previous system state

And keep going:

no dependence on \(g \) in final result - only affects convergence rate

Sounds deceptively simple, but …

with it, you can integrate arbitrarily complicated functions (in particular chains of nested functions), over arbitrarily complicated regions, in arbitrarily many dimensions …